Skip to main content
. 2013 Dec 14;76(2):401–430. doi: 10.1007/s11538-013-9925-3

Table 2.

Numerical fix point analysis for α∈[0.01,0.5],ρ∈[0.01,0.21]. eig(J) denotes the eigenvalues of the Jacobian matrix, sgn(eig(J)) denotes the sign of the real parts of the eigenvalues

FP min(E) max(E) min(T) max(T) eig(J) sgn(eig(J)) class
A 2.00⋅105 2.00⋅105 3.78⋅10−6 2.37⋅101 real alternating saddle node
B 1.66⋅106 3.63⋅108 1.11⋅105 4.09⋅107 real & complex positive unstable node/focus
C 1.84⋅107 3.82⋅109 1.62⋅109 4.98⋅1011 real alternating saddle node