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Abstract

Choice tests are a standard method to determine preferences in bio-assays, e.g. for food types and food additives such as
bait attractants and toxicants. Choice between food additives can be determined only when the food substrate is
sufficiently homogeneous. This is difficult to achieve for wood eating organisms as wood is a highly variable biological
material, even within a tree species due to the age of the tree (e.g. sapwood vs. heartwood), and components therein
(sugar, starch, cellulose and lignin). The current practice to minimise variation is to use wood from the same tree, yet the
variation can still be large and the quantity of wood from one tree may be insufficient. We used wood samples of identical
volume from multiple sources, measured three physical properties (dry weight, moisture absorption and reflected light
intensity), then ranked and clustered the samples using fuzzy c-means clustering. A reverse analysis of the clustered samples
found a high correlation between their physical properties and their source of origin. This suggested approach allows a
quantifiable, consistent, repeatable, simple and quick method to maximize control over similarity of wood used in choice
tests.
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Introduction

Choice-tests are perhaps the most common experimental

method used to determine preferences of insects, especially for

food. A simple ISI search for papers on ‘choice tests’ to determine

food preferences of insects found around 600 papers from the past

decade. One common use of food choice tests is to determine food

additives (e.g. bait substrates, attractants, toxicants) for pest control

applications, e.g. for cockroaches [1,2], moths [3], ants [4,5] and

termites [6].

Choice-tests for food additives in artificial foods are straightfor-

ward as the base food matrix is identical across the choices under

test. Those for food additives in natural foods are more

problematic as the natural foods are often highly variable, thus

the palatability of the base matrix may confound the effect of the

food additive. Wood is such a variable food, not just between tree

species but within any one tree species, owing to the age of the

fibre, the horizontal (sapwood versus heartwood) and vertical

position within the stem as well as ecological (e.g. growth site and

conditions: natural vs. plantation, growth rate) and functional (e.g.

stems vs. branches, reaction wood formed in leaning stems and

branches and juvenile vs. mature growth) variations [7,8,9,10].

Such variation has been demonstrated to affect termite consump-

tion of wood, especially due to the age of a tree [11,12,13]. Other

factors identified include moisture [14,15] or previous termite

attack [16].

Hence the interpretation of wood loss in choice experiments

[17,18,19,20,21] may not be straight forward because wood

consumption may have differed due to inter-sample palatability as

well. Attempts to reduce this natural variation have used

sequentially cut wood [22,23,24]; however, there is variation in

the wood quality within logs cut from the same tree [25,26], owing

to growth increment variation, for example. Complicating this

limitation is unknown provenance, when wood for laboratory

experiments on termites may have been sourced from retailers.

This is most problematic for large experiments that require more

wood samples than one retail sourced cut length of timber can

provide.

A simple, consistent, repeatable method to characterise wood

using easy to measure physical properties would reduce the

variability within samples for choice tests, and thus increase

confidence in results. The aim of this paper is to test the similarity

of wood samples cut sequentially from different Pinus radiata

sources, by applying fuzzy c-means clustering [27,28], to three simple

measurements of physical properties: dry weight, moisture

absorption and reflected light intensity. Fuzziness in the algorithm

allows selecting wood pieces from different clusters which accounts

therefore for the uncertainty of material properties that are not

measured.

Materials and Methods

Physical Properties of Wood
The wood used was plantation grown P. radiata, cut as veneer

into sheets (ca. 1250 mm625 mm61 mm), from a retailer; thus

the source trees were unknown. Veneer discs (60 mm ) were

punched from each sheet and were given a unique identification

code, which included the original sheet from which the samples

were cut (hence ‘sheet membership’). Only undamaged veneer

discs without knotholes and obvious fungal attack were chosen.

