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Abstract

Significance: Mechanical activation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) occurs
in striated muscle and affects Ca2+ signaling and contractile function. ROS/RNS signaling is tightly controlled,
spatially compartmentalized, and source specific. Recent Advances: Here, we review the evidence that within
the contracting myocyte, the trans-membrane protein NADPH oxidase 2 (Nox2) is the primary source of ROS
generated during contraction. We also review a newly characterized signaling cascade in cardiac and skele-
tal muscle in which the microtubule network acts as a mechanotransduction element that activates Nox2-
dependent ROS generation during mechanical stretch, a pathway termed X-ROS signaling. Critical Issues: In the
heart, X-ROS acts locally and affects the sarcoplasmic reticulum (SR) Ca2+ release channels (ryanodine receptors)
and tunes Ca2+ signaling during physiological behavior, but excessive X-ROS can promote Ca2+-dependent
arrhythmias in pathology. In skeletal muscle, X-ROS sensitizes Ca2+-permeable sarcolemmal ‘‘transient receptor
potential’’ channels, a pathway that is critical for sustaining SR load during repetitive contractions, but when in
excess, it is maladaptive in diseases such as Duchenne Musclar dystrophy. Future Directions: New advances in
ROS/RNS detection as well as molecular manipulation of signaling pathways will provide critical new mech-
anistic insights into the details of X-ROS signaling. These efforts will undoubtedly reveal new avenues for
therapeutic intervention in the numerous diseases of striated muscle in which altered mechanoactivation of
ROS/RNS production has been identified. Antioxid. Redox Signal. 20, 929–936.

Introduction

Reactive oxygen species (ROS) or reactive nitrogen spe-
cies (RNS) modulate numerous biochemical processes

through the targeted modification of specific protein residues.
In striated muscle, contractile activity and/or stretch in-
creases ROS/RNS signaling and modulates a host of bio-
chemical processes, including glucose uptake, gene
expression, calcium signaling, and contractility. In patholog-
ical conditions, ROS/RNS signaling excess or dysfunction
contributes to contractile dysfunction and arrythmogensesis
in the failing heart as well as contractile dysfunction and
myopathy in skeletal muscle.

Much progress has been made in unraveling the sources
and molecular targets of ROS/RNS in the cardiovascular and
skeletal muscle systems (i.e., myocyte, endothelium, and
vascular smooth muscle). It is obvious that extra-myocyte-
generated ROS and RNS demonstrate paracrine signaling to

myocytes, and several excellent reviews have been published
that consider these pathways (12, 15, 40, 41, 55). Much less is
known, however, about the mechanisms by which ROS/RNS
is generated within the myocyte during contraction or stretch
(34, 54). Here, we provide a brief review of the mechano-
signaling during contractile activity or via stretch, the subse-
quent ROS/RNS production, and oxidative/nitrosative
signaling within the striated muscle myocyte. These path-
ways are now being revealed with single-cell studies that are
enabled by new methods and reagents, enhancing our un-
derstanding of how mechanosensing via ROS/RNS contrib-
utes to physiological and pathophysiological processes within
striated muscle.

ROS/RNS Signaling in Contracting Muscle Cells

Striated muscle generates superoxide as the primary ROS
species and NO as a parental species from which RNS are
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generated. Each arises from several sources, and the content
of each is increased with contractile activity. Once generated,
each leads to the formation of secondary ROS or RNS, each
with specific signaling roles. A basic schematic is presented in
Figure 1 with greater detail provided in the later text.

Superoxide

Superoxide is free-radical oxygen that is generated by the
addition of a single electron to ground-state oxygen (O2

� - )
(73). Superoxide is a highly reactive, unstable species that is
rapidly dismuted by superoxide dismutase (Cu/ZnSOD) to
hydrogen peroxide (H2O2), a weaker but more stable reactive
oxidant which is not a ‘‘free radical,’’ as it does not contain an
unpaired electron. H2O2 is highly diffusible within and be-
tween cells, activates multiple signaling pathways, and is
decomposed by either catalase or glutathione peroxidase to
water and oxygen (52, 71). H2O2 is also the substrate for the
extremely reactive hydroxyl radical (OH) that is generated
via the Fenton Reaction with divalent metal cations, mainly
ferrous iron (Fe2 + ) (35).

Within proteins, sulfhydryl groups on cysteine molecules
are preferential targets for oxidation or the formation of dis-
ulfide bonds. Here, the sulfhydryl (–SH) group may initially
be reversibly oxidized to a sulfenic acid (protein–SOH). This
group can then be further oxidized to a sulfinic acid (protein-
SOH + (O�)/protein SO2H) or irreversibly oxidized to sul-
fonic acid (protein-SO2H + (O�)/protein SO3H). The OH� can
then form irreversibly oxidized protein sulfhydryl groups that
are indicative of protein damage.

