
trans-Cyclooctene — a stable, voracious dienophile for
bioorthogonal labeling

Ramajeyam Selvaraj and Joseph M Fox
Brown Laboratories, Department of Chemistry and Biochemistry, University of Delaware, Newark,
DE 19716, United States

Abstract
Discussed herein is the development and advancement of trans-cyclooctene as a tool for
facilitating bioorthogonal labeling through reactions with s-tetrazines. While a number of strained
alkenes have been shown to combine with tetrazines for applications in bioorthogonal labeling,
trans-cyclooctene enables fastest reactivity at low concentration with rate constants in excess of k2
= 106 M−1 s−1. In the present article, we describe advances in computation and synthesis that have
enabled applications in chemical biology and nuclear medicine.

Introduction
The use of strain energy to facilitate molecular reactivity is a key concept for organic
synthesis, and one of emerging importance in the design of bioorthogonal reactivity — those
chemical transformations that can proceed efficiently without interference from biological
functionality [1,2•,3–14]. In a seminal publication in 2004, Bertozzi illustrated that the [3+2]
cycloaddition between cyclooctyne and azide derivatives proceeds without the need for Cu-
catalysis [15••]. As the scope and applications of this reaction have proven robust, so too has
been the approach of using ‘ring strain to promote otherwise reticent reactions with potential
bioorthogonality’ [15••]. Indeed, cycloalkynes have served as highly reactive dipolarophiles
in a host of new bioorthogonal reactions [8,11,16–18].

Rate is a key consideration for the development of a bioorthogonal reaction, illustrated with
the simple relationship between second order rate constant and half-life at 1 μM (Scheme
1b). A goal of this opinion article is to outline the development and advancement of trans-
cyclooctene (TCO) as a tool for facilitating bioorthogonal labeling reactions with s-
tetrazines. This multidisciplinary effort has embodied advances by a number of research
groups in computation, synthesis, chemical biology and nuclear medicine (Scheme 1a).

Tetrazine–TCO ligation
Diels–Alder reactions between tetrazines and alkenes have a rich history [19], exemplified
by classic physical organic studies of Sauer [20,21••,22] and the striking synthetic work of
Boger [19,23]. In 1990, Sauer measured rate constants for the reactions of tetrazines with
more than 40 dienophiles, including norbornene, cyclopropene derivatives, cyclooctyne and
TCO [21••]. Of these dienophiles, TCO was most reactive by 1–3 orders of magnitude.

Our experience with the chemistry of strained alkenes [24,25•] led us to consider developing
TCO for bioorthogonal reactivity with tetrazines [26•]. That the reaction of TCO with
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tetrazines would be bioorthogonal was not immediately evident, given the electrophilicity of
tetrazine derivatives and the potential for TCO to isomerize to cis-cyclooctene or
polymerize. Moreover, there was not a general synthetic method to access functionalized
derivatives of TCO derivatives. Finally, while the reaction of TCO with s-tetrazines was
known to be rapid, the conjugation product was undescribed and would warrant
deconvolution.

As a general method to prepare TCO derivatives, we developed a photoisomerization
method that uses a closed-loop flow reactor where the reaction mixture is continuously
cycled through AgNO3 on silica [25•]. Selective metal complexation of TCO perturbs an
otherwise unfavorable equilibrium. This photochemical flow method can be carried out on
multi-gram scale, and is robust enough to be useful in natural product synthesis [27].

With a TCO synthesis in hand, the bioorthogonality of tetrazine–TCO ligation was explored.
3,6-Diaryl-s-tetrazines offer an excellent combination of fast reaction rates and stability for
both the starting material and conjugation products [28••], and protein conjugation at 15 μM
was completed more quickly than could be easily assayed by mass spectrometry. While the
initial product of tetrazine–TCO ligation is the expected 4,5-dihydropyridazine, this adduct
reacts with water. In 1H NMR studies of reactions between TCOs and 3,6-di(2-pyridyl)-s-
tetrazine, it was shown that 4,5-dihydropyridazines (4) add D2O to give aminal
intermediates (5), which subsequently eliminate to give the 1,4-dihydropyridazine 6
(Scheme 1c). With more electron rich tetrazines, such as 3,6-diphenyl-s-tetrazine,
dihydropyridazine 6 aromatizes to give 6a under ambient conditions.

