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S-Glutathionylation of Ion Channels:
Insights into the Regulation of Channel Functions,
Thiol Modification Crosstalk, and Mechanosensing

Yang Yang,1–4 Xin Jin,4 and Chun Jiang4

Abstract

Significance: Ion channels control membrane potential, cellular excitability, and Ca++ signaling, all of which play
essential roles in cellular functions. The regulation of ion channels enables cells to respond to changing envi-
ronments, and post-translational modification (PTM) is one major regulation mechanism. Recent Advances:
Many PTMs (e.g., S-glutathionylation, S-nitrosylation, S-palmitoylation, S-sulfhydration, etc.) targeting the thiol
group of cysteine residues have emerged to be essential for ion channels regulation under physiological and
pathological conditions. Critical Issues: Under oxidative stress, S-glutathionylation could be a critical PTM that
regulates many molecules. In this review, we discuss S-glutathionylation-mediated structural and functional
changes of ion channels. Criteria for testing S-glutathionylation, methods and reagents used in ion channel
S-glutathionylation studies, and thiol modification crosstalk, are also covered. Mechanotransduction, and
S-glutathionylation of the mechanosensitive KATP channel, are discussed. Future Directions: Further investiga-
tion of the ion channel S-glutathionylation, especially the physiological significance of S-glutathionylation and
thiol modification crosstalk, could lead to a better understanding of the thiol modifications in general and the
ramifications of such modifications on cellular functions and related diseases. Antioxid. Redox Signal. 20, 937–951.

Introduction

Ion channels play essential roles in virtually all aspects of
cellular function including action potential generation

in the nervous system and heart; blood vessel contraction;
insulin secretion; and many other biological processes in-
volving ion homeostasis, membrane excitability, or calcium
signaling. Post-translational modifications (PTMs) are im-
portant mechanisms regulating ion channel functions. One
of the classical PTM is protein phosphorylation, and a large
number of ion channels are found to be regulated by phos-
phorylation through PKA, PKC, and other protein kinases
(30, 57, 109, 112, 113, 139). A variety of different types of
PTMs (e.g., Ubiquitylation, SUMOylation, O-glycosylation/
O-GlcNAcylation, etc.) exist and are discussed elsewhere (14,
22, 98, 99).

Among all these PTMs, redox-mediated PTM is an impor-
tant category of PTMs that targets the thiol group of cysteine
residues. Recently, redox-mediated PTMs are receiving in-
creasing attention, as they are found in both physiological
and pathological conditions including oxidative stress.
S-glutathionylation is a major redox-mediated thiol modula-
tion mechanism, involving the addition of a glutathione
(GSH) moiety to the protein. Oxidative stress, or reactive
oxygen species (ROS), facilitates S-glutathionylation. Protein
S-glutathionylation has been extensively discussed in many
excellent reviews with a variety of different emphases (31,
44, 45, 75, 76, 88, 93, 100, 107). Over the past few years,
S-glutathionylation has been increasingly observed in many
ion channels, such as voltage-gated calcium channels, ryanodine
receptor (RyR), and ATP-sensitive potassium channels (KATP

channels), all of which contribute to critical cellular functions
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(4, 123, 137, 138). In this review, we introduce redox-mediated
thiol modulation first and then focus on S-glutathionylation of
ion channels. Criteria for testing S-glutathionylation, methods
and reagents used in designing experiments are also dis-
cussed. Besides S-glutathionylation, other important thiol
modifications that contribute to ion channel modulation (e.g.,
S-nitrosylation, S-palmitoylation, and S-sulfhydration) are
briefly discussed, mainly to elaborate on the possible inter-
play and crosstalk among these thiol modifications. Finally,
we consider how the regulation of mechanosensing would be
affected by thiol modifications of the mechanosensitive
channels, specifically the KATP channel that is functionally
inhibited upon S-glutathionylation.

Thiol Groups (2SH) as a Reactive Center in PTM

The thiol groups of protein cysteine residues are susceptible
to oxidative modification, through which PTMs may occur.
Thiol groups could be modified in response to exogenous
stimuli or changes in local redox environment, thus affecting
the function of the proteins with such accessible thiol groups
(80). In the oxidative stress condition, where the redox balance
is shifted toward oxidation, the thiol groups could be modi-
fied differently depending upon the accessibility of oxidants
or other small molecules. For example, (i) If glutathione (GSH)
is accessible to the thiol group, oxidation may lead to S-glu-
tathionylation. (ii) In the presence of abundant nitric oxide
(NO), S-nitrosylation may occur. (iii) If two cysteine residues
are close to each other, oxidation may cause the formation of a
disulfide bond between them; either within the protein or
between two separate proteins. (iv) Oxidation of cysteine
residues may also result in the sequential formation of cys-
teine radicals (P-S�), followed by sulfenic (PS-OH), sulfinic
(PS-O2H), and eventually sulfonic (PS-O3H) acids. In addi-
tion, S-palmitoylation and S-sulfhydration can also modify
the thiol groups and attach lipid or hydrogen sulfide (H2S) to
the cysteine residues, respectively (Fig. 1).

S-Glutathionylation Overview

S-glutathionylation is a PTM of proteins at the cysteine
residues by adding a GSH moiety (31). Protein S-glutathio-
nylation may occur in physiological conditions but is gen-

erally facilitated by oxidative stress when excessive ROS are
present and GSH is locally available to the target protein (33).
The ratio of reduced and oxidized glutathione (GSH/GSSG)
and deglutathionylation enzymes also contribute to the pro-
tein S-glutathionylation. S-glutathionylation has been found
in a large number of proteins, affecting a variety of cellular
processes (32, 51). Many different thiol modification mecha-
nisms have been associated with oxidative stress but as GSH
is naturally abundant within the cells, GSH is likely to serve as
a major electron donor, making S-glutathionylation a pre-
ferred mechanism for protein modification during oxidative
stress (33, 44).

