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Abstract
The paper presents the automated computation of hepatic tumor burden from abdominal CT
images of diseased populations with images with inconsistent enhancement. The automated
segmentation of livers is addressed first. A novel three-dimensional (3D) affine invariant shape
parameterization is employed to compare local shape across organs. By generating a regular
sampling of the organ's surface, this parameterization can be effectively used to compare features
of a set of closed 3D surfaces point-to-point, while avoiding common problems with the
parameterization of concave surfaces. From an initial segmentation of the livers, the areas of
atypical local shape are determined using training sets. A geodesic active contour corrects locally
the segmentations of the livers in abnormal images. Graph cuts segment the hepatic tumors using
shape and enhancement constraints. Liver segmentation errors are reduced significantly and all
tumors are detected. Finally, support vector machines and feature selection are employed to reduce
the number of false tumor detections. The tumor detection true position fraction of 100% is
achieved at 2.3 false positives/case and the tumor burden is estimated with 0.9% error. Results
from the test data demonstrate the method's robustness to analyze livers from difficult clinical
cases to allow the temporal monitoring of patients with hepatic cancer.
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1 Introduction
According to the American Cancer Society, approximately 26,190 new cases of liver cancer
are expected to occur in the US in 2011 and more than 80% of them to be hepatocellular
carcinomas [1]. The majority of primary liver cancers have their origins in alcohol-related
cirrhosis and fatty liver disease associated with obesity. Other major risk factors are hepatitis
B and C viruses. The incidence of liver cancer has been increasing by more than 3% yearly.
About 19,590 liver cancer deaths are expected in 2011 with incidence and mortality more
than twice as high in men as in women [1]. Early stage liver cancer can sometimes be
treated successfully with surgery and transplantation. Patients whose tumors cannot be
removed surgically may benefit from ablation, embolization or targeted drug therapy. The
overall 5-year survival rate for patients with liver cancer is 14%.

Liver metastases are hepatic cancers that have spread from another primary source in the
body. The liver is a prime candidate for metastases from cancers in the breast, colon,
prostate, lung, pancreas, stomach, esophagus, adrenal glands or skin (melanoma) [32]. A
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hepatic metastasis can be found at the time of the diagnosis of the primary cancer or appear
later after the removal of the primary tumor. The treatment and prognosis of secondary liver
cancers vary largely depending on its source and stage. Systemic chemotherapy is usually
used to treat the metastases, but ablation and embolization are also common, while surgery
is a rarer option [9,32]. Although secondary liver cancer is generally untreatable, treatments
may improve life expectancy.

Computed tomography (CT) is commonly adopted for imaging abdominal organs for
diagnosis and pre-operative planning. The three-dimensional (3D) analysis of volumes,
shapes and enhancements of abdominal organs, such as the liver, are common indicators of
disorders and important markers for diagnosis and treatment response evaluation of cancer
[13,58,61]. Organ and tumor volume measurements have been found to be important in
making surgical decisions involving organ transplantation [5,29]. Clinical cases can exhibit
low contrast, imaging and motion artifacts and large pathologies, which change the intensity
and shape of organs. But it is in these unusual clinical cases that potentially require surgical
interventions that the current fully automated 3D segmentation techniques most often break
down.

In traditional clinical practice, 3D organ analysis is performed via time-consuming manual
measurements, or as an alternative the evaluation is incomplete, based on 2D projection
images. There are several advantages that automated methods have over manual or
interactive techniques. An important aspect is the reproducibility of results, which in
automated algorithms are not subjected to user interaction. Moreover, automated techniques
may be faster, readily available, and can run in the background without interrupting the
clinical workflow (do not require human presence).

The automated computer-aided diagnosis (CAD) of livers from medical scans can provide
quantitative data. The implementation of a robust and fully automated 3D segmentation
technique for liver and its tumors would allow radiologists and surgeons to have easy and
convenient access to organ measurements and 3D visualization. The proposed method for
the automated segmentation of the liver, and detection, segmentation and classification of
tumors can be employed as an assisting diagnostic tool robust to morphological changes
from normal and pathological anatomical variability, as well as poor image quality or
enhancement. The following sections of the manuscript present the state of the art in shape
parameterization, liver segmentation and liver tumor analysis.

1.1 Shape Parameterization
Shape analysis is often performed via image-based registration [34,35] or landmark
identification [36,65], which rely on image-based metrics and landmark repeatability. To
identify subtle shape differences between two objects, a robust parameterization of their
surfaces is required in combination with an invariant shape descriptor and a point-to-point
correspondence.

Previous methods for 3D surface analysis have been proposed in medical applications [14],
but a reliable parameterization of human organs remains challenging. In a more general
sense, the parameterization of star-shaped objects [2,14] is restrictive for irregular shapes in
the abdomen. To avoid this shortcoming, the method in [6] involves generating a bijective
mapping from the 3D surface to the unit sphere as an explicit parametric representation and
global description of surfaces of simply connected 3-D objects. A spherical harmonics-based
parameterization was also presented in [25] by dividing a given surface into a set of basis
functions. Spherical harmonics-based parameterizations for brain [16,60] and cardiac [23]
application have been particularly popular. Spherical harmonics can introduce aliasing that
results in an inaccurate representation of difficult data and induce computational complexity.
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For the liver, corresponding points were initialized by the user in [31] to be incorporated in
statistical shape models [21].