Two sets of veneer discs were prepared, for which the veneer

was most likely from different trees or even different geographical
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locations. In any case the two sets represented a variation in sets

for the statistical analysis: for the Small Set, N = 505 discs were cut

from 10 sheets; and for the Large Set, N = 1417 discs were cut

from 22 sheets. For both sets three physical properties were

measured. (1) The dry weight was recorded after discs were held

for 7 hrs at 105uC in a drying oven (4 hrs for weight to be

stabilised). (2) The moisture absorption was recorded as a

percentage of the dry weight, with the oven dried veneer discs

kept for 4 days at 28uC and 80% RH, calculated as (wet weight –

dry weight)/dry weight6100. All weights were measured to four

significant figures (AEA 250 g, Adam Equipment Co Ltd, Milton

Keynes, UK). (3) The brightness was recorded as the mode-

skewness of the reflected light (pixel intensity (I) distribution) from

digital photographs (166061200 pixels) taken with a tripod

mounted camera (m tough 12 MP, Olympus). Flash was not used

to avoid 50 Hz flickering; instead constant lighting was provided

by six arrays of white LED packages (ea. 2563 mm LEDs, avg.

I = 5 cd (ea.), peak wavelength at 465 nm). The mode skewness of

the reflected light calculated as (mean - mode)/standard deviation

[29] was used as an estimate of the ratio of early- and late wood in

the sapwood to heartwood, as the former is pale (negative mode

skewness) and the latter is dark.

Photographs of 2 MP were found sufficient as distributions of

photographs with higher resolutions (3 or 5 MP) did not show

different results in distribution parameters but increased the

computational load from 8 hrs to 1 and 3 days respectively.

Images were processed from 16 bit colour depth to 8 bit (gray) and

a cut-off pixel intensity of 60 was selected from plotting sorted

veneer intensities over pixels for all discs; pixels with I ,60

represented black background and were discarded. The intensity

distribution and its mode-skewness were calculated for each veneer

disc. Signal processing and optimisation was performed in Matlab

R2012 and the statistical analyses were performed with RStudio

0.97.332 and R x64.2.13.1.

Determination of Similarity
The analysis process had three steps. Step 1 calculated fuzzy c-

means derived from the measured physical properties only; in

other words the origin of the veneer discs was not known. Step 2

used the known origin of the veneer discs, here termed ‘sheet

membership’, to search for neighbouring veneer discs. Step 3 from

fuzzy c-means derived clusters, uniform distributions was assigned

to sheet membership in each cluster found in the experimental

data with the same length (referred to as ‘experimental uniform

data’). This ‘experimental uniform data’ was benchmarked against

a hypergeometric distribution, thus allowing the effectiveness of

fuzzy c-means clustering to find similar veneer discs to be assessed.

The hypergeometric distribution describes a process equivalent to

drawing balls from an urn but without replacement [30]. For this

purpose the clustered groups were subsequently degraded in order

to benchmark the clustering algorithm by comparing the effect of

having completely randomised draws and the effect of the size of

the population on the sorting quality of the fuzzy c-means

clustering. Benchmarks with respect to neighbourhood size and

the significance of the performance of the clustering algorithm

with respect to medians calculated were discussed.

Clustering
A statistical cluster analysis used optimised subsets to group

elements. Fuzziness was implemented to take the uncertainty into

account, e.g. by assigning one veneer disc to several clusters.

Fuzziness also implies that the method approximates ‘‘non-crisp’’

(not optimal) values [28].

The fuzzy c-means clustering algorithm [28] was implemented

in Matlab R2012, and based on minimising the cost function

[27,28]

minfJmg~
XN

i~1

XC

j~1

um
ij d DD xi{ci DD2 ,1 ƒ m v? ð1Þ

with m.1 being the fuzzifier (default m = 2), xi the ith vector of

dimension d, uij the element of the partition matrix of the veneer

disc xi in a cluster j describing the membership grade, and with

||.||2 as the Euclidean distance between the vector ([R3) and its

cluster centre to be evaluated (cj is the number of clusters). Fuzzy c-

means clustering iteratively approximated the mean centroid of

each cluster, from which a membership value for each veneer disc

was calculated based on the strength of the association between the

element and the centroid. A list of veneer discs from each cluster

was sorted in descending membership order; the closer the

membership to 1, the more the veneer disc belongs to the cluster.

In order to partition each cluster in one set with unique

membership and one fuzzy set, a second distance function was

applied to sub-cluster veneer discs in subsets of lower membership

(uij ,0.5) into a fuzzy region.