Mitochondria

The production of superoxide occurs in many locations
within the cell. The most studied is the mitochondria where

superoxide is produced within the electron transport chain
(ETC) (3). Earlier studies suggested that 2%–5% of the total
oxygen consumed underwent one electron reduction in the
ETC (43); therefore, as mitochondrial activity increases > 50-
fold with aerobicaly sustained contractile activity, a > 50-fold
increase in activity-dependent ROS generation could theo-
retically be accounted for by mitochondrial sources (75). Re-
cent data, however, have led to a downward revision in both
the magnitude of ROS produced during steady-state con-
traction (approximately two to fourfold increase) and the
percentage of the ROS generated by electron flow through the
ETC ( < 1%) (66). It is now thought that little superoxide is
contributed by the mitochiondria during steady-state con-
tractions [see Powers and Jackson (52) for review]. This esti-
mate is in line with our recent finding that the redox state of
the mitochondria (a surrogate measure of ROS generation) is
unchanged during steady-state contractions (47) as well as
with recent direct measures of ROS within the mitochondria
of contractile muscle fibers (61).

Xanthine oxidase

The enzyme xanthine oxidase (XO) has also been shown to
produce superoxide in response to contractile activity in ro-
dent muscle (69, 73). Available evidence, however, supports
either a vascular source of XO-generated superoxide due to
contractile shear stress or an increase in XO activity secondary
to anaerobic metabolism that increases the availability of XO
substrates (20, 21, 69). In either case, neither can account for
steady-state ROS production during aerobic metabolism, and
the latter supports only a mechanism that increases super-
oxide after exhaustive or fatiguing contractions.

Phospholipase A2

Superoxide anion is produced by phospholipase A2
(PLA2)-dependent processes (53). A Ca2 + -independent PLA2
mechanism may act under resting conditions (22), whereas a
Ca2 + -dependent PLA2 may contribute to ROS production
during contraction when cytosolic [Ca2 + ] is elevated (19, 33,
60). In both cases, PLA2 is believed to act by arachidonic acid-
dependent activation of NADPH oxidase (24, 70).

NADPH oxidase

Superoxide is generated by NADPH oxidase (nicotinamide
adenine dinucleotide phosphate-oxidase; Nox), a multimeric
enzyme complex that generates superoxide by transferring
electrons from NADPH to oxygen. Several Nox isoforms are
expressed in striated muscle and located within the sarco-
plasmic reticulum (SR), the sarcolemma, and the transverse
tubules (t-tubules) (63, 65).

The Nox family of oxidases comprises seven members, each
of which is based on a distinct core catalytic subunit. Striated
muscle cells express NADPH oxidase 2 (Nox2) and 4, each of
which bind p22phox, a small subunit that is essential for en-
zyme activity (65). Nox4 is constitutively active and does not
require association with regulatory subunits, with regulation
considered as occurring mainly by changes in expression le-
vel. Therefore, Nox4 likely contributes to the basal rate of ROS
production in the myocyte. In contrast, Nox2 (also known as
gp91phox) is activated by specific agonists (e.g., G-protein-
coupled receptor agonists such as angiotensin II, growth

FIG. 1. Schematic representation of RNS and ROS pro-
duction on the striated myocyte. See main text for details.
ROS, reactive oxygen species; RNS, reactive nitrogen species;
PLA2, phospholipase A2; TRP, transient receptor potential;
RyR, ryanodine receptor; DHPR, dihydropyridine receptor;
SOD, superoxide dismutase; XO, xanthine oxidase; jSR,
junctional sarcoplasmic reticulum; t-tubule, transverse tu-
bule; nNOS, neuronal nitric oxide synthase; NO, nitric oxide;
ONOO - , peroxynitrite; Nox2, NADPH oxidase 2. To see this
illustration in color, the reader is referred to the web version
of this article at www.liebertpub.com/ars

930 WARD ET AL.



factors, and cytokines) and mechanical/contractile stress, which
induce the association of regulatory subunits (p47phox, p67phox,
p40phox, and Rac1) and activation of the enzyme (1, 63).

Recent work in striated muscle by our group and others has
implicated the Nox pathway as the major source of superox-
ide ROS during repetitive contraction in both skeletal and
cardiac muscle cells (47, 61). ROS production with contraction
has been shown to arise from the sarcolemma and t-tubules by
activation of transmembrane Nox2 (14, 38, 57, 61). It was
further suggested that Nox2-generated superoxide then pro-
moted Nox4 activation within the mitochondria and gener-
ated ROS that was released into the cytosol (80, 81); however,
experiments which directly address this hypothesis have not
supported that idea (61).