1.2 Liver Segmentation
A variety of methods have been proposed to segment the liver in recent years. This
increased interest in the field reflects the difficulty of liver segmentation for clinical
applications. The following paragraphs detail some of the most relevant published
techniques. A comprehensive review of CT-based liver segmentation techniques was done
by Campadelli et al. [7], describing methods that employed live wire, gray-level analysis,
neural networks, model fitting, level sets and probabilistic atlases. Campadelli et al.
highlighted the advantages and drawbacks that limit the use of such techniques in the clinic.

For a straightforward comparison, in 2007 a liver segmentation competition from mainly
pathological CT data was held in conjunction with the International Conference on Medical
Image Computing and Computer Assisted Intervention (MICCAI) [22]. The Workshop on
3D Segmentation in the Clinic: A Grand Challenge provided a set-up for a segmentation
competition for automatic and semi-automatic extraction of the whole liver from CT scans.
All data in the competition were obtained using enhancement, as the use of contrast in CT
acquisition helps differentiate the liver parenchyma from surrounding abdominal soft tissue.
Besides training and testing data, the competition also provided ground truth and tools for
the quantitative evaluation of results. A variety of techniques were presented and their
performance evaluated through a combination of metrics, including volume overlap and
error, root-mean square error, and average surface distance. Amongst the ten automatic and
six interactive methods for liver segmentation, the interactive methods achieved some of the
best segmentation results [3,10]. Statistical shape models were the best fully automated liver
segmentation methods and performed competitively with the semi-automatic techniques. In
particular, a combination of shape-constrained statistical deformable models based on a
heuristic intensity model had the best performance among automated methods [28]. Other
notable participations in the competition employed region growing [47], a technique
sensitive to liver abnormalities, and a semantic formulation of knowledge and context [49],
but with relatively low segmentation overlap.

Several other approaches to segment the liver should be mentioned. A model-based
segmentation was also employed in a supervised segmentation using graph representation in
[51]. A shape-constrained graph-cut approach segmented abdominal organs including the
liver in [35], but mainly normal anatomy. The graph was initialized from training data
statistics and constraints on shape, from Parzen windows, and location, from a probabilistic
atlas, were used for segmentation. Shape densities and boundary appearance models were
used in [63] with high accuracy. A fast hierarchical model using marginal space learning
was introduced in [33], but segmentation outliers were excluded from validation. Finally, a
multilevel statistical shape model (ML-SSM) and principal component analysis (PCA) were
used in [42], but required heavy manual initialization.

1.3 Hepatic Tumor Analysis
In 2008, another segmentation competition followed in conjunction with MICCAI, this time
addressing the segmentation of liver tumors from CT data [11]. CT images covered a range
of pathologies and were acquired with contrast enhancement to allow the differentiation of
tumors from healthy liver parenchyma. Data and evaluation tools were made available to the
participants. One interactive, five semi-automatic and four automatic methods for tumor
segmentation were evaluated. The evaluation of the techniques was performed using similar
metrics to the liver segmentation competition. As in the case of the liver, the highest scoring
technique was interactive, using classic graph cuts and the watershed algorithm to accurately
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segment tumors [59]. The most successful semi-automatic approaches scored similarly and
employed adaptive thresholding and morphological processing [40], voxel classification and
propagational learning [66], and a level set with fuzzy pixel classification [56]. Tumors were
best automatically segmented via machine learning and classification techniques, namely
using cognition network technology [50] and ensemble segmentation trained using
AdaBoost [55].

Other recent notable approaches to segment hepatic lesions employed intensity distribution
combined with hidden Markov fields in [20]. The method is interactive and the tumor
volume estimation error was over 23%. The semi-automatic segmentation of tumors based
on support vector machines and affinity constraint propagation was addressed in [15] with
results comparable to the reports from the MICCAI competition. Machine learning was also
used for the detection of liver cancers based on linear discriminant analysis [64].

CAD and surgical planning would benefit from fully automated 3D segmentation of both the
liver and liver tumors, as well as the organ's vasculature [18,54]. Methods for the concurrent
segmentations of liver structures are mainly interactive [45]. Exceptionally, both the liver
and its tumors were automatically segmented with a combination of statistical models, active
contours and expectation maximization in [38]; the method struggled with pathological
cases. In an integrated approach, a technique that uses a combination of thresholding,
mathematical morphology and distance maps to automatically delineate the liver and related
structures was shown to be beneficial to radiologists when compared with traditional reading
of the CT scan [57].

1.4 Tumor Burden
The tumor burden, the percentage of total tumor in the liver, is commonly used to monitor
the evolution of disease in patients with hepatic cancer. The measure of tumor burden can be
used for developing treatment protocols [27]. Tumor burden also provides meaningful
comparison between different treatment regimens, and has been shown to be accurate as an
assessment of prognosis. An accurate assessment allows both physicians and patients to
make better therapeutic choices earlier [17].

The quantification of tumor burden with CT and magnetic resonance (MR) imaging is being
used with increasing frequency to assess the effectiveness of cytotoxic anticancer drugs [46].
Tumor sizes are typically estimated from measuring the maximum tumor diameters in the
transverse plane; often, the largest perpendicular tumor diameters are also taken into
consideration [12]. Pretreatment and post-treatment cross products are compared to
categorize treatment response. Considerable inter-observer variation among radiologists in
CT linear tumor measurement has been reported [24], especially for ill-defined and irregular
lesions common in hepatic cancers.

