
Improved asymmetry prediction for siRNAs

Amanda P. Malefyt1, Ming Wu2, Daniel B. Vocelle1, Sean J. Kappes1, Stephen D. Lindeman,
Christina Chan1,2,3, and S. Patrick Walton1,*

1 Department of Chemical Engineering and Materials Science
2Department of Computer Science and Engineering
3Department of Biochemistry and Molecular Biology

Abstract
In the development of RNA interference (RNAi) therapeutics, merely selecting short, interfering
RNA (siRNA) sequences that are complementary to the messenger RNA (mRNA) target does not
guarantee target silencing. Current algorithms for selecting siRNAs rely on many parameters, one
of which is asymmetry, often predicted through calculation of the relative thermodynamic stability
of the two ends of the siRNA. However, we have previously shown that highly-active siRNA
sequences are likely to have particular nucleotides at each 5’-end, independent of their
thermodynamic asymmetry. Here, we describe an algorithm for predicting highly active siRNA
sequences based only on these two asymmetry parameters. The algorithm uses end sequence
nucleotide preferences and predicted thermodynamic stabilities, each weighted based on training
data from the literature, to rank the probability that an siRNA sequence will have high or low
activity. The algorithm successfully predicts weakly- and highly-active sequences for enhanced
green fluorescent protein (EGFP) and protein kinase R (PKR). Use of these two parameters in
combination improves the prediction of siRNA activity over current approaches for predicting
asymmetry. Going forward, we anticipate that this approach to siRNA asymmetry prediction will
be incorporated into the next generation of siRNA selection algorithms.
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Introduction
Therapeutic applications of RNA interference (RNAi) leverage a conserved pathway for
gene expression regulation that possesses the potential for exquisite sequence specificity
through the complementarity of short interfering RNAs (siRNAs) for their target [1-3].
Though the technology has yet to demonstrate its full potential in clinical applications [4, 5],
there remains major interest in developing siRNA-based therapeutics [6]. Because RNAi
represents a therapeutic approach that can be applied to nearly any disease [7, 8],
improvements in the design and development of siRNA therapeutics have the potential for a
significant impact on clinical practice.
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A number of intermolecular interactions are critical to the activity of siRNAs, including
those with the delivery vehicle [9-11], the target mRNA [12-15], and the pathway proteins
[16-19]. While a single RNA guide strand and Argonaute 2 (Ago2) are the minimal
components required for active silencing in vitro [20], the proteins Dicer and TAR RNA
Binding Protein (TRBP) are important for RLC/RISC activity in vivo [21-23]. Other
proteins, such as the protein activator of PKR (PACT) [24, 25] and component 3 promoter
of RISC (C3PO) [26], may also have important but as yet undefined functional roles in the
RNAi process. One essential process executed by the pathway proteins is the identification
and loading of the siRNA guide strand into the RLC/RISC and the concomitant destruction
of the passenger strand [2, 27, 28]. The likelihood of one siRNA strand becoming the guide
strand relative to the other strand is termed asymmetry [27, 29].

There are currently multiple proteins thought to participate in sensing the asymmetry of
siRNA duplexes [18, 30-32]. When the existence of siRNA asymmetry was first identified,
it was proposed that the relative hybridization stability of the two ends of the siRNA
sequence was the principal means by which asymmetry was sensed by the pathway proteins
[29]. Since that time, nearly all algorithms for selecting highly-active siRNAs have used a
thermodynamic calculation for asymmetry, among other parameters [29, 33-37]. More
recently, evidence has begun to accumulate that the terminal nucleotides on each 5’-end of
the siRNA may be valuable for predicting the activity of an siRNA [18, 30, 38], in particular
when classified according to the sixteen possible combinations of nucleotides. When
terminal nucleotide classification is combined with relative hybridization stability, the
accuracy of predicting siRNA activity improves markedly [38].