Glutathione

Glutathione (GSH) exists in virtually all cells in the milli-
molar concentration range. It is the major non-protein thiol
compound that acts as an inherent antioxidant, and works
together with oxidized glutathione (or alternatively called
glutathione disulfide, GSSG) as an intracellular redox buffer
(31). GSH is a tri-peptide, containing a cysteine, a glycine, and
a glutamate. Cysteine is attached to glycine via a normal
peptide bond, whereas the carboxyl group of the glutamate
side-chain is bound to the amine group of cysteine via an
unusual peptide bond (80). In mammalian cells, the concen-
tration of GSH ranges from *1 to 10 mM depending on the
cell type.

Deglutathionylation enzymes

Protein deglutathionylation is catalyzed by specific en-
zymes. Glutaredoxin (Grx) is suggested to be a major deglu-
tathionylation enzyme in mammalian cells (74, 76). The
mammalian cytosolic form of Grx (Grx1) is very selective and
effective for protein-SSG compared with other forms of dis-
ulfides (e.g., S-S disulfide bond, S-nitrosylation, etc.), and thus
is considered as a specific deglutathionylating enzyme (44).
Moreover, in Grx1 knockout mice, no deglutathionylating
activity is detected (74), further supporting its critical role.
Besides Grx1, other enzymes have been implicated in deglu-
tathionylation, for example, sulfiredoxin (39) and many other
enzymes are known to contribute to antioxidant defense, in-
cluding thioredoxins, peroxiredoxins (Prx3/5) (41), thior-
edoxin reductases, glutathione reductase, and so on. (3).

Specificity of protein S-glutathionylation

The specificity of protein S-glutathionylation is still under
wide debate (31, 44, 75). In general, it is believed that not all
cysteine residues are equally susceptible to S-glutathionyla-
tion upon stimuli. However, no consensus motif has been
found that is related to S-glutathionylation site (32). Although
enzymes have been suggested to promote glutathionylation
(44, 51, 124), this process is still considered as a reaction
mainly mediated by oxidants. Several contributing factors
conferring specificity have been pointed out (32, 51), includ-
ing the accessibility of the thiol group, the reactivity of the
cysteine residues, and the like.

Criteria for Testing S-Glutathionylation

As various thiol modifications arise from cysteine oxida-
tion, multiple approaches should be employed to test
S-glutathionylation specifically and to avoid identifying

FIG. 1. Ion channel thiol group (–SH) as a reactive center.
Depending on the molecules (e.g., GSH, NO, H2S, or 16-
carbon chain palmitate lipid) accessible to a particular - SH
group and concomitant modification mechanism, S-glu-
tathionylation, S-nitrosylation, S-sulfhydration, or S-palmi-
toylation may occur on the ion channel protein. GSH,
glutathione; NO, nitric oxide; H2S, hydrogen sulfide.
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S-glutathionylation that is artificial or has no functional
consequences. Several criteria should be taken into
consideration:

(i) Physiological or pathological relevance of the experi-
mental conditions. Experimental conditions that
closely mimic the in vivo physiological or patho-
physiological situation such as micromolar concen-
trations of hydrogen peroxide (H2O2) are better than
millimolar concentrations of H2O2. Using enzyme
systems such as the xanthine oxidase (XO) or NADPH
oxidase (NOX) to produce endogenous ROS are also
preferred choices.

(ii) Using specific reactive species. Peroxynitrite
(ONOO - ) is one of the commonly used reactive spe-
cies that has significant physiological relevance,
however, the application of exogenous peroxynitrite
could result in both S-nitrosylation and S-glutathio-
nylation, which need to be further distinguished by
other methods.

(iii) The combination of biochemical and functional as-
says. Biochemical evidence for protein S-glutathiony-
lation is critical, but to rule out non-functional
modifications, assays that assess the functional con-
sequence of S-glutathionylation: for example, channel
activities measured by patch-clamp electrophysiology
or Ca++ level measured by Ca++ imaging, need to be
employed.

(iv) Identification of specific cysteine residues responsible
for S-glutathionylation. It has been previously shown
that for a single protein, some of the cysteine residues
are more likely to be S-nitrosylated and others are more
likely to be S-glutathionylated (72). Besides, in some
proteins only one cysteine residue is modified while for
other proteins, the thiol modulation could occur on
multiple sites. Moreover, S-glutathionylation may oc-
cur on a different protein associated with the target
protein being studied. Without identifying the exact
residues, it is hard to distinguish all these possibilities
and pinpoint the exact modulation mechanism.

(v) Reversibility. S-glutathionylation is considered to be a
reversible reaction while some other modifications (e.g.,
the formation of PS-O2H and PS-O3H) are considered
irreversible (32). Using a general reducing agent (e.g.,
dithiothreitol [DTT]) or specific deglutathionylation
enzyme (Grx) to demonstrate the reversibility would
aid in distinguishing S-glutathionylation from other
kinds of modifications (45).

Oxidative Stress and ROS

Oxidative stress is the condition in which excessive ROS
production overwhelm the cellular antioxidant system, lead-
ing to an imbalance of the cellular redox state (71). S-
glutathionylation is a modification that could be facilitated by
both exogenous ROS and ROS producing enzymes.

Reactive oxygen species

ROS that are of importance in biological systems include
superoxide (O2

� - ), hydroxyl radicals (�OH), H2O2, singlet
oxygen (1O2), and so on. (94).

H2O2 is well established to participate both in oxidative
modifications-mediated damage and in activation of signal-
ing molecules. H2O2 has a relatively long lifespan and can
travel in the cytosol or across the membrane to execute its
effect (40). H2O2 is a relatively weak oxidizing agent but its
cytotoxic effect is potentiated by interaction with a free metal,
for example, iron. Because of its stability and relatively long
lifespan, H2O2 is often chosen as the primary exogenous
source of ROS to perform experiments.

Superoxide is another major endogenous ROS that partic-
ipates in a limited range of signaling functions (48). Super-
oxide rapidly reacts with NO or iron-sulfur-containing
proteins forming peroxynitrite or hydroxyl radicals. Dis-
mutation of superoxide spontaneously or via catalysis by su-
peroxide dismutase (SOD) is a major source of endogenous
H2O2.