Computer-aided detection and segmentation techniques can supply precise tumor volumes.
Automated volumetric measurements reduce the inter-observer variability in estimating the
size of lesions that are confluent and irregular. Another advantage of volumetric
measurements is the calculation of overall tumor burden in an organ, which eliminates the
arbitrary guideline of measuring five indicator lesions per organ. For the liver, a CAD
system should be sufficiently accurate to segment both the liver and liver tumors from
typical variable clinical data to correctly estimate the tumor burden.

1.5 Our Approach
We first present a novel automated technique to segment diseased livers from everyday CT
data with inconsistent contrast-enhancement and imaging artifacts. A robust
parameterization of 3D surfaces, like those of abdominal organs, is proposed for the
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comparison of objects by point-to-point correspondence. 3D objects are represented by
parallel planes that intersect the surface of objects in closed planar curves. This spatial
representation avoids common problems with the surface parameterization of concave
objects. To compare local shape features of two organs we employ a shape descriptor
invariant under rotation and scale and robust to noise. Once shape ambiguities are detected
on an initial segmentation of the liver, a shape-driven geodesic active contour improves the
segmentation significantly even in severe cases.

From the segmented liver, graph cuts are employed to detect and segment hepatic tumors
using shape and enhancement constraints. Features are extracted for the tumor candidates
and classification is performed using support vector machines. The segmentation techniques
are evaluated using several databases, some public, for an adequate comparison with the
exiting literature. The liver tumor burden is computed from the segmented liver and tumors.
The automated liver analysis technique allows monitoring and diagnosing patients with
abnormal livers under poor image quality and inconsistent enhancement, and provides
assessments for treatment and disease evolution.

2 Methods and Materials
A schematic showing the pipeline of the technique is illustrated in Figure 1. The study
included 101 CT scans from 68 patients from a variety of public and clinical sources. The
acquisition and analysis of clinical data at the National Institutes of Health was approved by
the NIH Institutional Review Board and informed consent was waived. The use of the public
cases was approved by the NIH Office of Human Subjects research. The groups of data are
described in detail below.

The main clinical test set consisted of 50 abdominal CT scans collected from 17 patients
with prostate cancer at single/multiple time-points on five different scanners at our
institution. Image resolution was 0.63 to 0.92 mm in the axial view with 5 mm slice
thickness. Images were acquired prior to and following intravenous contrast administration;
contrast data were obtained at varying enhancement times from early-arterial to late portal
venous phases. Additional to the inconsistent enhancement, cases with imaging and
movement artifacts were present in the database. The volumes of the 50 test livers were
available from clinical reports (estimated by image processing technologists supervised by
experienced radiologists). These manual measurements were performed on enhanced and
non-contrast data (though only a few latter cases were present in the clinical test set)
independently from this study and no segmentation results were available with the exception
of the numerical value of the volume. The liver volume ranged from 1.07 L to 4.08 L,
including cases with mild and severe hepatomegaly. Twenty-two of the 50 clinical test cases
presented tumors of highly variable size. Tumors were manually segmented in 14 of the
clinical cases (79 tumors) with metastatic liver cancer by a research fellow supervised by an
experienced radiologist. The tumor size varied from 10.0 to 206.4 mm in the largest
diameter. All manually segmented tumors were analyzed on contrast-enhanced images, as
tumors are poorly visible (or even invisible to the eye) without enhancement.

The liver shape training set consisted of 27 scans from 27 patients acquired clinically at our
institution at high resolution (1 mm slice thickness and sub-millimeter axial resolution). This
dataset consisted of normal and hepatomegaly (enlarged liver) cases. The livers were
manually segmented in the 27 CT data by three research fellows supervised by an
experienced radiologist.

Additionally, 10 anonymized public cases (10 patients), mainly pathological, with manual
liver segmentations from the MICCAI liver segmentation challenge held in 2007 [22] were
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used for testing the automated segmentation of livers. The MICCAI cases were acquired on
a variety of scanners, had contrast enhancement and no imaging artifacts. Images had 1-5
mm slice thickness and 0.5-0.8 mm axial resolution. The ground truth data was available
only to the organizers of the competition (www.sliver07.org).

Four more anonymized public pathological cases with manual segmentations of ten hepatic
tumors from the MICCAI liver tumor segmentation challenge held in 2008 [11] (http://
lts08.bigr.nl/) were used to test the automated segmentation of liver tumors. Cases were
obtained using three scanners and a contrast-enhanced imaging protocol with slice thickness
of 1-1.5mm and in-plane resolution of 0.6-0.9mm. There was no ground truth available for
the segmentation of livers in these four cases.

2.1 Initial Liver Segmentation
All test CT images were automatically cropped at the first slice containing the liver. For that
purpose the lungs were segmented through histogram analysis and image parsing in the
cranio-caudal direction identified the liver dome. Livers were automatically segmented from
the 74 test CT cases using a technique previously designed for the analysis of hepatic
artifact-free CT data acquired at portal-venous enhancement and applied to patient data with
less severe liver diseases [34]. The segmentation technique was based on a probabilistic
atlas of the liver constructed from training data. For the coarse estimation of organs, an
average model of the liver was registered to the patient's contrast-enhanced CT image. This
estimation was improved by a geodesic active contour. Subsequently, the patient specific
intensity statistics inside the liver were estimated and used to discard tissue areas that did not
satisfy the intensity constraints. Finally, location corrections from the normalized
probabilistic atlas were performed [34]. While the probabilistic analysis ensured some level
of compliance with the pathologies in the test data, unsurprisingly, there were large
segmentation errors on difficult clinical cases. Notably, after this preliminary liver
segmentation, 19 of the 50 clinical test cases had severe liver segmentation errors (>10%
volume error) and the other 31 livers exhibited small to moderate errors (<10% volume
error).