In this work, we wanted to predict siRNA activities based only on the two asymmetry
characteristics, terminal nucleotide classification and relative thermodynamic stability, and
establish experimentally their relative importance in determining the activity of an siRNA.
Using a logistic regression model, we successfully predicted active and inactive sequences
for the exogenous protein, enhanced green fluorescent protein (EGFP), as well as the
endogenous protein, protein kinase R (PKR). In addition, the combination of both end
sequence and thermodynamic stability features provided improved correlation to siRNA
activity when compared to either feature individually. These results demonstrate further that
asymmetry may be determined by more factors than just relative stability, and algorithms for
prediction of siRNA activity should also account for terminal nucleotide sequence
classification in asymmetry calculations.

Results
Ranking and Selection of EGFP-targeting siRNAs

Our ranking algorithm was initially tested on siRNAs to target the EGFP mRNA. From the
cDNA sequence (see Supporting Information), there were 824 possible siRNA sequences,
which were ranked based on the difference between the algorithm's predicted likelihood of
high and low activity. For comparison, commercial algorithms (Dharmacon and Ambion)
were also used. These selection algorithms were chosen, because their predictions are based
solely on the characteristics of the siRNA and not on other factors used in some selection
algorithms, such as target mRNA structure, which would make it difficult to directly
compare the accuracy of our asymmetry-based predictions with predictions from more
detailed selection approaches. The commercial rankings only included sequences predicted
to have high activity as opposed to the entire range of possible siRNA sequences. While this
is adequate for those needing effective siRNA sequences, it does not provide sufficient data
to compare the characteristics of high activity and low activity siRNAs. The Dharmacon
algorithm ranked the recommended siRNAs, whereas for Ambion there were no distinctions
among the top 35 candidate sequences. Interestingly, there was no overlap between the lists
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of recommended sequences provided by the commercial algorithms. Aggregating the
commercial recommendations with our predictions, we chose 11 sequences to test
experimentally that would allow us to preliminarily compare the relative utility of the three
prediction approaches (Table 2).

Transfection experiments were performed using H1299-EGFP cells at various siRNA
concentrations (Figure 2). Surprisingly, 81% of the sequences had some silencing effect
compared to control treatments, with 73% of sequences showing greater than 75% reduction
in protein levels at a 50 and 100 nM siRNA concentration. One sequence (EGFP 783)
showed intermediate silencing (difference from other sequences indicated by double stars),
suggesting a gradient, rather than a step change, in silencing ability between active and
inactive sequences. In general, sequences predicted by our algorithm to have higher activity
showed increased inhibition of EGFP fluorescence. The rank order of activities was
maintained at lower (5 nM) and saturating (50 and 100 nM) siRNA concentrations. The two
sequences chosen based on their opposing rankings between the two features in our
approach, EGFP 757 (favorable terminal sequence, unfavorable ΔΔG) and EGFP 783
(unfavorable terminal sequence, favorable ΔΔG), ultimately displayed an activity correlated
with their terminal nucleotide classification rather than their thermodynamic stability.

To further investigate the hypothesis that terminal sequence classification was more
important than thermodynamic stability in predicting siRNA activity, silencing efficiencies
were compared against algorithm rank, terminal nucleotide rank, and ΔΔG values
individually (Figure 3). The correlation between activity and terminal nucleotide rank was
better than for thermodynamic stability alone, with the correlation with full algorithm rank
better than either alone. This agrees with our prior work showing that terminal nucleotide
classification is generally a more informative predictor of siRNA activity but that inclusion
of the thermodynamic calculation provides some additional complementary information
[38].