Hydroxyl radicals are the most reactive ROS and the
strongest oxidizing agent, considered as the most damaging
ROS that exist endogenously. However, they have a very
short half-life and are in general membrane impermeable.

When ROS and NO are present together, the formation of
peroxynitrite (ONOO - ) is the dominant reaction as NO and
ROS react at an extremely fast rate (8, 116). Therefore, in the
presence of ROS, the bioavailability of NO will drastically
decrease (20). Moreover, ONOO - is a strong and relatively
stable reactive species (86), which could facilitate the forma-
tion of both S-nitrosylation and S-glutathionylation.

ROS-producing enzymes

ROS can also be produced by enzymes including NOX and
XO. The NOX family generates ROS (mainly O2

� - ) through
electron transfer from NADPH to molecular oxygen (9). NOX
activity is regulated by Ca++, which is in turn affected by the
membrane excitability of the cells (117). NOX has been found
to regulate ion channel function including TWIK-related acid-
sensitive potassium channel (63), T-type Ca++ channel and
RyR (115). Interestingly, the activation of endothelial NADPH
oxidase is also ion channel (KATP channel)-dependent (143).
The closure of the KATP channel leads to membrane depolar-
ization, which triggers NOX activation and further generation
of ROS (27). These studies suggest a potentially important
interplay between ROS signaling and ion channel regulation.

XO was initially found to be involved in metabolizing hy-
poxanthine, purine degradation, and xanthine degradation to
uric acid with the generation of superoxide but has since been
widely used in experiments to generate ROS (11).

Methods to Test S-Glutathionylation

The methods and reagents for testing ion channel S-glu-
tathionylation are illustrated in Figure 2.

Induction of S-glutathionylation

H2O2, discussed earlier, is a classic reagent to induce S-
glutathionylation, provided the system has sufficient GSH.
H2O2 concentrations ranging from 10 lM to 10 mM have been
used to induce oxidative stress in different experimental
conditions (65, 71, 141). However, it is worth keeping in mind
that low concentration of H2O2 applied in an experimental
condition is more relevant to physiological or pathophysio-
logical conditions.
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Using enzymatic systems (e.g., XO system) to manipulate
the endogenous redox system may also be a good choice (13,
34, 56). Xanthine (50 lM) plus XO (50 mU ml - 1) are the
common ways to generate superoxide. Literature shows that
XO (0.75 mU ml - 1) and hypoxanthine (125 lM) can not only
raise superoxide levels but also increase H2O2 (59). Since SOD
decreases superoxide and increases H2O2 while catalase de-
creases H2O2, using SOD and catalase together with the XO
system can provide more specific information to further dis-
tinguish the involvement of different ROS.

GSSG (1–10 mM) is often used to induce S-glutathionylation
as well (28, 129, 138). The combined treatments of GSH
(100 lM–5 mM) with oxidants (e.g., H2O2, 10 lM–1 mM; di-
amide 100 lM–1 mM) are also commonly used (138, 145). Both
of these treatments are relatively specific to S-glutathionylation.

In addition, the application of peroxynitrite (ONOO - ) or S-
nitrosoglutathione (GSNO, 10–500 lM) to induce S-glu-
tathionylation is also found in the literature (12, 38, 125, 129).
The application of peroxynitrite is of high physiological rele-
vance but as peroxynitrite can also induce other modification
including S-nitrosylation, additional experiments should be
performed to further dissect the exact modification mecha-
nism. Peroxynitrite is generally made with the combination of
NO and ROS (e.g., superoxide) (8, 19, 34, 66). NO can be
generated using sodium nitroprusside (10 nM) or 3-morpho-
linosydnonimine (SIN-1, 1 mM) and superoxide can be made
using the X/XO system (xanthine, X, 0.1 mM and XO, 0.01 U
ml - 1). The combination of these compounds thus would lead
to the formation of ONOO - .

N-ethylmaleimide is often used to block the S-glutathio-
nylation (129), and reactive disulfides (pyridine disulfides),

for example, 2,2¢-dithiodipyridine and 2,2-dithiobis-5-
nitropyridine are sometimes used to mimic the addition of the
GSH moiety to the cysteine residues (137, 138). These re-
agents, however, are also used for the study of S-nitrosylation
(140). Thus, the effects of reactive disulfides should not be
directly interpreted as the exclusive effect of S-glutathiony-
lation. Rather, the results of the reactive disulfide should be
viewed as supportive evidence in addition to other S-
glutathionylation detection and induction methods.

Functional assays

S-glutathionylation often renders the protein active/inac-
tive, thus the protein activity change upon S-glutathionyla-
tion should be monitored. For instance, in the case of enzymes
such as glyceraldehyde phosphate dehydrogenase, cAMP-
dependent protein kinase, creatine kinase, and protein
kinase C, the altered enzyme activities by S-glutathionylation
could be detected using biochemical assays (16, 35, 53, 60, 79,
96, 130). For ion channels, patch-clamp electrophysiology is
the gold standard to test ion channel function and Ca++ im-
aging is also commonly used to study a variety of Ca++-per-
meable channels.

Biochemical tests

The most popular method to test S-glutathionylation bio-
chemically is to use BioGEE (a membrane permeable bioti-
nylated glutathione ethyl ester) in western blot experiments
(87, 138). In principle, the cells expressing proteins of interest
are loaded with BioGEE (100 lM–500 lM) first. The cells are
then challenged with oxidants, for example, H2O2 (10 lM–
1 mM) or diamide (10 lM–1 mM) for a time period (5 min–a
few hours). After that, the cells are lysed and streptavidin-
conjugated agarose beads (or magnetic beads) are used to pull
down the BioGEE-conjugated protein complex, and the pro-
tein of interest is detected by the protein-specific antibodies
(145). Alternatively, the BioGEE-protein complex could be
immunoprecipitated (IP) first with specific antibodies against
the protein of interest and then immunoblotted (IB) with
streptavidin or anti-biotin antibody (125). A variation of this
experiment is to avoid using BioGEE. Instead, the cells are
directly challenged with oxidants and then IP with anti-GSH
followed by IB with antibodies against the protein of interest
(2) (or vice versa, IP with specific antibodies and IB with anti-
GSH) (38). Additionally, the use of Biotin-GSSG (2 mM) is
reported (10).