2.2 Shape Analysis and Surface Parameterization
To detect shape ambiguities, a 3D-analogue of a curvature-feature [37] was used as shape
feature S for comparing closed planar curves [62]. Specifically, at a given point p on a
planar curve, S is the area of intersection of the interior of the curve and a ‘seed’ (a sphere
centered at p). S of a curve C can be used for both local (at every corresponding point on
two matched curves) and global comparison of two curves, given an adequate simultaneous
parameterization of the two curves (Figure 2).

Vr(p) is an indicator function on the interior of the spherical seed centered at p. S is then the
normalized volume of the intersection of C and the seed sphere of radius r centered at a
point p. A compensation function accounted for the pixelation of digital objects. The shape
descriptor is rotation and scale invariant by design and robust to noise [37].

To allow point-to-point comparisons across multiple surfaces, our method uses the structure
of a general class of objects we call ‘planar-convex’. We assume that livers fall under this
category. We define a planar-convex object O in  to be a closed surface for which a set of
parallel hyper-planes P exists, such that every intersection of a plane in P with O results in a
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singular closed planar curve. We call each set of parallel hyper-planes which intersects with
O in this way ‘convexity planes’ [62]. Some 2D examples are shown in Figure 3.

To find convexity planes, we could search over all sets of parallel planes with normal-
vectors lying on the top unit-hemisphere. An approximation to doing this is to search over a
uniformly spaced sampling on the top-half of the unit sphere. Such a uniform sampling is
provided by the vertices of a dodecahedron. We choose a dodecahedron with 32 vertices for
ease of computation and sufficient sampling power. Thus, to match two objects, we align
their principal components and then orient about the object's largest principal component a
set of symmetric points comprising the vertices of a dodecahedron for sampling. Each
intersection of the planes with the liver is then analyzed and the average number of
connected components is found. The minimum sum of average components across the
corresponding axes/planes of the two compared objects is then computed. This defines the
set of matched convexity planes P (as defined above) between the two compared objects.
The number of convexity planes could be varied with the surface size, but it was kept
constant to eight in our application.

The surface of each convexity plane is uniformly sampled by a user-defined number of
partitions, with points at these partitions being projected onto the object surface (Figure 4).
Figure 4 also shows an example of liver parameterization. These projections or
‘parameterization points’ have point-to-point correspondence between the compared objects/
livers.

2.3 Correction of Liver Segmentation
At each parameterization point we compute the shape feature S on both matched objects’
surfaces to allow the visualization of results. The dissimilarity between two matched shapes
(a training and a test shape) at p is computed as the absolute difference of their shape
features S at p: a large value indicates high dissimilarity, while zero is the perfect match.
The dissimilarity at p is then averaged as the mean value between dissimilarities with all
training shapes at p. By using the average, we avoid similarity to a single shape in the
reference database that may be itself unusual. Is is the shape image obtained from
extrapolating the dissimilarity values on the surface of the test liver, normalized between 0
and 1.

From the initial liver segmentation, the shape analysis on matched surface points with
training data identifies areas on the surface of the liver that have ambiguous shape. To allow
some level of intra-patient variability, Is is thresholded at 0.5 and component analysis used
to assign individual labels to each ambiguous area. As livers were primarily undersegmented
by the initial method [34], seeds are placed at the centroid of these labels and a fast
marching level set [53] employed to “grow” the segmentation based on the sigmoid of the
gradient of the CT image. A geodesic active contour [8] refines the segmentation. Our
formulation of the geodesic active contour (Ig) includes Is as shape condition.

where Ie is the sigmoid of the gradient of image I with parameters α=−0.5 and β=3.5 [25],
c=1 is the speed parameter and k=1 the curvature. The stopping condition of the adaptation
of the active contour is that Is < 0.5 or the volume change between iterations becomes
insignificant.
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2.4 Liver Tumor Segmentation
With the liver segmented, a graph-cut approach [4] is applied to find hepatic tumors. In the
basic form, graph cuts suffer from the shrinking bias problem, particularly for segmenting
elongated and small structures, such as the blood vessels and certain types of tumors [30].
Graph-cuts were shown to improve the segmentation of abdominal organs in [35] using
training shapes, but tumors are highly variable between cases. However, tumors are
generally round.

The graph cuts method for image segmentation operates by finding a globally optimal cut
through the graph based on the input data. Let A = (A1, A2, ..., Ap, ...) be a binary vector with
components Ap that can be either objects of interest (tumors) denoted by O or background B
(healthy liver parenchyma), where . Typical graphs perform data labeling (t-links),
via log-likelihoods based solely on interactive histogram fitting, and penalize neighborhood
changes (n-links) through likelihoods from the image gradients [4]. In our application, seed
points were generated automatically for the tumors by finding adaptive thresholds in the
data. Multiple intensity threshold values are tried and the number of remaining voxels inside
the liver is plotted against the threshold value. The resulting curve is then approximated by
pairs of fitted lines as in [52] and the optimal threshold is the one that generates the pair of
lines with the highest sum of correlation coefficients. Additionally, the object seed points
were further constrained to have non-zero Hessian-based shape response, as described
below.

Background seeds were obtained from the inverted binary image of the foreground seeds
followed by morphological erosion.

The cost function of the graph E in our application can be written as

with

and Ip is the voxel intensity at p, P(Ip|O) the probability of Ip to be object (O), Np a local
neighborhood of p, d(p,q) the Euclidean distance between two voxels p and q, and σ the
standard deviations of image noise [4].