Ranking and Selection of PKR-targeting siRNAs
Although our algorithm successfully predicted active and inactive sequences for EGFP, we
wanted to confirm similar results for an endogenous protein, the signaling pathway
mediator, PKR. In addition, through systematic selection of siRNAs of high, medium, and
low nucleotide ranking and siRNAs having high, medium, and low relative thermodynamic
stabilities (Table 3), we aimed to further explore the relative importance of each of these
characteristics in predicting silencing activity. We selected PKR as a model endogenous
protein based on our prior work and expertise silencing this protein [39]. Though PKR is a
double-stranded RNA responsive protein and known to be functionally connected to proteins
in the RNAi pathway [40], the lack of any cytotoxicity across all of our experiments
suggested that it was not initiating any generalized immune response to the siRNAs that
would confound our specific silencing results.

Transfection experiments were performed using HepG2 cells at 100 nM siRNA
concentrations (Figure 4). In this case, 55% of sequences showed greater than 50%
reduction in PKR protein levels when compared to control cells. Again, sequences predicted
to have higher activity showed increased reduction in PKR protein levels. When sorted by
end nucleotide classification, sequences in the UG class showed the best silencing activity,
on average, regardless of their thermodynamic stability. Conversely, sequences in the low-
ranking terminal nucleotide class, CU, do not show significant silencing, even when having
highly positive ΔΔG values. In the intermediate category of end sequence (AA), silencing
activity correlated strongly with the calculated thermodynamic stability, with a favorable
value resulting in significant silencing and an unfavorable value not. Taken together with
our results from the GFP experiments, these results support the argument that terminal
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sequence classification is a stronger predictor of siRNA activity that relative hybridization
stability.

Our algorithm achieved improved correlation between rank and siRNA activity than
achieved by either terminal nucleotide or thermodynamic stability independently (Figure 5).
While the PKR terminal nucleotide correlation is less than that achieved from the EGFP
data, the thermodynamic stability and overall algorithm rank correlation coefficients remain
similar, even with a larger range of possible siRNA sequences (2352 for PKR vs. 824 for
EGFP), showing the algorithm's fidelity for various sized targets. It is noteworthy that for
both sequences, the top-ranked sequence, i.e., the one that would have been chosen for
predicting an siRNA against a new target, was highly-active in silencing the target, further
supporting our hypothesis that using only two parameters was sufficient for identifying
active siRNAs against novel targets.

Discussion
The use of asymmetry is well-established as useful and important for selecting active siRNA
sequences. Multi-step work flow protocols for selecting effective siRNAs have been
developed [41, 42]. However the selection algorithms themselves are based in part on using
relative thermodynamic stability as the sole factor in determining sequence asymmetry.
Other reported algorithms lack a consensus on the best way to calculate thermodynamic
asymmetry for siRNA activity prediction [36, 43-47]. When utilizing the commercially
available algorithms for comparison in this study, there were no overlaps between the
sequences predicted to be highly active by Dharmacon and those predicted by Ambion,
further illustrating the need for a consensus approach to selecting highly active siRNAs,
including which parameters are most important/useful for such predictions.

The results described here further illustrate that accounting only for thermodynamic
asymmetry ignores a more important feature in asymmetry, terminal nucleotide
classification. While others have identified terminal nucleotides as factors relevant to siRNA
design (e.g., [35]), our approach of pairing the antisense and sense termini and weighting
each pairing individually provides a unique and improved classification for sequences and
their activities. Our selection technique achieves correlation coefficient values > 0.8 whereas
previously reported algorithms typically achieve correlation coefficients of 0.5-0.7 between
algorithm predictions and experimental results [41, 48]. As our approach is focused on the
contribution of asymmetry in the siRNA to its ultimate activity, it was important to compare
our approach with others means of determining asymmetry. In calculating thermodynamic
asymmetry, it is common to use one, three, or four nearest neighbors at each end of the
siRNA as the basis for calculation [29, 36, 48, 49]. In our prior work [38], we showed that in
concert with terminal nucleotide classification, calculating thermodynamic asymmetry with
three nearest neighbor parameters provided the most information while one nearest neighbor
provided the most information in the absence of terminal nucleotide classification. Based on
this context, we compared the correlation of our data with thermodynamic calculations
performed using 1, 3, and 4 nearest neighbor parameters (Figure 6). In all cases, the
correlation of our experimental data was best with rankings including terminal nucleotide
classification (Table 4). This strongly supports our contention that all siRNA selection
algorithms would be improved by inclusion of our asymmetry approach in place of their
current asymmetry calculation.