Nitric oxide

In striated mucle cells, nitric oxide (NO) is generated by the
nitric oxide synthases (NOSs). These enzymes are the prod-
ucts of three different genes: neuronal nitric oxide synthase
(nNOS, or NOS1), endothelial nitric oxide synthase (eNOS, or
NOS3), and inducible nitric oxide synthase (iNOS, or NOS2)
(45, 68). All three enzymes catalyze the production of NO
from the precursor L-arginine (15, 68). nNOS and eNOS
contain a calmodulin (CaM)-binding domain, making them
Ca2 + sensitive and therefore responsive to contractile activity
(68, 71). iNOS contains constutively bound CaM at resting
levels of Ca2 + , and its activity is inhibited by association
with kalirin or NAP110 (68). All NOSs generate NO and
S-nitrosothiols (SNO) (68). NO primarily functions to stimu-
late soluble guanylate cyclase to produce cyclic guanosine
monophosphate (cGMP), which has numerous downstream
targets through cGMP-dependent kinases and phosphodies-
terases (9). NO also readily reacts with superoxide to form
perioxynitrite (NO�+ O2

� - /ONOO - ), which, in turn, reacts
potently with thiol groups to S-nitrosylate-specific protein
targets. The formation of peroxynitrite also decreases the
bioavailability of NO and superoxide, thus modifying the
redox balance in the myocyte (36, 37).

X-ROS Signaling: Mechanotransduction-Activated
Nox2-Dependent ROS Production

The concept of cellular ‘‘tensegrity’’ proposes that the sta-
bilized microtubule (MT) network resists mechanical pertur-
bations in cells and in doing so acts as a mechanotransducer
(26, 67, 77, 78). Experiments and methods used to mechani-
cally manipulate enzymatically isolated heart cells have been
pioneered by several groups (7, 17, 42) and have provided a
means to assess the ‘‘tensegrity’’ concepts in muscle cells. Our
initial hypothesis that the MT network was a mechano-
signaling element in the heart arose from elegant work in the
literature (7, 8) and from experiments between our group and
that of G. Iribe and P. Kohl (29). As a demonstration of our
initial findings, Figure 2 shows a single isolated cardiomyo-
cyte loaded with a calcium indicator dye to monitor Ca2 +

sparks (local Ca2 + release from the ryanodine receptor; RyR2)
and attached with carbon filaments that allowed cell stretch to
be applied. Having demonstrated that an acute stretch of the
myocyte caused a rapid increase of spark occurrence only in
the stretched portion of the cell, we reasoned that the signal
for stretch-dependent activation of the RyR should be rapid,
reversible, and highly localized.

Since we had evidence from electron microscopy that MT
filaments interdigitate with t-tubule/SR junctions (29), our
initial hypothesis speculated on an interaction of MTs with
clusters of calcium channels that somehow altered channel
sensitivity in a stretch-dependent fashion. To support this
hypothesis, we demonstrated that MT destabilization with
colchicine was solely sufficient to abrogate the stretch-
dependent activation of local calcium signals (i.e., Ca2 +

sparks) in cardiomyocytes. Further experimentation, how-
ever, led us to refine our hypothesis.

Working with the knowledge that Nox2 is activated by
contraction (i.e, contraction/compression followed by relax-
ation/stretch), osmotic stress (stretch or compression (31, 46,
64, 74)), or stretch (49), we focused our attention on a hy-
pothesis by which an MT-dependent mechanotransduction
pathway could translate a mechanical signal to Nox2 to acti-
vate ROS. To address this question within our own labora-
tories, we developed new tools and methods (38, 57), enabling
us to establish a model of stretch-activated mechano-
transduction in striated muscle that avoids potential con-
founders of contraction, membrane-damaging force (eccentric
injury), or non-physiologic stress such as osmotic shock.