Mass spectrometry

Mass spectrometry (MS) could be employed to detect S-
glutathionylation specifically. GSH has a molecular weight
(MW) of 307 Da. If the protein of interest were glutathiony-
lated, the MW of the protein would change accordingly and
could be detected by MS. If one GSH is attached, then the
protein MW would be shifted by 305 Da. If two were attached,
then the protein MW would shift by 610 Da (2*305) and so on.
By using MS, additional information regarding the number of
GSH moieties attached to the target protein could be obtained.
Moreover, if the proteins are digested with enzymes (e.g.,
trypsin or LysC) and followed by tandem mass spectroscopy
(MS/MS) analysis, the specific cysteine sites that are S-
glutathionylated can also be revealed (10, 28). It is worth

FIG. 2. Induction and detection of ion channel S-
glutathionylation. Ion channel S-glutathionylation can be in-
duced by the treatment of GSSG, H2O2 + GSH, Diamide +
GSH, GSNO, or peroxynitrite and reversed non-selectively by
chemical reducing agents DTT and 2-ME or the disulfide-
reducing enzyme thioredoxin; or reversed selectively by the
deglutathionylation enzyme glutaredoxin 1. Electro-
physiology, site-directed mutagenesis, MS, biochemistry, and
structural analysis are useful tools for the study of ion channel
S-glutathionylation. H2O2, hydrogen peroxide; DTT, dithio-
threitol; 2-ME, 2-mercaptoethanol; MS, mass spectrometry.
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noting that obtaining enough ion channel protein in accept-
able purity for MS analysis is relatively challenging and this
method has been mainly used for soluble protein so far.

Mutagenesis and chimeras

Systemic site-directed mutagenesis is one of the gold
standards to test any kind of PTMs including S-glutathiony-
lation. Single, double, triple, or even cysteine-free constructs
could be generated with this method. Alanine and serine are
the two major substitutions for cysteine. Mutation of cysteine
to serine has an advantage over alanine when one considers
the structural similarity. However, the substitution of serine
may introduce potential unexpected phosphorylation site.

If the proteins of interest have a homology that responds to
S-glutathionylation differently, chimeras could also be cre-
ated using these homologies to determine which domains or
motifs are responsible for S-glutathionylation (137).

Structural analysis

The incorporated GSH moiety is likely to interact with the
surrounding amino acids, structurally affect the protein con-
formation, and thus change the protein function. The GSH
moiety can affect the protein structure in at least two ways:
First, GSH is a tripeptide so its relatively large size may have a
steric hindrance effect on proteins that are normally tightly
packed. Second, GSH has charged groups that may interact
with the charged groups in the protein, either attracting or
repelling certain amino acids to cause protein conformational
change.

Structural modeling and molecular dynamics are useful
tools to study ion channel structure and function (54, 134, 135)
including S-glutathionylation-mediated structural changes of
ion channels (55, 137). Homologous ion channel crystal
structures determined by X-ray are the most common tem-
plates for structural modeling. If suitable crystal structure
templates are not available, the structural information ob-
tained by other methods, for example, cryoelectron micros-
copy and nuclear magnetic resonance (NMR) spectroscopy,
may also be valuable for modeling.

Reversibility

The S-glutathionylation of protein is reversible. Reducing
agents, for example, DTT (1–20 mM), 2-mercaptoethanol (2-
ME, 1–10 mM), or specific enzymes like Grx1 (1 lM–10 lM),
could be used to test the reversibility of S-glutathionylation.
Grx1 is considered as the only specific deglutathionylation
enzyme so far (45), so Grx1-mediated recovery is often es-
sential to demonstrate the functional S-glutathionylation re-
versibility of the protein of interest (129, 138).

S-glutathionylation of Ion channels

Here, we discuss the S-glutathionylation of a variety of ion
channels in detail.

S-glutathionylation of KATP channels

KATP channels are modulated by neurotransmitters and
changes in the metabolic state thus contribute to the regula-
tion of membrane excitability, which in turn is involved in
insulin secretion, vascular tone regulation, shear-sensing,

cardioprotection, and so on. (7, 27, 29, 77, 84, 110, 111, 136,
138). KATP channels are made of four pore-forming Kir (in-
ward rectifier K + channel) subunits and four regulatory sul-
phonylurea receptors of the ATP-binding cassette (SUR)
subunits (102). Different combinations of Kir and SUR have
been found in distinct tissues including Kir6.2/SUR1 in
b-cells, Kir6.2/SUR2A in cardiac muscle, Kir6.1/SUR2B in
smooth muscles, and others. Earlier studies have found that
native KATP channel can be modulated by H2O2 and other
oxidants but the molecular mechanisms of these modulations
are not clear. Recently, Yang et al., reported that the vascular
KATP (Kir6.1/SUR2B) channel is inhibited in the oxidative
stress condition via S-glutathionylation of the Kir6.1 subunit
in a physiologically relevant context (137, 138). Functional
studies show that the treatments with a variety of S-
glutathionylation inducers including GSH/H2O2, (GSH:
GSSG)/H2O2, GSSG, or GSH/diamide lead to functional
channel inhibition. The formation of a disulfide bond between
the channel protein and GSH was further tested in biochem-
ical experiments with BioGEE. Using site-directed mutagen-
esis, Cys176 was identified as the primary S-glutathionylation
site and Cys43 as a contributing site.

