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Abstract
We identified several diimidazoline mono- and diamides that were as potent as pentamidine
against T. brucei rhodesiense in vitro. All of these were also less cytotoxic than pentamidine, but
none was as effective as the latter in a T. brucei rhodesiense-infected mouse model. A single
imidazoline may be sufficient for high antitrypanosomal activity provided that a second weak base
functional group is present.
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Human African trypanosomiasis (HAT), also known as sleeping sickness, is a neglected
vector borne protozoal disease. HAT exists as a chronic infection with Trypanosoma brucei
gambiense or as an acute infection with T. brucei rhodesiense. In the first stage of HAT,
parasites multiply within the hemolymphatic system. In the second encephalitic stage,
parasites infect the central nervous system and the cerebrospinal fluid. Stage 1 disease can
be treated with the diamidine pentamidine, whereas melarsoprol, eflornithine, and their
combinations with nifurtimox are the only drugs effective against stage 2 disease, and all of
these are poorly tolerated and require parenteral administration.1 For example, due to its
toxicity and lack of oral bioavailability, pentamidine is usually administered only in hospital
settings.2,3 Numerous analogs of pentamidine have been synthesized in order to increase the
therapeutic index and provide the option of oral dosing.1–3 This work culminated in the
identification of furamidine, a conformationally restricted analogue of pentamidine, and
pafuramidine, the orally active dimethoxyamidine prodrug of furamidine (Figure 1).
Pafuramidine advanced to phase III clinical trials, but these were suspended due to nephro-
and hepatotoxicity.1 Despite this setback, efforts continue to identify a next-generation
diamidine.1
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Our interest in diamidines arose from the potential of diimidazolines as inhibitors of
botulinum neurotoxin.4 In this work, we prepared several diimidazoline terephthanilides as
control compounds of our active botulinum neurotoxin inhibitors, and recognized the
structural similarity of some of these (e.g. 1) (Figure 2) to that of pentamidine and other
antitrypansomal diamidines (Figure 1). In this respect, the carboxamide isostere of
pentamidine (Figure 1) is only slightly less potent and nearly two orders of magnitude less
cytotoxic than pentamidine,5 suggesting that the carboxamide functional group may increase
antitrypanosomal selectivity of diamidines and related compounds. Not surprisingly, 1 has
been previously investigated for its antitrypanosomal effects6 where it was shown that this
diimidazoline terephthanilide cured T. brucei brucei-infected mice at low doses. Thus, we
set out to reinvestigate the activity of 1 against HAT and to begin to define its SAR.

As shown in Schemes 1 and 2, 3, 4, 9, and 10 were obtained by the synthesis of their
dinitrile precursors followed by treatment with ethylene diamine and sodium hydrosulfide7

in dimethylacetamide (DMA) to form the diimidazolines which were isolated as their
dimesylate salts by treatment with methanesulfonic acid (MSA) (70–80% overall reaction
yields).

The synthesis of indole diimidazolines 11-13 and indole monoimidazoline 14 began with
formation of nitrostilbene acid 26 from the commercially available precursors 24 and 25
(Scheme 3). The key step was reductive cyclization of 26 to indole nitrile ester 27 in hot
triethylphosphite with a MoO2(acac)2 catalyst in a neat reaction. These reaction conditions
advantageously combine features (refluxing triethylphosphite)8 and (triphenylphosphine and
MoO2Cl2(dmf)2 in refluxing toluene)9 of similar reductive cyclization reactions. Nitrile
ester 27 was directly converted10 into dinitrile amide 28. Hydrolysis of 27 afforded indole
nitrile acid 29 that was readily converted into 30-32, the nitrile and dinitrile amide
precursors of 12-14. Nitrile to imidazoline formation proceeded as already described. The
remaining known diimidazolines 1, 2, and 5-811–14 (Table 1) were obtained by reaction
sequences similar to those described in Schemes 1 and 2.15

In vitro and in vivo assays with T. brucei rhodesiense STIB900 and in vitro cytotoxicity
with the rat myoblast L6 cell line were performed as previously described.16,17 Target
compound HAT activity data against T. brucei rhodesiense are shown in Tables 1 and 2.
Diimidazoline prototype 1 was only slightly less potent against the STIB900 strain of T.
brucei rhodesiense than were the control drugs malarsoprol and pentamidine. Diimidazoline
2, the meta analog of 1, was order of magnitude less potent than the latter, but was similarly
cytotoxic. Compounds 3 and 4 demonstrate that insertion of a methylene between the aniline
nitrogen atoms and distal phenyl rings of 1 and 2 decreases activity by two to three orders of
magnitude. The IC50 values for 5-7, the three reversed amides of 1 and 2, show that at least
one aniline nitrogen atom para to an 2-imidazoline substituent is required for high activity.
Compound 8, the biphenyl analog of 1 was only slightly less potent than the prototype, but
the resulting increase in molecular weight and aromatic ring count18 suggests that 8 offers
no significant advantage over 1. Diimidazoline 10 illustrates that removing the central
phenyl ring of 1 decreased activity by an order of magnitude. Interestingly, previous work19

demonstrated that the diamidine analog of 10 had no in vivo activity against HAT species.
Comparing 7 to 9 indicates that replacing the central benzene ring with a cyclohexane
decreased activity 6-fold and cytotoxicity 1.4-fold; thus there appears to be no benefit in
increasing sp3 carbon count20 in this series of diimidazolines.