The new terms in the formulation are Eenhance and Eshape. Eenhance is the regional term that
penalizes voxels that do not follow the difference in the enhancement distribution between
the tumor and healthy liver parenchyma models, as determined from training. With our
database, Eenhance encourages darker regions inside the liver to be labeled as tumors, as the
healthy liver is brighter than the cancerous tissue. This relation between the healthy
(background) and unhealthy (object) liver changes during training for other types of liver
cancers.
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where  is the intensity value at p given that p is an object (O) and  the intensity value at
the background (B).

Eshape is a Hessian-based shape condition to emphasize rounder tumors at multiple scales σ.
The eigenvalues of the Hessian (λ1 > λ2 > λ3) at point p define unique shape constraints to
optimize the segmentation of tumors and reduce tumor false positives [48]. The following
energy terms are incorporated in the graph-cut definition

The method does not intend to segment the hepatic vasculature, as the enhancement in our
cases is irregular. To account for the slight undersegmentation of tumors, a classic geodesic
active contour [8] was employed to refine their segmentation with a speed propagation
parameter of 5 and a curvature parameter of 2.5. The total volume of tumors was computed
for each patient and normalized by the total liver volume to compute tumor burden and
monitor cases with metastatic hepatic cancer. The tumor burden error is estimated as the
absolute difference between manually and automatically measured tumor burdens. To study
the reproducibility of the estimation of tumor burden under image noise and patient position
variation, artificial Gaussian noise and body rotations in the axial plane were induced in one
dataset and the tumor burden recorded and compared to the ground truth.

2.5 Tumor Features and Classification
For each tumor candidate a set of 157 features were automatically computed to characterize
the detection. They include size, enhancement, 3D shape, 3D texture and statistics of these
measures, as shown in Table 1. Due to the large number of features used for classification,
feature selection was used to retain the optimal combination of features for the separation of
true positive (TP) from false positive (FP) detections. Since these features can be redundant
and correlated, identifying the most informative and independent features is keypoint to the
success of the classifier. Otherwise the discriminant information hidden in these features
may be contaminated or affected by noisy features when we calculate similarities between
training samples which in turn will lead to poor classification accuracy. To address this
issue, we conducted experiments on feature selection using the minimum redundancy and
maximum relevance feature selection method (mRMR) [44]. mRMR is a state-of-the-art
feature selection method popular in biomedical data analysis. It selects good features
according to the maximal statistical dependency criterion based on mutual information and
minimizes the redundancy among features simultaneously.

Support vector machines (SVM) are a set of kernel-based supervised learning methods used
for classification and regression. Kernel refers to a matrix that encodes the similarities
between samples (evaluated by a certain kernel function, which is a weighting function in
the integral equation used to calculate similarities between samples). SVM minimize the
empirical classification error and maximize the geometric margin simultaneously on a
training set, which leads to a high generalization ability on the test samples. Through feature
selection, SVM optimize the similarity between samples to maximize the margin between
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the two classes of samples (TP and FP). For training and testing purposes, a leave-one-
patient-out strategy was employed.

The receiver operating characteristic (ROC) curves for the hepatic tumor detection were
generated with and without feature selection to record the effects of classification and
feature selection on the reduction of false detections. The performances of the two classifiers
(with and without feature selection) were compared using ROCKIT [39]. ROCKIT uses
maximum likelihood estimation to fit binormal ROC curves and calculates the statistical
differences between ROC with regard to the difference in the areas under the curve (AUC).

3 Results
The livers were shown to be planar-convex. In other words, for each organ there exists a set
of parallel planes such that every intersection of a plane and the organ is a closed planar
curve. Planes were found uniquely for each pair of compared livers or shapes. The planar
convexity attribute was valid for every combination of livers paired between the training and
testing set, and allowed to identify local shape discrepancies.

The preliminary segmentation technique was less accurate than previously reported [34] due
to the presence of tumors and artifacts in our data, and an inconsistent acquisition of
contrast-enhanced images. Quantitative results from applying our method to the automated
segmentation of the liver are shown in Table 2 before and after the segmentation correction.
The use of liver-to-liver shape parameterization coupled with geodesic active contours
reduced the percentage of volume error significantly for both cases of severe segmentation
failure and cases in need of only minor/moderate adjustments.

Our technique improved significantly the segmentation of cases with large tumors and
segmentation errors (p<0.001), while avoiding the generation of errors in well-segmented
livers (Table 2). Additionally, a t-test was performed between the results (volume errors) of
liver segmentation on the clinical test set and the MICCAI set (shown in Table 2); the p-
value was 0.07. Figure 5 presents an example of segmentation from a case with artifacts and
without contrast-enhancement, a moderately inaccurate segmentation, and a severe
segmentation failure with their corresponding shape images and final corrected outputs.

More quantitative results were obtained on the segmentation of livers from the MICCAI
liver data. The volume overlaps between manual and automated segmentations were
93.6±1.4% (Jaccard Index) with 2.2±2.3% volume error, 1.0±0.3 mm average surface
distance and 1.9±0.5 mm root-mean-square distance. The average score obtained with the
evaluation software offered by the organizers of the MICCAI liver competition was 76.2; for
details please refer to [22].

The volume error was used to estimate the sensitivity of the method to the number of
training liver shapes. The error becomes stable at approximately 14 training shapes, though
not at the optimal value, which is reached when about 23 training shapes are employed, as
shown in Figure 6. Our method uses 27 training cases to ensure that sufficient inter-patient
variability is captured.