To understand the structural consequence of KATP channel
S-glutathionylation, structural modeling of KATP channel has
been performed. In particular, the Kir6.1 pore-forming sub-
unit in its closed and open states were modeled, based on the
recently crystalized chicken Kir2.2 and the bacterial Kir
channel as templates, to study how S-glutathionylation affects
the KATP channel gating (137) (Fig. 3A, B). From the model of
Kir6.1 channel in its closed state, it was found that Cys176, the
primary cysteine site of Kir6.1 for S-glutathionylation, is lo-
cated in the critical region of the inner helix, close to the ac-
tivation gate residue Phe178 and the hinge residue Gly175
(residue numbers are based on rat Kir6.1 protein). Phe178 is
suggested to form the activation gate and block the ion-con-
ducting pathway when the channel is in its closed state. As the
gating hinge, Gly175 is the site where the channel bends to
open (61). Cys176 locates between Phe178 and Gly175 and its
side chain faces a pocket formed by inner helix, outer helix,
and slide helix (Fig. 3C). When the GSH moiety is modeled
onto Cys176, it is found that GSH moiety can fit into this
pocket nicely after energy minimization (Fig. 3D). The Kir6.1
channel structure in its open state is also modeled and shows
that the inner helix undergoes a significant leftward move-
ment (137), resulting in the disruption of the binding pocket
for the GSH moiety (Fig. 3E). Therefore, based on these
models, it is proposed that incorporation of the GSH moiety
into the Kir6.1 subunit prevents the channel from entering its
open state, thus retaining the channel in its closed state.

S-glutathionylation of Kir4-Kir5 channel

Kir4.1 channel is found in the kidney, retina, and central
nervous system as a homodimeric or heterodimeric (together
with the Kir5.1) channel, acting as a K + transporter or a pH-
dependent membrane potential regulator (50, 62). Jin et al.
has found that the presence of Kir5.1 in the Kir4-Kir5
heterodimeric channel enables channel sensitivity to S-
glutathionylation. Using diamide or H2O2 together with GSH,
it was found that the Kir4-Kir5 channel could be inhibited via
S-glutathionylation while the homodimeric Kir4.1 channel is
not sensitive to this modification (55). Further study showed
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that Cys158 in the S6 helix of Kir5.1 is the major residue for
S-glutathionylation (Fig. 4A, B). In addition, it was demon-
strated that one GSH moiety is sufficient to block the channel
activity and S-glutathionylation occurs when the channel is in
its open state (55).

S-glutathionylation of ryanodine receptor

The RyR is the first ion channel found to be S-glutathio-
nylated, and S-nitrosylated (4, 118, 119). Expressed on the
endoplasmic reticulum (ER), the RyR is responsible for Ca++

release from ER to cytosol. The RyR protein has*100 cysteine
residues and is highly sensitive to oxidation. Both S-glu-
tathionylation and S-nitrosylation could occur on RyR chan-
nels with S-nitrosoglutathione (GSNO) treatment (5). Further
study has demonstrated that certain cysteine residues
(Cys1040 and Cys1303) are exclusively S-nitrosylated, some
(Cys1593 and Cys3193) are selectively S-glutathionylated,
and others can undergo both reactions (4).

S-glutathionylation of cystic fibrosis transmembrane
conductance regulator

Cystic fibrosis transmembrane conductance regulator
(CFTR) is a chloride channel belonging to the ABC transporter

family (43). CFTR regulates salt and water transportation
across epithelial membranes in lung and gut. Mutations of the
CFTR gene can lead to cystic fibrosis and congenital bilateral
absence of vas deferens (108). During inflammation, extensive
production of ROS could target the epithelial cells and mod-
ulate the plasma membrane-bound CFTR. Indeed, Wang
et al., found that several oxidized forms of glutathione in-
cluding GSSG (10–20 mM), and nitrosylated glutathione/
S-nitrosoglutathione (GSNO, 50–200 lM) can inhibit the
channel activity markedly in excised patch recordings (129).
In addition, the combined application of GSH and diamide
(5–100 lM, equimolar) can also cause significant channel in-
hibition. These reactions could be rescued by the reducing
agent DTT (20 mM) and the deglutathionylation enzyme Grx
(4 lM). Moreover, biochemical experiments further demon-
strate that diamide (100 lM) facilitates the incorporation of
biotin-GSH (125 lM) into CFTR protein. Using site-directed
mutagenesis, Cys344 located in the NBD2 domain was
identified as the primary site for S-glutathionylation. This
modulation could potentially affect the nucleotide binding
and disrupt the ATP-dependent channel opening. Although
a schematic diagram has been provided to explain the
structure-function of CFTR S-glutathionylation (129), detailed
structural insight has not been reported, presumably due to
the lack of an accurate template for modeling.

FIG. 3. Structural insights of KATP channel S-glutathionylation. (A) Side view of structural model of Kir6.1 (pore-forming
domain) of the KATP channel in its closed state (two opposing monomers are shown). Outer helix is colored cyan and inner
helix is colored red. Cys176 residue of inner helix is S-glutathionylated and boxed. (B) Side view of structural model of Kir6.1
pore-forming domain in its open state. (C) Intracellular view of outer and inner pore-forming helices in closed state (con-
necting loops are omitted for clarity). Cys176 residue is shown as a stick. (D) Same view as C but Cys176 residue is bound to
the gluthionyl moiety via disulfide bond. (E) Intracellular view of pore-forming helices in open state. The inner helix is bent
leftward, disrupting the binding pocket for the glutathionyl moiety. To see this illustration in color, the reader is referred to
the web version of this article at www.liebertpub.com/ars
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S-glutathionylation of CRAC channel

Ca++ release-activated Ca++ (CRAC) channels belong to
store-operated channels, which involve in a variety of sig-
naling cascades of non-excitable cells, including T lympho-
cytes and mast cells. Recent studies have identified Orai1
(CRAC modulator) as the pore-forming subunit of the CRAC
channel while stromal-interacting molecule 1 (STIM1) serves
as the ER Ca++ sensor (15, 91, 95). Hawkins et al. reported
that oxidative stress, induced by lipopolysaccharide (LPS)
(1.5 lg/ml) and H2O2 (100 lM), alters the Ca++ signaling in B-
lymphocytes through the modification of the CRAC channels
(47). They further identified by pull-down experiment
that the ER-resident STIM1 is S-glutathionylated. A conserved
cysteine residue (Cys56) was revealed as the target of S-
glutathionylation. The incorporation of GSH to STIM1 was
confirmed by MS. The S-glutathionylation of STIM1 results in
a constitutively activated CRAC channel.