The remaining four compounds (11-14) are diimidazoline indoles, in which one of the
anilide functional groups of 1 was replaced with a pyrrole substructure. Compounds 11-14
share some structural similarity with a previously reported21 set of biphenylbenzimidazole
diamidines. Like 1 and pentamidine, diimidazoline indoles 11 and 12 had single digit nM
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IC50 values, but they were also the most cytotoxic target compounds. Target compound 12
reveals that insertion of a methylene between the aniline nitrogen atom and distal phenyl
ring of 11 did not decrease activity; this contrasts to what was observed for 1 vs. 3 (vide
supra). We also found that the nitrile and dinitrile precursors of target compounds 1-14 had
T. brucei rhodesiense STIB900 IC50 values in the range of 10,000 to >150,000 nM
demonstrating the importance of the 2-imidazoline substructure for HAT activity. However,
comparing the relative activities of monoimidazolines 13 and 14 to their diimidazoline
counterpart 12 reveals that only a single imidazoline is required for high activity provided
that a second weak base functional group is present. With the exception of 11, 1-14 were
significantly less cytotoxic than either melarsoprol or pentamidine, consistent with previous
data demonstrating lower cytotoxicity for carboxamide analogs of pentamidine.5 Finally,
there was no correlation between T. brucei rhodesiense STIB900 and L6 cytotoxicity IC50
values for 1-14, similar to what was previously observed for a series of adamantyl
monoimidazolines.22

The ten target compounds with in vitro IC50 values < 150 nM against T. brucei rhodesiense
STIB900 were administered as three consecutive 40 mg/kg ip doses to T. brucei
rhodesiense-infected mice on days 1–3 post-infection. In this primary rodent model, all ten
compounds were 100% curative. Next, eight of these23 were tested in a more stringent
rodent model with a well-established infection. In this experiment, the compounds were
administered as four consecutive 50 mg/kg ip doses to T. brucei rhodesiense-infected mice
on days 3–6 post-infection (Table 2). Target compounds 2 and 5-7 were completely curative
and 1 and 10 cured 2/4 infected animals. The partial curative efficacy of 1 contrasts with
data from earlier experiments with this diimidazoline where it completely cured24 T. brucei
brucei-infected mice at ip doses as low as 3 × 1 mg/kg.6 Only 8 and 12 were ineffective, and
the latter was lethal; all four treated mice died after the first injection of this indole
diimidazoline. In this respect, in vitro cytotoxicity seems to have been an inadequate
predictor of in vivo toxicity, as 5 and 10 were only slightly less cytotoxic than 12, but they
showed no in vivo toxicity. For the eight compounds tested in the 4 × 50 mg/kg experiment,
there was no correlation between in vitro potency and in vivo efficacy. For comparison, in
this same experimental format, administration of four 20 mg/kg doses of pentamidine and
furamidine cured 2/4 and 3/4 of infected mice.16

In summary, we identified several diimidazoline mono- and diamides that were as potent as
pentamidine against T. brucei rhodesiense in vitro, but none of these was as effective as
pentamidine in a T. brucei rhodesiense-infected mouse model. Second, our data suggest that
a single imidazoline may be sufficient for high antitrypanosomal activity provided that a
second weak base functional group is present. Third, in vitro cytotoxicity assessment did not
seem to be an inadequate predictor of in vivo toxicity for this series of compounds.
Although mechanistic studies suggest that diamidines selectively accumulate in HAT
species by way of the P2 nucleoside transporter and subsequently concentrate in the
mitochondrion where they bind avidly to kinetoplast DNA,3 the promiscuity of dications
such as diamidines is problematic.25,26 For example, diamidines are active against a wide
range of pathogenic microbes and have been investigated as potential anticancer agents.2

Indeed, we note that 1, 2, and 5-8 had earlier been synthesized and tested for antitumor and
antibacterial activities.12,13,27,28 Moreover, 1 is mutagenic at micromolar concentrations.29

Accordingly, future work will address the SAR of the imidazoline substructure6,17 with a
goal to increase efficacy and selectivity against HAT species.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Antitrypanosomal diamidines
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Figure 2.
Diimidazolines
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Scheme 1.
Reagents and conditions: (a) TEA, DMA, rt, 24 h; (b) ethylene diamine, NaSH, DMA, 120
°C, 2 h; (c) MSA, CH3CN, 70 °C, 0.5 h.
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Scheme 2.
Reagents and conditions: (a) TEA, CH2Cl2, rt, 24 h; (b) ethylene diamine, NaSH, DMA, 100
°C, 2–5 h; (c) MSA, CH3CN, 70 °C, 0.5 h.
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Scheme 3.
Reagents and conditions: (a) 4-methylpiperidine, CH3CN, 90 °C, 48 h; (b) P(OEt)3,
MoO2(acac)2, 130 °C, 2 h; (c) 4-aminobenzonitrile, Me3Al, PhMe, 75 °C, 17 h; (d) ethylene
diamine, NaSH, DMA, 120 °C, 2 h; (e) NaOH, DMA:H2O (1:1), 70 °C, 4 h; then 1 M aq.
HCl; (f-h) 4-(aminomethyl)benzonitrile, 4-(aminomethyl)pyridine, or benzylamine; HOBt,
EDCI, TEA, DMA, rt, 24 h.
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Table 2

Antitrypanosomal activity of selected compounds in the T. b. rhodesiense acute mouse model at doses of 4×50
mg/kga.

Compd Curesb Mean Survival
Daysc

Control ------ 6–10

1 2/4 39

2 4/4 >60

5 4/4 >60

6 4/4 >60

7 4/4 >60

8 0/4 11

10 2/4 34

12 0/4 toxicd

a
Administered ip on days 3–6 post-infection.

b
Cure is defined as survival for more than 60 days after infection without a parasitemia relapse.

c
Mean survival days is determined for mice with and without parasitemia relapse.

d
Mice died following first compound dose.
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