The results of the detection and segmentation of hepatic tumors are presented in Table 3. All
79 tumors in the clinical test set were correctly identified. False positives occurred generally
near the porta hepatis and coronary ligaments, where there is lack of enhancement and high
curvatures. There was no significant difference between the manual and automatic
measurements of tumor burden (p>0.6 from the Wilcoxon rank sum test).
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Table 3 also presents quantitative results for the segmentation of the ten tumors in the
MICCAI liver tumor dataset with similar results to those obtained on the clinical test set.
The TP, FP fraction and tumor burden could not be calculated for this dataset, as there was
no ground truth available for the total number of tumors and the volumes of the livers. The
errors in estimating tumor burden under variations in image noise and patient position are
presented in Table 4. The range of tumor burden errors is [0.96% 1.57%].

Figure 7 illustrates the manual and automatic segmentation of hepatic tumors for two
patients, each at two time points. Manual, automatic, and false positive segmentations are
presented for comparison. In Figure 8, the change over time in liver volume is presented for
several patients. Figure 9 shows quantitatively the change in tumor burden in the five
patients with multiple scans at different time points and manual measurement of the tumor
burden.

The SVM classifier was employed after extracting 157 features for each true and false tumor
candidate. Without feature selection, the AUC of the classifier was 0.62. The maximum
AUC of 0.85 was achieved for a combination of eight tumor candidate features. The eight
selected features were a combination of intensity, shape and texture inside and outside the
tumor candidates. Namely, the eight selected tumor features were: the median intensity,
roundness, mean λ1, mean λ3, and minimum value of the Haralick correlation. Additionally,
the following features computed around the edge of the tumor were retained for
classification: the median of the energy, and kurtosis and variance of the inverse difference
moment.

The SVM classifier with eight features achieved a sensitivity of 100% TP at 2.3 FP/case (or
94% TP at 1.6 FP/case). There was a significant difference (p<0.001) between the SVM
classifiers with and without feature selection. Feature selection resulted in 24% sensitivity
increase at 1.6 FP/case, as shown in the free-response ROC curves in Figure 10.

4 Discussion
The focus of this manuscript is on the computer-assisted analysis of diseased livers from
noisy data with highly variable pathology, as existing techniques often fail when the liver is
abnormal and imaging conditions are not ideal. CT data were acquired from a cohort of
patients with metastatic liver cancer with highly variable contrast enhancement. Imaging and
movement artifacts were also present in the database. It can be noted both visually from
Figure 5 and Figure 7 and from the results in Table 2 that the livers in our clinical test set
originate from patients with very complex diseases and images difficult to process.

First, we introduce a technique for shape parameterization with promising results for point-
to-point matching of abdominal organs with complex anatomy. The parameterization,
combined with an invariant shape feature allows comparing local shape across abdominal
organs, such as the liver. While the shape parameterization is intuitively robust, it is difficult
to judge the accuracy of point correspondences, which is dependent on the type of data and
application. We hope to have achieved a simpler and more intuitive way to represent
abdominal organs. The level set representation in [43] could be an alternative and it was
shown to work with a variety of shapes. Besides the relative simplicity of our
parameterization, we avoid using nonlinear registration in the absence of anatomical
landmarks to control it. Importantly, the proposed shape parameterization scheme allows the
identification of local shape incongruities between one object and a shape training set to
guide the segmentation of difficult or usual data.
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Our confidence in claiming that planar convexity occurs generally with organ-surfaces is
based on the results of our tests comparing local shape of 101 livers and our intuition based
on experience with radiological data outside of this project. In our liver database, the
assumption of planar-convexity was valid in 100% of cases. Perhaps offering some
examples of curves/surfaces that are not planar-convex, such as curves/surfaces with a hole
or large-scale concave indentation, can provide some helpful clarification. Finding a set of
convexity planes for the surface is equally essential for the parameterization. The planar
convexity assumption is used to find a uniformly spaced set of points on the surface of the
liver. Thus, a set of convexity planes helps to cover the surface fully with the sampling of
points. Additionally, this uniform sampling allows dimensionality reduction for shape
analysis, which is time-consuming.

Once shape differences are identified, the preliminary segmentation of the liver, which was
obtained using probabilistic atlases and level sets, is corrected through active contours
governed by image and shape information. Comparative results before and after shape
correction show significant improvements (p<0.001) on the accuracy of liver segmentation
in even the most difficult cancerous cases. Cases with severe segmentation errors had their
volume error improved from 28.9% to 6.6%, while cases with tumors went from 17.0% to
5.2% volume error.

The tumor detection and segmentation is achieved using graphs constrained by shape and
enhancement models. This allows to segment tumors of variable sizes with a reduced
number of false positives. The method does not specifically address the heterogeneity of
some liver tumors. The combination of enhancement and shape constraints in the
segmentation of tumors is generally robust to heterogeneous patterns, as illustrated by
results, but may struggle with unusual cases. Additionally, we propose an extensive set of
appearance, shape and texture features (see Table 1) to be computed for each tumor
candidate (inside and outside the tumor) and demonstrate that the number of false detections
is reduced significantly through feature selection and classification using support vector
machines. Interestingly, the selected tumor features describe the intensity/enhancement,
shape/roundness and the linear dependence of voxels inside the tumor, while the features
computed on the tissue around the edge of the tumor represent measures of the uniformity
and local homogeneity of the normal liver parenchyma. For both segmentation and
classification, information is used from a single enhancement phase, preferably the portal
venous phase.