S-glutathionylation of voltage-gated Ca+ + channels
and channels for Ca++ homeostasis

Intracellular Ca++ concentration and Ca++ oscillations play
important roles in endothelial cells, including the regulation
of vascular permeability, inflammation, and so on. The dis-
ruption of Ca++ homeostasis has been associated with oxi-
dative stress, whereas the molecules that are directly targeted
by ROS are not clear. Lock et al. demonstrated that diamide, a
thiol-oxidizing agent, could increase the intracellular Ca++

concentration and oscillations (68). The authors showed that
this modulation is related to GSH. It is further identified that
IP3 receptors and the plasmalemmal Ca++-ATPase pump are
the molecules targeted by ROS via S-glutathionylation using
pull-down experiments with BioGEE (69).

Disruption of calcium homeostasis also contributes to car-
diac hypertrophy and cardiac failure. Tang et al. found
that the L-type Ca++ channel (CaV1.2), a main channel for
calcium influx into cardiac myocytes, could be regulated by S-
glutathionylation (123). The open probability of CaV1.2 in-

creases with GSSG and biochemical evidence shows that the
CaV1.2 channel is glutathionylated both in H2O2 treatment
and in ischemic human heart.

S-Glutathionylation of Ion Transporters

Besides ion channels, ion transporters (or ion pumps) are
another group of molecules that move ions across cellular
membrane, but at the expense of energy consumption (e.g., ATP
or the concentration gradient of another ion) (42). Many ion
transporters are regulated by S-glutathionylation as well (93).

For example, sarco/endoplasmic reticulum Ca++-ATPase
[SERCA], is a calcium ATPase that transfers Ca++ from cytosol
to the lumen of the sarcoplasmic reticulum. It has been re-
ported that SERCA can be activated by NO via peroxynitrite-
mediated S-glutathionylation at the Cys674 residue (1). Na + /
K + -ATPase (sodium-potassium adenosine triphosphatase) is
another ion transporter that is found to be modulated by
S-glutathionylation (38). Peroxynitrite, among other stimuli,
can facilitate S-glutathionylation of b-1 subunit of Na + /K + -
ATPase at the Cys46 residue (38). S-glutathionylation also
occurs on the catalytic a subunit of Na + /K + -ATPase, affect-
ing the ATP binding (92). The crosstalk between S-nitrosyla-
tion and S-glutathionylation has also been observed on Na + /
K + ATPase, indicating that a switch between S-glutathiony-
lation and S-nitrosylation contributes to the oxygen-induced
regulation of Na + /K + -ATPase (132).

Ion Channel S-Nitrosylation and Its Relationship
with S-Glutathionylation

S-nitrosylation is referred to as the addition of an NO
moiety to the thiol group of a cysteine residue (46). Like S-
glutathionylation, no enzyme that can facilitate the formation
of protein S-nitrosylation has been found yet. However, en-
zymes like S-nitrosoglutathione reductase (GSNOR) have
been shown to mediate the denitrosylation (72). Many ion
channels (or their regulators) (46), including the RyR channel
(4), voltage-gated sodium channel (97), the voltage-gated

FIG. 4. Structural insights of Kir4.1-Kir5.1 channel S-glutathionylation. (A) Side view of structural model of Kir4.1–5.1
(pore-forming domain) in the closed state (two opposing Kir5.1 monomers are shown). Outer helix of Kir5.1 is colored
magenta and inner helix of Kir5.1 is colored blue. A glutathionyl moiety is bound to one Cys158 residue of Kir5.1 via disulfide
bond. (B) Extracellular view of glutathionyl moiety adducted to the Cys158 residue of the inner helix in Kir4.1-Kir5.1 channel.
The two Kir4.1 subunits are colored wheat. To see this illustration in color, the reader is referred to the web version of this
article at www.liebertpub.com/ars
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potassium channel (6), the a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid (AMPA) receptor (103, 104), the TRP
channel (140), and the KATP channel (21, 58, 64, 67, 120), are
found to be regulated by S-nitrosylation or NO.

Recent studies suggest that the NO-mediated pathway and
the ROS-mediated pathway may have extensive crosstalk (37,
93, 132); the reaction between NO and superoxide gives rise to
peroxynitrite, which can be a potent mediator of S-glu-
tathionylation in the presence of GSH; NO may form protein-
SNO, which can serve as a precursor to protein-SSG. And in
the case of RyR channels, S-nitrosylation and S-glutathiony-
lation may compete for the same cysteine residues (4).

In addition, S-nitrosylation and S-glutathionylation share
lots of common features (72): they are both facilitated by ox-
idants; they both target the thiol group and attach a moiety to
the cysteine residues. Therefore, in experimental design, re-
active disulfides can be used to mimic both S-nitrosylation
and S-glutathionylation (72, 137, 140). Moreover, studies have
shown that for a given protein, both S-nitrosylation and
S-glutathionylation could occur depending on the accessibil-
ity of the cysteine, specific local environment around the
cysteine, the redox state of the proteins, and other unidenti-
fied factors. It is still elusive to predict if a given cysteine may
be selective for S-glutathionylation of S-nitrosylation. Why
S-nitrosylation and S-glutathionylation selectively occur on
different cysteine residues is not known. In some cases,
S-nitrosylation and S-glutathionylation occur on the same
cysteine residues, but how S-nitrosylation competes with
S-glutathionylation or serves as a precursor to S-glutathio-
nylation for the same residue is not clear either. Future studies
are needed to understand the intertwining relationship be-
tween S-glutathionylation and S-nitrosylation.

Ion Channel S-Palmitoylation and S-Sulfhydration

Besides S-glutathionylation and S-nitrosylation, other thiol
modulation mechanisms, such as S-palmitoylation and
S-sulfhydration, have been reported to modulate ion chan-
nels. S-palmitoylation refers to the formation of a reversible
thioester linkage of a palmitoyl lipid to cysteine residue. This
modification has been shown to control the maturation, traf-
ficking, and regulation of ligand- and voltage-gated ion
channels (114).