Sorting Quality and Statistics
The fuzzy c-means algorithm gives clusters which are optimised

according to their material properties and are characterised by (1)

a sequence of veneer discs, (2) sheet memberships of veneer discs

and (3) number of veneer discs in the cluster (referred to as cluster

length). The accuracy of the assignment of veneer discs into similar

groups using fuzzy c-means clustering process was tested by

comparing these groups with sheet membership.

Veneer discs were mapped using their descending membership

grade order in each cluster list, which created a spiral in a 3-

dimensional veneer disc property space, starting from a region

with unique cluster membership, and ending in a fuzzy region.

The clustering can therefore be seen as a mapping from the 3-

dimensional space onto a 1-dimensional subspace of membership

grades.

Fi(X § 1) ~
XN

k
1½DDli{lkzj DD~0,Vj~1,2,:::,i� ð2Þ

Equation (2) gives a Euclidean distance as an argument of the

indicator (or characteristic) function 1½:� [ f0,1g [29]. The indica-

tor function searched for neighbouring veneer discs from the same

sheet, which were then given a value of one, all others assigned

zero. The percentage of successful neighbour searches relative to

the population’s vector length was calculated for each neighbour-

hood size. From the centroid, the optimisation procedure moved

iteratively outwards, such that the neighbourhood size was

successively increased, by checking first direct neighbours, then

second neighbours and so on. The percentage of neighbours was

subsequently interpreted as the probability of encountering at least

one neighbour of the same sheet Fi(X § 1) for discrete

neighbourhood widths k v i [ f1,2,:::,10g , k = i. This was com-

pared to 8 averages of bootstrapped uniform data of clusters of the

same length and all sheet memberships as the experimental data

and a hypergeomeric distribution (n = 8000 draws).

In order to find out the influence of the cluster length obtained

by fuzzy c-means clustering, the probabilities to encounter

neighbours were benchmarked against bootstrapped uniform

distributions of sheet membership, first for clusters with the same
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length as the experimental data and then for clusters with identical

length.

Thus the order of sheet membership was randomised so that the

membership matrix (i.e. the list) for each cluster was not sorted.

This corresponded to theoretical sets of identical weighted values,

hence reduced the dependency of the measured wood properties,

which led to the degradation of results obtained by the

optimisation algorithm. For clusters with identical lengths, the

bootstrapped averaged samples (8 repeats) for the Small Set had a

total number of 360 veneer disc samples per sheet (10 sheets with

n = 36 veneer discs each) and for the Large Set 506 veneer discs (22

sheets, n = 23 veneer discs each).

Distribution (Lilliefors-test) and significance tests (Student’s t-

test or Fisher’s one-way ANOVA) were used to determine whether

differences in the probability in encountering at least one direct

neighbour were statistically significant for the ‘experimental

uniform data’.

Results

Physical Properties of Wood
The physical properties of veneer discs are plotted in Figure 1,

with vertical lines separating veneer discs from different sheets The

average dry weight was 1:24+ 0:12 g (the Small Set) and

1:23+ 0:12 (the Large Set); the average moisture absorption was

12:26+ 1:88% (the Small Set) and 12:19+ 0:88% (the Large

Set); and the average mode-skewness was 0:312+ 0:165 (the

Small Set) and 1:24+ 0:12{0:085+ 0:392 (the Large Set). A

randomly drawn two sample homoscedastic t-test showed that for

weight and moisture absorption, the hypothesis that the property’s

means are equal could not be rejected (df = 1750, p = 0.990 and

p = 0.885), while for the skewness this could not be assumed

(df = 1750, p = 0). The confidence intervals (ci) on the difference

between the means did contain zero for dry weight and moisture

(ci = [20.0044, 0.0042] and ci = [20.0059, 0.0038]) but not for the

mode skewness (ci = [0.2269,0.2426]).

Clustering
For the Small Set (Figure 2A) all cluster centres were in regions

of negative mode-skewness, which indicated that most of the wood

veneer had more bright (early wood) than dark (late wood) regions

[31]. The cost function was minimised to 3.5 after 15 iterations.

For the Large Set (Figure 2B) the inner parts of the six clusters

(unique membership) are depicted together with their centres,

surrounded by elements with weaker membership which could

belong to more than one cluster (in gray). The cost function

converged after 15 iterations to a lower value, about 2.9.