Using these new methods coupled with high-speed con-
focal fluorescence imaging approaches, we revealed that in
cardiomyocytes loaded with the ROS indicator dichloro-
fluorescein (DCF), a brief, acute physiologic stretch elicited a
burst of ROS production (Fig. 3). Since DCF is a non-specific
ROS indicator, we used selective inhibitors and genetic

FIG. 2. Time course of Fluo-4 signal intensity in a ven-
tricular cardiomyocyte subjected to a half-cell stretch. The
back panel shows an image of a cell, averaged from 10 con-
focal XY scans before the application of stretch. The low in-
tensity areas indicate points of CF attachment at resting
length (scale bar = 20 lm). The front panel represents a pseudo
color, pseudo 3D rendering of XT images temporally from
back to front. Note that the shading across the image and the
CF’s fluorescence troughs indicate the stretch of one-half of
the cell (right half) and that Ca2 + spark signals arise only in
the stretched portion of the cell. This figure was used with
permission from Iribe et al. (30). CF, carbon filament. To see
this illustration in color, the reader is referred to the web
version of this article at www.liebertpub.com/ars
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approaches to reveal that the MT network acted as a
mechanotransducer to activate Nox2-dependent ROS gener-
ation, a pathway termed X-ROS signaling (38, 57). In heart
cells, X-ROS leads to post-translational modification of RyR2s
either directly (56, 57) or, possibly, indirectly through a sec-
ond messenger such as Ca2 + -CaM kinase II (76). Regardless of
the mechanism, X-ROS increases the sensitivity of RyR2s to
[Ca2 + ]i and, thus, promotes the fidelity of excitation-
contraction coupling (Fig. 4).

Many of the features of X-ROS signaling in the heart are
also found in skeletal muscle (38, 51), but the signaling in-
volves additional molecular components (38). One prominent
new component in skeletal muscle is a calcium-conducting
sarcolemmal ‘‘transient receptor potential’’ (TRP) channels (2,
6, 18, 48, 82) whose opening is enhanced by Nox2-derived
ROS (Fig. 4). This signaling system is an important patho-
logical component in Duchenne muscular dystrophy, where
an increase in MT network density and Nox2 expression leads
to a detrimental enhancement of X-ROS signaling (38). In

addition, whether X-ROS may affect cardiac TRP channels or
skeletal RyR1 under dystrophic conditions or with dynamic
stretching paradigms (58) remains to be determined.

One striking finding was the speed at which X-ROS pro-
duction was enhanced with mechanical stretch in muscle (Fig.
3), a finding that likely was due to specialization within the
signaling pathway. It is well established that Nox2 and its
regulatory subunits are localized to the t-tubule membranes
in the heart (57, 62) and skeletal muscle (25). MTs bisect this
junctional space (29) and may interact with the Nox2 subunit
Rac (4). Since ROS are short-lived species that are confined to
interaction within their immediate vicinity, this tight spatial
organization is likely critical for the rapid and controlled
signaling reported here (38, 57); signaling fidelity is necessary
for mechanoactivation of X-ROS during the contraction cycle.

Nox2 activation also typically requires phosphorylation
and recruitment of multiple cytosolic regulatory subunits to
its transmembrane catalytic subunit (gp91phox). The rapid
nature of X-ROS signaling likely necessitates pre-assembly of
the Nox2 complex to minimize steps that activate ROS pro-
duction. In support of this, Nox2 subunits may tether to sar-
colemmal membranes in hetero-multimeric complexes
primed for rapid activation (50). With pre-assembly, me-
chanoactivation of this complex would then require an MT-
dependent ‘‘switch’’ for activation. Rac is an MT-associated
protein that associates with gp91phox separately from other
regulatory subunits (50). Rac1 is a required subunit for Nox2
activation, and we have demonstrated that inhibition of Rac1
blocks stretch-activated X-ROS signaling (57).

Based on our results, we propose a minimal model in which
MT-associated Rac1 is a critical activator of a pre-assembled
Nox2 complex that generates superoxide during mechanical
stress of contraction. While being exciting, this model requires
validation and expansion in many key areas. Experimental
demonstration of stretch-dependent Rac1 recruitment to
gp91phox in an MT-dependent fashion is needed. In fact, no
mechanistic detail is available that explains how the MT network
acts as a dynamic mechanotransduction element in the muscle.
Advances in other areas of MT biology will need to be exploited
and adapted to address these key issues in striated muscle.

FIG. 3. Kinetic response of the ROS signal generated
during a brief cardiomyocyte stretch. Data are stylized
based on experiments of a single cardiomyocyte loaded with
the ROS indicator DCF and subjected to an 8% sarcomere
length excursion (black trace) (57). DCF fluorescence inten-
sity (blue trace) rises rapidly on the initiation of stretch and
terminates rapidly with the relaxation of the stretch. The new
level of DCF fluorescence after stretch reflects DCF as a non-
reversible ROS indicator. The rate of ROS production esti-
mated by the first derivative of the DCF fluorescence profile
(green trace) indicates a burst of ROS production at the ini-
tiation of stretch that decays monotonically until relaxation.
DCF, dichlorofluorescein. To see this illustration in color, the
reader is referred to the web version of this article at
www.liebertpub.com/ars