S-sulfhydration refers to H2S-mediated PTM (81, 89). H2S is
a gaseous messenger molecule that is generated in vivo from

L-cysteine through the enzymes cystathionine b-synthase and
cystathionine c-lyase (CSE) (127). S-sulfhydration shares
many common features with S-nitrosylation, as both are me-
diated by gasotransmitters (H2S and NO) (82, 106). En-
dogenous H2S could modulate proteins by converting the
- SH group of cysteine to an - SSH group (81, 133). The KATP

channel reported elsewhere to be mechanosensitive (23, 27) is
regulated by H2S (83, 121, 144). Besides the KATP channel,
other channels including L- and T-type Ca++ channel, TRPA/
V channels, Cl - channels, and so on, are also subjected to the
modulation of H2S (90, 122). Readers who are interested in
these modification mechanisms are directed to other excellent
reviews covering these topics (89, 90, 122, 128).

Possible Crosstalk Among Different Thiol Modifications

The crosstalk or interplay among various types of cysteine
modifications is particularly interesting. The crosstalk could
happen in many ways directly or indirectly, including, (i)
Different thiol modification mechanisms may compete for the
same cysteine residues (Fig. 5A), for example, in the case of
RyR channel. (ii) Different modifications may occur sequen-
tially, for example, S-nitrosylation may serve as a precursor to
S-glutathionylation in certain conditions (Fig. 5B). (iii) The
modification of a cysteine residue by one mechanism may
alter the local environment so that the reactivity of a nearby
residue (e.g., cysteine, phosphorylation site) may be altered
(Fig. 6A). (iv) The modification of a cysteine residue in the
protein may have an allosteric effect so that the reactivity of
another cysteine residue in a distinct region of that protein or
in another protein of a multiple protein complex may be al-
tered (Fig. 6B). (v) Thiol modification of a protein may affect
the activity or production of key elements in another thiol
modification cascade, for example, S-glutathionylation of
certain proteins (CSE, nitric oxide synthase [NOS] or their
regulators/transcription factors) may lead to increased ac-
tivities of CSE or NOS, or lead to the production of more CSE,
NOS proteins through gene regulation (Fig. 7).

Certain possible crosstalk among different PTMs has been
previously discussed in reviews (49, 114). Recent research
from many labs, especially Dr. Snyder’s group, provided
more evidence for some interesting possibilities. Ho et al. re-
ported that S-palmitoylation and S-nitrosylation can regulate
the principal protein of postsynaptic densities (PSD-95) via
competitive modification of cysteine 3 and 5 residues (52). In

FIG. 5. Possible crosstalk
between S-nitrosylation and
S-glutathionylation target-
ing the same cysteine resi-
due. (A) S-glutathionylation
and S-nitrosylation complete
for the same cysteine thiol
group. (B) Two thiol modifi-
cation mechanisms happen
sequentially: S-nitrosylation
serves as a precursor of S-
glutathionylation.
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another study, Sen et al. found that H2S can lead to S-sulfhy-
dration of the p65 subunit of NF-jB at the Cys38 residue,
where S-nitrosylation can also occur in a competitive manner
(105). More recently, Vandiver et al. showed that S-nitrosyla-
tion and S-sulfhydration (sulphydration) might be reciprocal
events for parkin, an E3 ubiquitin ligase involving in Par-
kinson’s disease (126). Sulfhydration occurs physiologi-
cally and enhances the catalytic activity of parkin, whereas
S-nitrosylation inactivates parkin, suggesting a neuroprotec-
tive effect and therapeutic implications of H2S donor (126).
AMPA receptors are subjected to many types of PTM (70).
S-nitrosylation of GluA1 (at Cys875), a regulatory subunit of
AMPA receptors, facilitates phosphorylation (at Ser831) and

enhances AMPA receptor channel conductance (104). This
type of crosstalk was also seen in endothelial NOS (eNOS)
from an earlier study (36). In addition, it is also known that
NO may affect H2S level in vascular tissues via increasing CSE
activity. As CSE has many cysteine residues, S-nitrosylation of
CSE has been the subject of speculation (128). With the ex-
ception of the RyR channel mentioned above, whether
crosstalk or interplay of these thiol modifications may occur in
other ion channel proteins is still unknown and would be an
exciting new direction in the field.

Ion Channels in Mechanotransduction and Possible
Contribution of S-Glutathionylation

Mechanotransduction is a process through which cells
sense altered physical forces and convert them into biological
signals (18). The response of endothelium to dynamic fluid
shear stress is one example of mechanotransduction (25, 78).
Interestingly, the activities of many ion channels could be
modulated in response to altered shear stress in this process
(18, 27, 131). These channels sense mechanical forces and
transduce them into electrical/biochemical signals. In the
context of flow and its cessation, K + channels have been re-
ported to respond to alterations of flow. An inward rectifying
K + channel was initially found to be activated with onset of
flow (85) and later studies identified KATP channel as the in-
ward rectifying K + channel that is closed on cessation of flow
(27). The closure of the KATP channel depolarizes the endo-
thelial cell plasma membrane, triggers many downstream
signaling cascades (PI3K-Akt), and eventually causes activa-
tion of NOX to produce ROS (24, 27). NOX generates super-
oxide into the extracellular side of the cellular membrane and
the extracellular superoxide could flux across the plasma
membrane through chloride channel-3, induce intracellular
Ca++ release, and activate further mitochondrial superoxide
generation (48). The depolarization of endothelial cells could
also trigger the activation of eNOS to produce NO in a Ca++-
dependent manner (Fig. 8). Collectively, the activation of
these signaling cascades thus could lead to vasodilation, cell
proliferation, injury, or other consequences (17, 26, 73, 142).
As ROS and NO are able to modulate thiol groups of many
ion channels (1, 27, 101) including the KATP channel (21, 64,
138), which are potentially involved in membrane potential
regulation and downstream signaling, we propose that a
feedback loop may exist linking membrane potential, ion
channel regulation (by S-glutathionylation or S-nitrosylation),

FIG. 6. Possible crosstalk between S-nitrosylation and S-glutathionylation targeting different cysteine residues. (A)
Modification of one cysteine by S-glutathionylation affects the local environment for a second cysteine, thus modulating the
reactivity of the second cysteine residue to S-nitrosylation. (B) The modification of one cysteine by S-glutathionylation has an
allosteric effect on another cysteine residue at a different place, modulating its reactivity to S-nitrosylation.