Contemporaneous with the above work on TCO, Weissleder and Hilderbrand studied the
bioorthogonal reactivity of mono-aryltetrazine derivatives (15, Scheme 2c) with
norbornenes with a rate of k2 1.9 M−1 s−1 at 20 °C in PBS [29••]. Using a fluorescently
labeled tetrazine, these authors demonstrated that the surfaces of live cells could be labeled.
Contemporary studies were also performed by Pipkorn et al., who combined a TMZ-
conjugate of tetrazine 14 with a peptide conjugate of the Reppe Anhydride [30•]. Recently,
Devaraj and Presher have used cyclopropenes as dienophiles for cell surface labeling
[31,32], and Wittmann has recently shown that terminal alkenes are sufficiently reactive to
enable labeling by tetrazines [33]. Cyclooctynes have recently been used for reactions with
tetrazines by Wang [34], and also in mutually bioorthogonal reactions [35,36]. Overall, there
remains a high level of interest in TCO for achieving fastest reactivity.

Tetrazines used frequently in bioconjugation with TCO are listed in Scheme 2c [28••,30•,
37••,38], and recently Devaraj has described a catalytic method for tetrazine synthesis from
alkylnitriles [39•]. The reactions of tetrazines with TCO benefit from a significant
hydrophobic effect. Thus TCO combines with 3,6-di(2-pyridyl)-s-tetrazine with a rate of
1100 M−1 s−1 in MeOH, and 2000 M−1 s−1 in 9:1 MeOH:water [28••]. Derivatives of 13
have rates of 5235 M−1 s−1 at 25 °C in 45:55 water:-MeOH [37••], and 13,090 M−1 s−1 at
37° in PBS [43••] (Scheme 2c). Very recently, Robillard has shown that a 13 derivative
combines with the axial diastereomer of 5-hydroxy-trans-cyclooctene with a rate of 273,000
M−1 s−1 −1 at 37 °C in PBS — approximately 10 times faster than equatorial diastereomer
[61]. As has been noted [41•, 42••], the electron donating amido substituent renders 13 more
stable than the parent 3,6-di(2-pyridyl)tetrazine, and derivatives of 13 have been used in a
number of applications [37••,41•,43••,44,45]. Contrary to several remarks in the literature
[29••,38,46], the stability of 13 in biological milieu appears comparable to other reactive
tetrazines used for bioconjugation [38]. Weissleder and co-workers have reported fast rates
for the reaction of monoaryltetrazines (15), where k2 is 6000 M−1 s−1 in water at 37 °C
[47••]. Derivatives of this tetrazine are cell permeable and have been used in a number of
applications [29••,35,38,46,47••,48••,49,50,51,52•,53•] including the conjugation of

Selvaraj and Fox Page 2

Curr Opin Chem Biol. Author manuscript; available in PMC 2014 October 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



nanoparticles and quantum dots to pretargeted cells [49,50], as well as applications in cell
and radiochemical imaging discussed below.

Applications in nuclear medicine
The radiochemical labeling of macromolecules represents one of the most significant
opportunities for bioorthogonal chemistry. In 2010, Robillard and coworkers demonstrated
that tetrazine–TCO ligation could be applied to pretargeted SPECT/CT imaging of tumors in
live mice (Scheme 2a). Pretargeting involves separate administration of tumor-targeting and
radiolabeled molecules, with time allowed in-between for uptake by tumors and clearance of
any unbound targeting molecule [43••]. The success of bioorthogonal chemistry in
pretargeted applications is critically dependent on reaction rate. Excess probe is required for
reactions with slow rates, which can adversely impact the signal-to-noise ratio if the probe
does not clear quickly. As depicted in Scheme 2a, 5-hydroxy-trans-cyclooctene was
conjugated to anti-TAG72 mAb CC49 via an oligoethyleneglycol linker (7), and
administered to mice bearing colon cancer xenografts. One day later, these mice were
injected with 3.4 equivalents of a DOTA-In-111/tetrazine conjugate 8, and tumors were
successfully imaged by SPECT/CT. Impressively, the adduct 9 was formed in 52–57% yield
in vivo. Recently, Robillard has found that tagging an antibody with a short linker and using
an axial TCO diastereomer can improve the tumor-to-non-tumor imaging ratios in
pretargeted tumor-bearing mice [61]. Also recently, Lewis and co-workers demonstrated
pretargeted imaging of colorectal cancer in mice in a system using TCO-modified antibody
and a Cu64-NOTA labeled tetrazine [62].

TCO has also proven to be a powerful tool for positron emission tomography (PET), which
is challenged by the short half-lives of PET radionuclides (110 min for 18F). A further
challenge is the ideal of achieving labeling with equimolar stoichiometry, as unlabeled
precursors are generally inseparable and can decrease signal through competitive inhibition.