Our algorithm as structured only ranks sequences based on their likelihood for silencing the
intended target. It was our intent in this study to determine if the factors we tested were
useful in predicting sequences of high activity. Our ranking approach does not account for
potential off-target effects by the sequences. Examining the long-term design of siRNA
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therapeutics, it is essential that off-target effects be taken into account as well. That said, it is
our belief that beginning therapeutic design with the most highly active sequence, which can
then be modified, if needed, to improve its specificity, is a better approach to obtaining a
useful therapeutic than beginning with the most highly specific sequence, which may then
need to be modified to improve its silencing activity against the intended target.

While our approach is useful for predicting active (and inactive) siRNAs, we have not yet
established the causal relationship between the terminal nucleotide classification and siRNA
processing and activity. Indeed, it is well-established that the properties of the siRNA alone
only provide partial information as to the likely activity of the siRNA [14, 15, 50, 51].
However, studies are increasingly reporting that more active siRNAs and miRNAs tend to
contain specific nucleotides at the 5’ position of the guide strand [18, 33, 52], possibly a
result of Ago2 binding specificity [30]. We expect that going forward, our ongoing work
and that of others, will more firmly tie the presence of particular 5’-end nucleotides on both
the guide and passenger strands with important siRNA-protein interactions that occur in the
pathway to ensure proper siRNA processing.

Materials and Methods
Algorithm Design and Parameters

Using information from both terminal nucleotide classification and thermodynamic stability,
we developed a 17 parameter logistic regression model based on the 16 possible end
sequence combinations as well as the relative thermodynamic stability (Table 1 and
Supporting Information). The relative stability is calculated by the difference between the
hybridization free energy from the 5’-end of the antisense strand and the 5’-end of the sense
strand, termed ΔΔG, based on the three terminal nearest neighbor pairs [38, 53] (Figure 1).
ΔΔG calculations were based on 21 nt siRNAs with equivalent UU overhangs on the end of
each strand. This calculation technique, when coupled with terminal sequence information,
was shown to have the best predictive accuracy when tested on existing siRNA activity
databases [38]. The weighting factors for each of the 17 parameters were based on fitting the
model to the same siRNA databases [43, 44]. From a cDNA sequence input, the algorithm
predicts the probability the given sequence will have high, medium, or low activity. Using
the difference between the high and low probabilities, each siRNA sequence for a given
target was ranked from the highest to lowest difference. The cDNA sequences used for
EGFP and PKR are included in the Supporting Information with siRNA target regions
highlighted. For comparison with other asymmetry approaches (Figure 6), asymmetry
calculations were also performed using one and four nearest neighbor parameters. To ensure
the most accurate comparisons across ranking approaches, sequences with equivalent values
were all given the best possible ranking.

Dharmacon ranking information was obtained using: http://dharmacon.com/designcenter/
DesignCenterPage (now available through: http://www.thermoscientificbio.com/design-
center/). Potential sequences were determined by entering the nucleotide sequence directly,
removing any GC restriction requirements, and choosing the “No BLAST” option to provide
a direct comparison to the algorithm. Ambion ranking information was obtained through:
http://ambion.com/techlib/misc/siRNA_finder.html (no longer active after acquisition of
Ambion by Life Technologies). A list of potential siRNAs was generated by entering the
nucleotide sequence; no other selection parameters were required.

Materials
Lipofectamine 2000 (LF2K) was purchased from Invitrogen. All EGFP and PKR siRNA
sequences were 21 nt (19 bp plus UU overhangs) and were purchased from Dharmacon.
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Opti-Mem (GIBCO) was used for preparation of all transfection solutions. Monoclonal anti-
PKR (Y117) primary antibody was purchased from Novus Biologicals. Monoclonal anti-β-
actin primary antibody was purchased from Sigma. Secondary antibodies (anti-rabbit and
anti-mouse) were purchased from ThermoScientific.