FIG. 7. A hypothetical indirect modulation mechanism of
S-nitrosylation pathway by S-glutathionylation. S-glu-
tathionylation of a hypothetical protein (e.g., a kinase) may
regulate the activity of an NOS protein (e.g., eNOS), affecting
the production of NO molecule and S-nitrosylation. Or, a
hypothetical protein may regulate a transcription factor of a
NOS gene, leading to the production of more NOS protein,
generating additional NO molecule for S-nitrosylation. NOS,
nitric oxide synthase; eNOS, endothelial NOS.
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and ROS and/or NO production in mechanotransduction of
endothelium (Fig. 8).

The mechanosensitive cascade initiated by the KATP

channel hinges on channel activities and the subsequent
S-glutathionylation of KATP channel by ROS would lead to
channel inhibition, and presumably affect the ability of KATP

channel to sense stopped flow. However, it is not clear if and
to what extent deglutathionylation in vivo would restore
channel function and mechanosensing. As S-glutathionyla-
tion is a relatively new concept in ion channel and mechan-
otransduction field, the modifications of mechanosensitive
channels by S-glutathionylation have not been clearly re-
ported yet. Regardless, based on the strong link between
mechanotransduction and oxidative stress, especially in vas-
culature, we propose that S-glutathionylation could be an
important mechanism that regulates mechanosensitive chan-
nels during oxidative stress.

Conclusions and Perspectives

Thiol modifications, especially S-glutathionylation, have
received increasing recognition as a major mechanism that
regulates ion channel structure and function. Especially, in
vasculature (93), redox-mediated ion channel modulations
seem to be complex phenomena, affecting not merely channel

functions but possibly forming feedback loops. On one
hand, ROS modify ion channels via S-glutathionylation, S-
nitrosylation, and/or other PTMs and affect channel functions
and downstream signaling cascades. On the other hand, me-
chanical and other stimuli may alter ion channel activities,
leading to signaling cascades that produce ROS, NO, or other
molecules, which in turn, modulate ion channels. A balance
among these modulations might be required for vascular
homeostasis and other important cellular functions.

Nevertheless, with the advances of research tools and
standardized protocols, the list of ion channels that could be
regulated by S-glutathionylation would grow rapidly. How-
ever, certain outstanding challenges and questions are still
awaiting answers from the research community. They are as
follows:

(i) Although it is pretty clear that oxidative stress could
promote S-glutathionylation and S-nitrosylation, the
exact physiological or pathological roles of these
modulations are not well understood. Especially, the
functional consequences of S-glutathionylation in tis-
sue and organ level, as well as in whole animals have
not been explored extensively. Would S-glutathiony-
lation of certain ion channels represent a protection
mechanism against oxidative stress or simply repre-
sent a consequence of oxidative stress? Would S-glu-
tathionylation serve as a critical signaling mechanism
similar to protein phosphorylation contributing to
signal transduction?

(ii) With the growing list of newly crystallized ion chan-
nel structures and the improvement of structural
modeling tools, more studies may be performed to
tackle ion channel thiol modification from a structural
perspective, addressing how GSH, NO, H2S, or other
molecules may affect the local or global conformation
of ion channels to affect channel functions.

(iii) As it is known that many PTMs (e.g., S-glutathiony-
lation, S-nitrosylation, S-palmitoylation, and S-sulf-
hydration) target the thiol group of cysteine residues,
investigating the intriguing relationships among
these mechanisms would provide critical insights for
the understanding of thiol modulation in general.
Why are different cysteine residues preferably tar-
geted by specific mechanisms? Could prediction al-
gorithms be developed to provide information
regarding which cysteine is sensitive to which
modification mechanism under which condition?
Indeed, it is very fascinating that cells need such a
complicated system to modulate the cysteine resi-
dues. Understanding the physiological significance
and how the cells fine-tune all these thiol modula-
tions could lead to major breakthroughs.

We anticipate that the understanding of all these basic
questions on S-glutathionylation of ion channels may provide
a platform to further explore therapeutic approaches to treat
many oxidative stress-related devastating diseases.
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Abbreviations Used

2-ME¼ 2-mercaptoethanol
Akt¼protein kinase B

AMPA¼ a-amino-3-hydroxy-5-methyl-4-
isoxazolepropionic acid

BioGEE¼ biotinylated glutathione ethyl ester
CFTR¼ cystic fibrosis transmembrane

conductance regulator
CRAC channel¼Ca++ release-activated Ca++ channel

CSE¼ cystathionine c-lyase
DTT¼dithiothreitol

eNOS¼ endothelial nitric oxide synthase
Grx¼ glutaredoxin

GSH¼ glutathione
GSSG¼ glutathione disulfide/oxidized glutathione
H2O2¼hydrogen peroxide

H2S¼hydrogen sulfide
IB¼ immunoblotted
IP¼ immunoprecipitated

Kir¼ inward rectifier K+ channel
MS¼mass spectrometry

MW¼molecular weight
NO¼nitric oxide

NOX¼NADPH oxidase
O2
�-¼ superoxide

�OH¼hydroxyl radicals
ONOO-¼peroxynitrite

PI3K¼phosphatidyl inositol-3 kinase
PLA2¼phospholipase A2

Prdx6¼peroxiredoxin 6
PTM¼post-translational modification
ROS¼ reactive oxygen species
RyR¼ ryanodine receptor

SERCA¼ sarco/endoplasmic reticulum
Ca++-ATPase

SOD¼ superoxide dismutase
STIM1¼ stromal-interacting molecule 1
VGCC¼voltage-gated calcium channel

XO¼ xanthine oxidase
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