FIG. 4. Graphical representation of the X-ROS activation
in striated muscle. The stress of mechanical stretch is
transmitted through the filamentous microtubule network to
Nox2, which generates superoxide and secondary ROS spe-
cies (see review). We have demonstrated that the down-
stream targets of Nox2-derived ROS (i.e., X-ROS) result in
sensitization of RyR’s in heart and TRP channels in skeletal
muscle. Other potential targets include CaMKII (76). CaM-
KII, calmodulin kinase II. To see this illustration in color, the
reader is referred to the web version of this article at www
.liebertpub.com/ars
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Future Directions

Most of these insights on contraction-generated ROS/RNS
have been made possible by the real-time detection of these
species in single, intact living cells that were either electri-
cally activated to elicit contraction or mechanically stretched
to assay passive mechanical responses. The combination
of mechanical control of length and the measure of con-
tractility in single isolated myocytes was pioneered by
several groups (8, 10, 16, 27, 28, 29, 42, 79) and recently ad-
vanced in our laboratories (38, 57). While the approaches are
still being refined, the availability of new commercial sys-
tems (38, 57) will undoubtedly increase the pace of research
in this area.

Our laboratory and many other laboratories have used
DAF-FM to monitor RNS/NO, and DCF (or CMDCF) to
monitor ROS (i.e., superoxide) in single-cell preparations (33,
55, 59). While DAF is fairly species specific, DCF is known to
be sensitive to a number of RNS and ROS species, including
H2O2, superoxide, and peroxynitrite, and, thus, requires
careful experimentation and controls (56). Each of these
probes, however, also suffers from time-dependent mito-
chondrial compartmentalization (72), light-induced oxidation
of the dye (5), and limited signal:noise, all of which compli-
cates the interpretation of results. This represents a limitation
in the field, and there is a great need for more selective and
rapidly responsive indicators.

New advances in ROS/RNS detection are now available
with probes to permit the monitoring of ROS in specific cell
compartments. For example, redox-sensitive green fluorescent
protein (ro-GFP) (13) and glutaredoxin-tagged ro-GFP (23) al-
low the monitoring of local subcellular redox potentials. In
addition, genetically encoded probes which are specific for
H2O2 (Hy-Per) that can be targeted to cytosol, mitochondria, or
nuclei are now available (44). However, it remains to be deter-
mined whether these genetically encoded sensors are suitable
for experiments that demand the highest temporal resolution.

An important goal for this research is the identification of
specific targets for therapeutic intervention within the ROS/
RNS pathway. In diseases of both the heart (i.e., cardiomy-
opathy, arrythmia) and skeletal muscle (i.e., muscular dys-
trophy), pre-clinical studies targeting either the MT
cytoskeketon (i.e., MT network destabilization) (11, 32, 38, 39)
or Nox-dependent ROS production (i.e., non-specific Nox in-
hibition) (38, 83, 84) have shown benefit and, thus, provide
proof of concept for these approaches. The use of new tech-
niques, reagents, and models will undoubtedly reveal new
mechanistic details on the mechanoactivation of ROS/RNS
production and oxidative/nitrosative signaling that will
translate to new more specific targets for therapeutic inter-
vention. For example, can ROS production be reduced by
specifically targeting Nox2? Can the mechanisms that are
responsible for the increase in MT density be targeted, thus
reducing the mechanoactivation of Nox2? One thing is clear,
the efforts to understand the mechanoactivation of ROS/RNS
production have yielded, and will continue to yield, exciting
and important rewards.
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Abbreviations Used

Ca2+¼ calcium
CaM¼ calmodulin

CF¼ carbon filament
cGMP¼ cyclic guanosine monophosphate

DCF¼dichlorofluorescein
DHPR¼dihydropyridine receptor
eNOS¼ endothelial nitric oxide synthase

ETC¼ electron transport chain
H2O2¼hydrogen peroxide
iNOS¼ inducible nitric oxide synthase

jSR¼ junctional sarcoplasmic reticulum
MT¼microtubule

nNOS¼neuronal nitric oxide synthase
NO¼nitric oxide

Nox2¼NADPH oxidase 2
ONOO-¼peroxynitrite

PLA2¼phospholipase A2
RNS¼ reactive nitrogen species

ro-GFP¼ redox-sensitive green fluorescent protein
ROS¼ reactive oxygen species
RyR¼ ryanodine receptor
SOD¼ superoxide dismutase

SR¼ sarcoplasmic reticulum
TRP¼ transient receptor potential

t-tubule¼ transverse tubule
XO¼ xanthine oxidase

X-ROS signaling¼Nox2 dependent ROS generation during
mechanical stretch; a pathway termed
X-ROS signaling
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