With Li and Conti, we developed 18F-labeled TCO 11 (Scheme 2b) [54••], which was used
to prepare cyclic RGD and VEGF protein conjugates for cancer imaging [41•,55]. The cyclic
RGD targets the integrin αvβ3, which is a target for cancer imaging as it is upregulated on
the surface of tumor blood vessels. We recently described a tetrazine-conjugate (10) of
exendin-4 a 4.8 kDa glucagon like peptide-1 receptor (GLP-1R) [56•]. With only 2
equivalents (4 μg) of 10, labeling by 0.02 mCi/mL of 11 was obtained to provide PET agent
12 in >80% yield within minutes. As shown in Scheme 2b, a GLP-1R positive tumor was
successfully imaged by 12. The importance of efficient 18F incorporation was emphasized
by a blocking experiment, where coinjecting 12 with a 5-fold excess of cold exendin-4
resulted in a greatly reduced signal. Compound 12 could be used to image intraportally
transplanted islet cells, and it is a promising probe for monitoring the number and viability
of transplanted islet cells in the liver.

Weissleder has conjugated 18F-11 to the drug AZD2281 for in vivo imaging applications,
and used a TCO-functionalized resin to facilitate purification [51,52•]. Recently, 18F-11 was
used for pretargeted imaging in conjunction with a dextran polymer modified by both a
near-IR dye and tetrazine 15 [53•]. The dextran polymer was selected to improve
pharmacokinetics. Mice were simultaneously implanted with LS174T tumors as well as
A431 tumors that lack expression of the A31 glycoprotein epitope. The mice were
administered a TCO-tagged anti-A33 antibody, and in second step were administered the
modified polymer. The LS174T tumors were visualized whereas the control tumor showed
much lower uptake [53•].
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‘s-TCO’ — a (more) strained trans-cyclooctene
The most reactive tetrazines, such as 13–15, are imperfect when prolonged in vivo stability
is required [43••]. Less electron deficient tetrazines, such as 3,6-diphenyl-s-tetra-zine, are
much more resilient but are also less reactive toward TCO. van Delft has elegantly described
that the strained cycloalkyne, bicyclo[6.1.0]non-4-yn-9-ylmetha-nol, displays superb
reaction kinetics in bioconjugation chemistry [16]. To develop more reactive TCOs, we
considered the effect that ring conformation would have on TCO reactivity. Computation
was used to design a strained trans-cyclooctene (‘s-TCO’) with a cis-ring fusion, in which
the eight-membered ring is forced to adopt a highly strained ‘half-chair’ conformation.

As summarized in Scheme 3a, ab initio calculations predicted the lowest energy ‘crown’
conformation (2a) of trans-cyclooctene to be 5.6–5.9 kcal/mol lower in energy than the ‘half
chair’ conformation (2b) [17] and it was recognized that trans-cyclooctenes 18 with cis-ring
fusions would be forced to adopt strained conformations similar to that of 2b (Scheme 3b)
[17,42••]. Transition state calculations with 3,6-diphenyl-s-tetrazine predicted that s-TCO
18a would react much faster than 2a (ΔΔG‡‡= 3.34 kcal/mol at 25 °C). Experimentally, 18b
was compared to 2, and found to react in MeOH at 25 °C with a rate of 3100 M−1 s−1 — 160
times faster than 2 (Scheme 3b). The experimental ΔΔG‡ (3.0 kcal/mol) was in close
correlation to the predicted value.

Of course, even faster rates are observed with more reactive tetrazines. Reactions of s-TCO
with 3,6-di(2-pyridyl)-tetrazine proceed with k2 = 22,000 M−1 s−1 in MeOH at 25 °C [42••].
s-TCO also enjoys a significant hydrophobic effect. In 45:55 water:MeOH at 25° C, s-TCO
20 combines with 21 at a rate too fast to measure by stopped-flow kinetics (>200,000 M−1

s−1) [37••]. Recently, the rate of s-TCO 18b and 14 was measured to be 380,000 M−1 s−1

(7:1 water:dioxane, 25 °C) [64]. The rate of an s-TCO derivative with 8 was measured to be
2,800,000 M−1 s−1 at 37 °C in PBS [61].

Cellular imaging
Weissleder and co-workers first demonstrated that tetrazine–TCO ligation could be used to
selectively label the surface (via pretargeted TCO-antibody conjugates) or interior (via
TCO-taxol conjugates) of living cells with tetrazine–fluorophore conjugates [47••,48••,63].
These authors also demonstrated that tetrazines can quench the fluorescence of pendant
dyes. As fluorescence is reestablished for Diels–Alder conjugates, background fluorescence
is greatly reduced [47••,48••,63]. Cellular labeling has also been achieved with (E,E)-1,5-
Cyclooc-tadiene via azido-tagged glycans on cell-surfaces [44].