Therefore, it was easier to distinguish clusters for data from the

Large Set than for the Small Set, where differences between

measurements were larger with also a smaller value of the cost

function. For the Large Set four of the six centres were in regions

of negative skewness, indicating that most of the wood veneer had

more bright (early wood) than dark (late wood) regions.

Sorting Quality and Statistics
In Figure 3, in terms of the values of cumulative probabilities to

encounter at least one neighbour in an i-neigbourhood (i = 1…10),

the sorting quality of the clustered data (solid red line) was

benchmarked against a uniform distribution of sheet membership

(averaged n = 8 times) with randomised elements in a cluster of

length the same as the experimental data (blue line) and a

hypergeometric distribution over neighbourhood size (dashed

lines). The probabilities of the uniform distribution were below the

probabilities obtained of the experimental data and approximated

reasonably well the probabilities of the hypergeometric distribu-

tion. For comparison, the probability of the uniform distribution

with one direct neighbour was 10% and 4.5%, for the Small Set

and the Large Set respectively. The estimated probabilities of the

experimental data having one direct neighbour (i = 1) in the six

clusters were 7.3%, 7.4%, 10.3%, 12.3%, 18.3% and 20% for the

Small Set, and 8.5%, 21.1%, 30%, 33.6%, 48.3% and 59.8% for

the Large Set (averaged over 8 bootstrapped results) respectively.

For the Small Set, the difference between the probabilities of the

hypergeometric distribution and that of the experimental data was

always smaller than that for the Large Set.

The H0 hypothesis that the distributions of the median

probabilities of the experimental data as plotted in Figures 4A
and 4B belonged to a family of normal distributions (Lilliefors

test) could not be rejected at a 0.1%-level. For the experimental

data within a cluster in Figures 4A and B for the Small Set and

the Large Set respectively, a uniform distribution (uniform

experimental data) was assigned to the sheet membership obtained

by clustering the measured data (thick black lines). For the

‘experimental uniform data’ depicted in Figures 4A and B for the

Small Set and Large Set respectively for cluster length as optimised

by the fuzzy c-means algorithm, a uniform distribution over sheet

membership (which included all sheets of the set) was assigned as

benchmark (thin grey lines). A one-way ANOVA indicated that

the median probabilities of the ‘uniform experimental data’ were

significantly different from those of the benchmark distributions

for the Small Set (F = 9.55, df = 18, p = 0.0114), and for the Large

Set (F = 14.31, df = 18, p = 0.0035). For the Small Set, the median

cumulative probability of the benchmark distribution (ranging

from 41% to 44%) was always lower than that of the ‘uniform

experimental data’ (ranging from 41% to 66.7% with the fuzzy c-

means clustering algorithm) as seen from Figure 4A. This was true

for the Large Set also with the median cumulative probability

being always higher in all clusters than that of the benchmark

distribution (Figure 4B).

Next the effect of the length of a cluster was tested by

intentionally reducing the populations of the six clusters to the

minimum cluster size minus five samples, i.e. 360 for the Small Set

and 504 for the Large Set. The distribution of the sheet

membership was uniform within each cluster. This statistical

model is complementary to the average of the six bootstrapped

clusters with a uniform sheet membership distribution plotted in

Figure 3 (blue line). While in Figure 3 and Figures 4A and B, the

length of each cluster was different, the length of each cluster in

Figures 4C and D was made identical but the sheet membership

reflects the sorting quality of the clustering algorithm. Ten

populations of sheet memberships of the original clusters were

drawn and replaced. The results for the experimental data (thick

black lines) and for the benchmark distributions (thin grey lines)

with the same cluster length are depicted in Figure 4C and D.

The estimated probabilities of the ‘uniform experimental data’

having at least one direct neighbour in the six clusters were now

54%, 42%, 64%, 48%, 52% and 60% for the Small Set in

Figure 4C, and 22%, 39, 77%, 54%, 62% and 51% for the Large

Set (averaged over 10 bootstrapped results) in Figure 4D. While

for the Small Set, the median cumulative probability to have at

least one neighbour in Figure 4C decreased for clusters 2, 4 and 5

and increased for clusters 1, 3 and 6 compared to Figure 4A, the

25 and 75 percentiles (range measure) increased for all clusters.