All tumors were correctly detected at 2.3 false positives/case. The segmentation of tumors
resulted in 74% volume overlap between manual and automatic segmentations and 1.6 mm
average surface distance and allowed to compute the liver tumor burden, which was
estimated with an error of 0.9% (the difference between manually and automatically
measured tumor burdens). The results of our method on the MICCAI liver tumor data [11]
are comparable to those achieved by the best automated method presented at the competition
[55]. Namely, the overlap error, volume error and average surface distance were 27.4%,
13.9% and 1.3 mm for our method compared to 28.9%, 18.2% and 1.8 mm in [55]. The
MICCAI liver tumor competition data represented a range of pathologies with variable
enhancement, including hepato-cellular carcinoma, hemangioma and metastases. The
clinical test set consisted of metastatic prostate cancers. These tumors tend to enhance less,
though heterogeneously, than the healthy liver parenchyma.

A similar comparison was performed with the results of the MICCAI liver segmentation
competition [22]. The MICCAI liver competition used mainly pathological cases, including
primary tumors, metastases and cysts, but the types of pathologies were not available for
consultation. Our results on the MICCAI liver data are comparable to those achieved by the
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best two automated liver segmentation method presented at the competition [28,63].
Namely, the overlap error, volume error, average surface distance, root-mean-square
distance and score were 6.3%, 2.2%, 1.0 mm, 1.9 mm and 76.2 for our method compared to
6.0%, −2.8%, 0.9 mm, 1.8 mm and 77.3 for the technique in [28], and 6.4%, 1.0%, 1.0 mm,
2.0 mm and 76.8 for the algorithm in [63]. More details can be found at www.sliver07.org.

As reviewed at the beginning of the manuscript, different methods in the literature model the
image information to segment the liver and tumors. In particular, statistical shape models
were successful to segment the liver [28] and machine learning methods were effective to
analyze tumors [55]. Our approach combines anatomical (shape) and physiological
(appearance/enhancement) modeling for both liver and tumor analysis. Additionally,
probabilistic location information is used to segment the liver and an extensive set of tumor
and healthy parenchyma features are employed via machine learning techniques for tumor
analysis.

In our approach, level sets were used to correct segmentations given detected objects, while
the initializations were performed by probabilistic atlases and graph-cuts for the liver and
tumors respectively. Hence, discrete approaches were used for an initial estimation of the
object of interest and the segmentation was refined by continuous formulations. In this
scenario, histogram fitting and enhancement and location constraints were employed to both
detect the objects and initiate their segmentation. Please note that the level sets in our
approach were designed to grow the segmented object from their initial segmentation and
correct where the intensity model was insufficiently supple.

The running time for one case was between 50-60 min, including about 30-35 min for the
initial liver segmentation, 20-25 min for liver segmentation correction and a couple of
additional minutes for tumor analysis. The most expensive computation part of the algorithm
was the registration.

The low rate of false positives in the detection of hepatic tumors and the very small error in
the tumor burden by the proposed technique suggest the high clinical utility of the computer-
assisted tool for liver analysis. False positives are generally small, easily identifiable by
radiologists and do not add substantially to the tumor burden, which is performed at each
time-point independently when a patient has multiple CT scans. Another potential
application of the method would be tumor grading, a highly important area in radiology and
diagnosis and a subject of future work.

The method proposed in this paper is designed for general liver image analysis, but due to
the availability of data, was applied to metastatic liver cancer. Future developments of the
technique aim to constitute a computer-aided system for the fully automated integrated
analysis of the liver. Importantly, this study brings together the automated segmentation of
the liver with the detection, segmentation and classification of hepatic tumors from typical
clinical radiological data with variability in imaging acquisition parameters.
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Figure 1.
A schematic of the automated technique for tumor burden analysis. The green and red boxes
show the input and output data, respectively. The blue boxes represent the modules of the
algorithm starting with the initial liver segmentation (Section 2.1), continuing with shape
analysis (Section 2.2) and the corrected liver segmentation (Section 2.3), and the
segmentation and classification of tumors (Sections 2.4 and 2.5).
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Figure 2.
An illustration of the shape descriptor on 2D closed curves. The seed is a circle that
intersects the objects (here a square and a larger circle). Given a correct parameterization of
the two closed curves, their point-to-point local difference can be assessed.
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Figure 3.
Objects represented in the planar-convex space. Objects include the simpler ‘V’ shape (left),
a non-star shape domain such as the ‘S’ shape (middle), and the more irregular ‘ink blot’
shape (right). Convexity planes are colored blue, while their intersections with the respective
objects are shown in red.
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Figure 4.
Parameterization points. Left - Uniformly spaced points are projected onto the object in the
convexity plane shown in different colors. Right – the parameterization points are
highlighted as small cubes on the surface of a liver with irregular shape, when 13 convexity
planes were used. These points allow point-to-point correspondence between two shapes.
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Figure 5.
Examples of liver segmentation (overlaid in green on axial views of 3D CT data) of a case
without contrast enhancement and with motion artifacts (a), a moderately inaccurate
segmentation (b), and a severe segmentation failure (c). Initial segmentations are shown in
the top row and their corresponding shape images in the second row. Shape ambiguities are
depicted in a cold (low) to hot (high) colormap. The corrected liver segmentations are shown
in the third row and their corresponding shape images in the bottom row.
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Figure 6.
The variation of the volume error (estimated over the 50 clinical cases) with the number of
training liver shapes.
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Figure 7.
Examples of hepatic tumor segmentation: manual (blue), automated (yellow) and their
overlaps in green overlaid on axial views of 3D CT of two patients (a) and (b), each at two
time points (different CT scans of the same patient). False positives from the automated
segmentation are displayed in red. The two cases also illustrate the difference in the
enhancement protocols with well-enhanced portal and hepatic veins in (a), which are not
visible in (b).
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Figure 8.
Examples of change over time in liver volume for three cases from the clinical data with
small (case 1- red), moderate (case 2- green) and large (case 3- blue) metastatic liver tumors.
Manual and automated estimations are presented for comparison. Image data for cases 1 and
3 are shown in Figure 7.a and 7.b respectively.
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Figure 9.
The change in tumor burden in five patients with two (cases 2, 3 and 5) and three (cases 1
and 4) scans obtained at different time points. The automated measures are compared with
the manual estimates of tumor burden at each time point.
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Figure 10.
The top figure shows the variation of AUC with the number of features used in the SVM
classification. The maximum AUC was achieved using eight features. The bottom figure
shows comparative free-response ROC curves using eight (SVM 8) and all 157 (SVM 157)
features for classification. The difference between the two classifiers was significant
(p<0.001).
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Table 1