Cell Culture
Human lung carcinoma cells (H1299) constitutively expressing a form of EGFP, modified to
contain a 2hr half-life, were generously provided by Dr. Jørgen Kjems, University of
Aarhus, Denmark. Human hepatocellular carcinoma (HepG2) cells were purchased from
American Type Culture Collection (ATCC). Cell culture media was prepared with
Dulbecco's Modified Eagle's Medium High Glucose (DMEM, Invitrogen) supplemented
with 10% fetal bovine serum (FBS, GIBCO) and 1% penicillin-streptomycin (GIBCO). For
the H1299 cells, 1% Geneticin (GIBCO) was added to maintain EGFP expression. Cells
were incubated at 37°C, 5% CO2, 100% relative humidity and subcultured every 4-5 days by
trypsinization.

EGFP Silencing and Fluorescence Analysis
H1299-EGFP cells were seeded in 96-well black side, clear bottom plates (Fisher Scientific)
at a density of 20,000 cells/well in 0.1 mL of complete media without antibiotics. After 24 h,
50 μL solutions of varied siRNAs and LF2K were prepared in Opti-Mem and allowed to
mix for 30 minutes prior to their addition to cells at final concentrations of 5-100 nM siRNA
and 2.3 μg/mL LF2K. Cells were incubated in the transfection solutions at 37°C, 5% CO2,
100% humidity. After 24h, cells were washed 2 times with DPBS (Gibco), and EGFP
fluorescence was quantified using a Gemini EM fluorescent plate reader (Molecular
Devices) at 480 nm excitation/525 nm emission. Fluorescence intensity was normalized to
control wells that were treated with transfection reagent but no siRNA. Cytotoxicity was
assessed by microscopy and was not seen in any of the treatments (see Supporting
Information).

PKR Silencing and Western Blotting
For siRNA transfections targeting human PKR in HepG2 cells, reverse transfection was
performed. Briefly, 250 μL solutions of varied siRNAs and LF2K were prepared in Opti-
Mem and allowed to mix for 30 minutes prior to their addition to standard six-well tissue
culture plates. Freshly trypsinized HepG2 cells suspended in antibiotic-free media were
added to the six-well culture plates at a density of 1.5 x 106 cells per well to achieve final
concentrations of 100 nM siRNA and 2.3 μg/mL LF2K. The cells were then incubated at
37°C, 5% CO2, 100% humidity for 48 h and collected. PKR levels were measured by
western blot analysis. The cells were washed twice with cold PBS and lysed in 200 μl/well
of CelLytic M cell lysis buffer (Sigma) supplemented with protease inhibitor cocktail
(Sigma). The cell lysate was clarified by centrifugation at 13,000 rpm for 10 min, and the
supernatant was collected. Total protein levels were quantified by Quick Start Bradford
protein assay (BioRad). Approximately 20 μg of total protein was resolved using 8%
resolving, 5% stacking SDS-PAGE gels. Proteins were then transferred to nitrocellulose
membranes and probed with primary and secondary antibodies. Biotinylated protein ladders
(Cell Signaling Tech.) were loaded to one well of each SDS-PAGE gel, and anti-biotin
antibody was used to detect the protein ladders on the western blots. Antibody detection was
performed using the SuperSignal West Femto Chemiluminescence substrate kit
(ThermoScientific) and imaged on the Molecular Imager ChemiDoc XRS System (Bio-
Rad). Band intensity was first normalized to actin to control for protein isolation and loading
and then the ratio was normalized to the ratio for control cells that received transfection
reagent but no siRNA. Cytotoxicity was assessed by microscopy and CellTiter-Blue assay
(Promega) (see Supporting Information) and was not seen in any of the treatments.
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Statistical Analyses
Multiple comparisons between protein levels across different siRNA treatments conditions
were performed using one-way (PKR data) or two-way (EGFP data) ANOVA followed by
Tukey's HSD post-hoc analysis with p-value cut-off set at 0.05. Analyses were performed
using either Microsoft Excel or Minitab.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Ago2 argonaute 2