Recently, a number of in vivo methods for the selective labeling of proteins based on
tetrazine ligation have been developed. With Ting and co-workers, TCO-containing lipoic
acid analogs were synthesized and an E. coli lipoic acid ligase was evolved that site-
specifically ligates one of these TCO derivatives onto proteins of interest. Subsequent
reactivity with tetrazine–dye conjugates served for efficient fluorogenic cell-surface
labeling, and for intracellular labeling of cytoskeletal proteins in live mammalian cells
[57••].

It has been shown with Mehl that tetrazine-containing amino acid 23 can be genetically
encoded into proteins in site-specific fashion, and subsequently be labeled by TCO
derivatives (Scheme 4a). The electron donating 3-amino substituent of 23 makes this
tetrazine stable enough for cellular growth conditions, but also decreases the rate of Diels–
Alder reactions. Fortunately, protein labeling by s-TCO 18b and its derivatives occurs at
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rapid rates. Thus, with GFP derivative 24, fluorogenic labeling by 18b takes place within
minutes to give conjugate 25 [58••].

There has also been significant activity in the genetic incorporation of TCO containing
amino acids. Independent work by Chin with Deiters [40], Carroll [59], and Schultz with
Lemke [60••] established that norbornene could be incorporated and used for cell labeling.
Schultz and Lemke also prepared the amino acid 26, and were able to incorporate it into
proteins and observe labeling in fixed cells, with a rate of 35,000 M−1 s−1 at 37 °C in vitro
[60••]. Independently with Chin, the amino acid 26 was synthesized and site specifically
incorporated into proteins with high efficiency [37••]. Fluorogenic labeling was
demonstrated in E. coli and living mammalian cells. Also studied was incorporation of an
amino acid derived from the van Delft cyclooctyne [37••]. For those amino acids that
incorporated into proteins, reactivity was fastest by an order of magnitude with 26 with rates
of 5235 and 17,248 M−1 s−1 (25 °C, 45:55 water:MeOH) with tetrazine derivatives of
structures 13 and 14, respectively (Scheme 2b).

Conclusion and outlook
Enabled by advances in synthesis and computation, TCO has emerged as a tool for rapid
labeling and imaging through bioorthogonal Diels–Alder reactions with tetrazines. Future
challenges include developing the process chemistry of TCO synthesis, as needed to broaden
access. Another challenge will be to engage the most stable tetrazines with fast rates across a
broader spectrum of applications. While s-TCO has proven successful in labeling genetically
encoded tetrazines, encoding the s-TCO amino acid 20 was less successful (it isomerized),
and attempts to utilize s-TCO 30 as a substrate for lipoic acid ligase met with low
incorporation (Scheme 4b). New TCO designs that optimize structure, stability and rate will
be needed to address such limitations.
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Scheme 1.
trans-Cyclooctene (TCO) as a tool for chemical biology and in vivo imaging. (a) The
advancement of TCO as a tool is a multidisciplinary effort involving high-level
computation, new synthetic methodology, chemical biology and nuclear medicine. (b) The
significance of high rate constants is illustrated by simple table of rate data and
corresponding half-lives. (c) Mechanism of the tetrazine–TCO ligation.
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Scheme 2.
Tetrazine–TCO ligation as a tool for nuclear medicine (a) Pretargeted SPECT imaging in
live mice through initial administration of a TCO-antibody conjugate with later
administration of a tetrazine–111In-DOTA conjugate. (b) 18F-labeled TCO 12 enables rapid
construction of PET-probes. In the shown example, the importance of efficient labeling at
nearly equimolar stoichiometry is emphasized by a blocking experiment, where coinjecting
with a 5-fold excess of unlabeled exendin-4 resulted in a greatly reduced signal. (c)
Tetrazines commonly utilized in bioconjugation studies.
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Scheme 3.
(a) TCO conformation has a significant effect on strain energy in the ground state. (b)
Computation correctly predicted that a conformationally strained TCO (‘s-TCO’) would
display enhanced reactivity relative to parent TCO. (c) With more reactive tetrazine 21, s-
TCO derivative reacts with a rate that is too quick to measure by stopped flow kinetics.
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Scheme 4.
Tetrazine–TCO ligation with genetically encoded proteins (a) A tetrazine-derived unnatural
amino acid can be genetically encoded site-specifically into proteins of interest. s-TCO
derivatives can be used to tag the unnatural amino acids with fast rates in vivo. (b) A TCO-
derivatized lysine has been site specifically incorporated into proteins in E. coli and
mammalian cells, and used for rapid fluorogenic labeling in live cells. (c) Current limitations
of s-TCO.
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