One hundred and fifty-seven automated tumor features were computed for the tumor candidates. Edge refers
to the two pixel-wide band of liver tissue surrounding the tumor.

3D Features Descriptor Explanation

Tumor Volume Size Volumetric size.

Tumor Diameter Size Linear size

Tumor Size Region Ratio Shape Ratio of the size of the object bounding box and the real size of the object

Tumor Binary Elongation Shape Ratio of the largest principal moment by the smallest principal moment

Tumor Roundness Shape Sphericity

Tumor Hessian Eigenvalues Shape Local extrema and stationary points

Tumor Blobness Measures Shape Roundness from the Hessian eigenvalues

Tumor Intensity
* Enhancement Enhancement of tumor

Edge Intensity
* Enhancement Enhancement of healthy parenchyma

Tumor Cluster Prominence
* Texture Skewness / asymmetry

Edge Cluster Prominence
* Texture Skewness / asymmetry

Tumor Cluster Shade
* Texture Skewness / asymmetry

Edge Cluster Shade
* Texture Skewness / asymmetry

Tumor Correlation
* Texture Correlation / complexity

Edge Correlation
* Texture Correlation / complexity

Tumor Energy
* Texture Uniformity

Edge Energy
* Texture Uniformity

Tumor Entropy
* Texture Randomness

Edge Entropy
* Texture Randomness

Tumor Haralick Correlation
* Texture Linear dependence between the voxels relative to each other.

Edge Haralick Correlation
* Texture Linear dependence between the voxels relative to each other.

Tumor Inertia
* Texture Local heterogeneity

Edge Inertia
* Texture Local heterogeneity

Tumor Inverse Difference Moment
* Texture Local homogeneity

Edge Inverse Difference Moment
* Texture Local homogeneity

*
indicates that the min, max, mean, standard deviation, variance, median, kurtosis and skewness were computed for the feature. For definitions of

the texture features computed from the co-occurrence matrix please refer to [19].
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Table 2

Volume Error (VER) for liver segmentation from the clinical test data (5mm slice thickness). The initial
automatic segmentation results are compared to results following shape analysis and corrected (final)
segmentation; p-values were calculated via the Wilcoxon rank sum test. Variability in initial VER ranged from
<2% to >50%; cases were separated into severe errors (VER>10%) and small/moderate errors (VER<10%).
Cases with small errors, large errors and hepatic tumors are shown separately. Additionally, the last row
presents the results on the MICCAI dataset (slice thickness 1-5mm).

Group/VER (%) Initial Segmentation Final Segmentation p-value

Small Error (n=31) 5.3±2.4 2.9±2.2 <0.001

Severe Error (n=19) 28.9±14.3 6.6±7.3 <0.001

Tumors (n=22) 17.0±15.8 5.2±6.9 <0.001

All clinical cases (n=50) 9.3±13.5 3.8±5.3 <0.001

MICCAI (n=10) - 2.2±2.3 -
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Table 3

True Positives Fraction (TPF) and false positives (FP)/case are reported for the detection of hepatic tumors.
Automated and manual segmentations of tumors were compared and we present Dice Overlaps (DC), Jaccard
Index (JI), Volume Errors (VER) and Average Surface Distances (ASD). The Tumor Burden Error (TBE) is
the difference between manually and automatically measured tumor burdens.

Group TPF (%) FP/case DC (%) JI (%) VER (%) ASD (mm) TBE (%)

79 tumors (n=14 ) 100.0 3.1 74.1±16.9 70.9±17.7 12.4±12.0 1.6±1.5 0.9±1.0

10 MICCAI tumors (n=4) -- -- 75.4±9.0 72.6±9.3 13.9±12.6 1.3±0.5 --

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 February 14.



N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

Linguraru et al. Page 30

Table 4

Tumor burden error under variations in image noise and patient position. The columns show the level of
artificial Gaussian noise in the image and the rows the induced degree of axial rotation of the patient body.

Noise/Rotation 0% 5% 10% 20%

0° 1.12% 1.10% 1.21% 1.32%

5° 0.96% 1.09% 1.19% 1.27%

10° 1.17% 1.15% 1.24% 1.39%

20° 1.37% 1.42% 1.47% 1.57%

IEEE Trans Med Imaging. Author manuscript; available in PMC 2014 February 14.