C3PO component 3 promoter of RISC

EGFP enhanced green fluorescent protein

H1299 human lung carcinoma

HepG2 hepatocellular carcinoma

LF2K lipofectamine 2000

mRNA messenger RNA

nn nearest neighbor

PACT protein activator of PKR

PKR dsRNA-dependent protein kinase R

RISC RNA induced silencing complex

RLC RISC loading complex

RNAi RNA interference

siRNA short interfering RNA

TRBP TAR RNA binding protein
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Figure 1. Algorithm features for designing highly active siRNAs
From the selected mRNA target, all potential siRNAs were classified according to their
terminal sequence and thermodynamic stability. Terminal sequence (circles) uses the 5’
terminal nucleotides, antisense:sense strand and thermodynamic stability (shaded rectangles)
was calculated based on ΔΔG values using the 3 terminal nearest neighbors. All sequences
we synthesized to contain UU overhangs on the 3’ ends.
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Figure 2. Silencing of EGFP by selected siRNAs
H1299 cells expressing EGFP were treated with 5, 50, and 100 nM of siRNA for 24 h using
Lipofectamine 2000 (LF2K). Results are normalized EGFP fluorescence of LF2K-only
treated control cells. siRNA treatments are ordered based on algorithm predictions (415 =
highest predicted activity, 253 = lowest predicted activity). Error bars = +/− 1 standard
deviation, n =4 (5 nM), 5 (50 nM), and 3 (100nM). Single stars indicate a significant
difference (p < 0.05) compared to LF2K only treatments. Double stars indicate a significant
difference (p < 0.05) compared to EGFP 783.
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Figure 3. Correlation of exogenous gene silencing with each feature of the algorithm
EGFP silencing results graphed against terminal nucleotide rank only (A), ΔΔG values only
(B) or algorithm rank (C). The squares represent 5 nM siRNA while the diamonds are 100
nM siRNA treatments. For visual clarity, the 50 nM data points were not included in the
plots but follow the same trend in silencing activity. The correlation coefficients for each
dataset are tabulated (D).
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Figure 4. Silencing of PKR by selected siRNAs
HepG2 cells were reverse-transfected with 100 nM of siRNA for 48 h using Lipofectamine
2000 (LF2K). Results are normalized to both total protein level and PKR level of LF2K-
only treated control cells (black). siRNAs were grouped by end sequence rank, UG (light
grey), AA (striped), and CU (med grey). Error bars = +/− 1 standard deviation, n =3. Stars
indicate a significant difference (p < 0.05) when compared to LF2K only treatment.
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Figure 5. Correlation of endogenous gene silencing with each feature of the algorithm
PKR silencing results graphed against terminal nucleotide rank only (A), ΔΔG values only
(B), or algorithm rank (C). The correlation coefficients for each dataset are tabulated (D).
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Figure 6. Correlation of asymmetry calculations with experimental data
100 nM EGFP silencing results graphed against rankings among all possible siRNA
sequences using ΔΔG calculated using 1 nearest neighbor (A), 3 nearest neighbors (B), 4
nearest neighbors (C), or our algorithm (3 nearest neighbors and terminal nucleotide
classification (D).
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Table 1

Values of the coefficients used as weighting factors for predicting the probability of siRNAs at high (top third
among all possible sequences) and low (bottom third among all possible sequences) activity. Positive values
indicate features that are positively correlated with high siRNA activity. Applying these weights in our
algorithm, siRNAs were ranked by the magnitude of the difference between the probability of having high and
low activity. The “Intercept” is applied to all sequences and arises from the regression model (see Supporting
Information).