For clusters 1,2 and 6 of the Large Set, the median cumulative

probability of having at least one neighbour in Figure 4D
decreased compared with Figure 4B but increased for clusters 3,

4 and 5. However, its range measured by the 25 and 75 percentile

decreased substantially which is different to the Small Set. In
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Figure 1. Veneer disc properties of dry weight (A & B), moisture absorption (C & D) and mode-skewness of pixel intensity (E & F) for
the Small Set (N = 505) and the Large Set (N = 1417); vertical lines indicate different source sheets.
doi:10.1371/journal.pone.0088835.g001
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Figure 2. The six clusters formed of dry weight, moisture absorption and mode skewness obtained by fuzzy c-means optimisation
algorithm; A Small Set and B Large Set. Large red markers are the cluster centres; medium black and yellow dots are members of only one
cluster; small grey dots are members of more than one cluster.
doi:10.1371/journal.pone.0088835.g002

Figure 3. Cumulative probabilities of having at least one discrete neighbour in a neighbourhood i = 1…10; A Small Set and B Large
Set. Solid red lines are the original distribution optimised with fuzzy c-clustering; solid blue line is the average (n = 8) of the six bootstrapped clusters
(same length as the original cluster length but bootstrapped over a uniform distribution of sheet membership of all sheets); dotted grey lines are the
hypergeometric (analytical) cumulative density functions.
doi:10.1371/journal.pone.0088835.g003
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comparison, for both the Small Set and the Large Set depicted in

Figure 4C and D the probability to obtain at least one neighbour

using a benchmark distribution was always lower.

Discussion

Although the difference between the Small and Large Set for

the mode skewness of the reflected light intensity was statistically

significant, it was not true for the other two properties (dry weight

and moisture absorption) and the assignment to the original sheets

of veneer with respect to one set was not obvious to visual

inspection (c.f. Figure 1). However, the clustering algorithm was

able to place the veneer discs into clusters that match their original

source veneer sheets by using just the three measurements of

physical properties. Within clusters, each veneer disc could be

matched to its nearest neighbour by a threshold probability for the

closest pair to be used in choice experiments.

The results for the Large Set indicated a higher probability to

encounter at least one neighbour and hence it was more likely for

the wood of the same sheet to have the same membership grade in

the clusters obtained by fuzzy c-means clustering (Figure 3). The

Small Set was more difficult to cluster, as reflected by a 20.6%

higher cost function, owing to the smaller sample size and little

variation in the mode skewness of the reflected light intensity (c.f.

Figure 2). However, the clustering algorithm is robust enough to

enable clusters to be formed even under these limitations.

Figures 4A and B show that for both the Small and Large Sets,

even when the sheet membership of each cluster was randomized

with a uniform distribution of sheet membership (‘uniform

experimental data’), there was a high correlation between the

veneer discs and the sheets from which they were cut. This

observation was also true even when the length of each cluster was

made identical (‘balanced’ analysis) within the Small Set and the

Large Set (Figures 4C and D). As only three simple measured

physical properties were used here, the power of the clustering

algorithm could be improved to enable more precise matches by

including additional physical properties such as damping, resonant

frequencies.

The standard approach of pairing matched wood samples

contains ‘‘uncontrolled variations’’ which may significantly influ-

ence the outcomes of choice experiments. Results here show that

when the wood source or species is unknown, the fuzzy c-means

clustering will give higher confidence in pairing matched wood

samples. When the wood source and species is known, the same

process will give a more precise match. The fuzzy c-means

clustering process allows a greater potential to control the least

controlled variable in bio-assay type experiments so that results

can be attributed more confidently to the applied treatments under

test, such as food additives.
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Figure 4. Box plots for the six clusters showing the cumulative probability to obtain at least one same sheet with respect to the
neighbourhood function;+are outliers. Bootstrapped (n = 8) ‘uniform experimental data’ based on the original distribution (thick black lines)
benchmarked against uniform distributions (n = 8) with the length of each cluster the same as the experimental data: A Small Set (N = 505) and B
Large Set (N = 1417); and with identical cluster length for each set: C Small Set (N = 360) and D Large Set (N = 506).
doi:10.1371/journal.pone.0088835.g004
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