Classifier P(High) P(Low)

ΔΔG 0.2973 −0.1661

U:G 1.8767 −0.9852

A:G 0.3737 −0.0193

U:C 1.8744 −1.3088

U:A 1.7387 −1.0301

A:C 0.4764 −0.406

U:U 1.5084 −1.0877

C:G −0.2463 0.4025

G:C −0.6404 0.3337

A:A 0.2381 0.0810

G:G −0.7873 0.2945

A:U −0.5707 0.3471

C:C −0.3552 −0.0987

G:A −1.1939 0.6077

G:U −2.2329 1.3262

C:A −1.1755 0.9055

C:U −2.2846 1.2957

Intercept −0.0498 −0.2145
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Table 2

EGFP-targeting siRNA sequences selected for this study, sorted by algorithm rank.

5'Target Position siRNA Sequence
End 5' Nucleotides

Thermodynamic ΔΔG (kcal/mol) Algorithm Rank Testing Rationale
Anti:Sense Rank

415 UGUACUCCAGCUUGUGCCC U:G 1 4.2 1 Highest algorithm ranking

416 UUGUACUCCAGCUUGUGCC U:G 1 2.1 17 Highest Dharm. rank (91)

274 UGCGCUCCUGGACGUAGCC U:G 1 0.8 38 On Ambion list

757 UGGGCAGCGUGCCAUCAUC U:G 1 −2.6 177 High end, low ΔΔG

306 CUUGUAGUUGCCGUCGUCC C:G 7 2.9 239 On Ambion list

396 CAGGAUGUUGCCGUCCUCC C:G 7 0.5 389 On Ambion list

126 GAUGAACUUCAGGGUCAGC G:G 10 1.9 418 On Ambion list

711 AUGGCUAAGCUUCUUGUAC A:G 2 −3.7 551 Low rank, high Dharm.
(73)

783 CAUCCCGCUCUCCUGGGCA C:U 16 3.1 695 Low end, high ΔΔG

159 GGGCCAGGGCACGGGCAGC G:G 10 −2.3 700 On Ambion list

253 CGGGCAUGGCGGACUUGAA C:U 16 −5.2 824 Lowest algorithm rank
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Table 3

PKR-targeting siRNA sequences selected for this study, sorted by end sequence ranking, followed by relative
thermodynamic stability.

5' Target Position siRNA Sequence
5'-End Nucleotides

Thermodynamic ΔΔG (kcal/mol) Algorithm Rank Testing Rationale
Anti:Sense Rank

410 UAAUGAAAUCCUUCUGGCC U:G 1 6.3 1 High end, high ΔΔG

193 UCUUUGAUCUACCUUCACC U:G 1 1.9 61 Previously validated

816 UUUAAAAUCCAUGCCAAAC U:G 1 0 230 High. end, med.
ΔΔG

952 UUGCCAAUGCUUUUACUUC U:G 1 −4.2 948 High end, low ΔΔG

336 AAUUCUAUUGAUAAGGCCU A:A 9 5.3 205 Med. end, high
ΔΔG

645 AUCUGCUGAGAAGUCACCU A:A 9 0 1154 Med. end, med.
ΔΔG

379 AUGCACACUGUUCAUAAUU A:A 9 −5.2 1926 Med end, low ΔΔG

1198 CAAAGAGUUCCAAAGCCAA C:U 16 5.5 1606 Low end, high ΔΔG

640 CUGAGAAGUCACCUUCAGA C:U 16 0 2206 Low end, med. ΔΔG

928 CCGCCUUCUCGUUAUUAUA C:U 16 −5.2 2352 Low end, low ΔΔG
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Table 4

The correlation coefficients between EGFP silencing at 100 nM and the four different ranking methods in
Figure 6..

Correlation Coefficient (r) 100nM

Algorithm 0.814

ΔΔG (Inn) 0.539

ΔΔG (3nn) 0.424

ΔΔG (4nn) 0.327
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