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Abstract
Recent metagenomic and mechanistic studies are consistent with a new model of periodontal
pathogenesis. This model proposes that periodontal disease is initiated by a synergistic and
dysbiotic microbial community rather than by a select few bacteria traditionally known as
“periopathogens”. Low abundance bacteria with community-wide effects that are critical for the
development of dysbiosis are now known as keystone pathogens, the best-documented example of
which is Porphyromonas gingivalis. Here we review established mechanisms by which P.
gingivalis interferes with host immunity and enables the emergence of dysbiotic communities. We
integrate the role of P. gingivalis with that of other bacteria acting upstream and downstream in
pathogenesis. Accessory pathogens act upstream to facilitate P. gingivalis colonization and
coordinate metabolic activities, whereas commensals-turned-pathobionts act downstream and
contribute to destructive inflammation. The recent concepts of keystone pathogens, along with
polymicrobial synergy and dysbiosis (PSD), have profound implications for the development of
therapeutic options for periodontal disease.
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Introduction
It is increasingly acknowledged that certain inflammatory diseases are associated with
imbalances in the relative abundance or influence of microbial species within an ecosystem.
This state is known as dysbiosis and leads to alterations in the host–microbe crosstalk that
can potentially cause (or at least exacerbate) mucosal inflammatory disorders, such as
inflammatory bowel disease, colorectal cancer, bacterial vaginosis, and periodontitis [1, 2].
The host-microbe homeostasis that characterizes a healthy mucosal tissue could be
potentially destabilized by host-related factors such as diet, antibiotics, and immune
deficiencies. Moreover, perturbations to the host-microbe ecosystem could also be
precipitated by increased expression of microbial virulence factors that subvert the host
immune response [3–5].
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As a potential disease trigger, dysbiosis stands in stark contrast to the traditional view of a
classic infection caused by a single or several select pathogens. An exemplar of this
changing paradigm is periodontitis, a prevalent chronic inflammatory condition that leads to
the destruction of the tooth-supporting tissues (periodontium) and potentially to systemic
complications [6, 7]. Recent advances in this field are consistent with a new model of
periodontal pathogenesis, according to which periodontitis is initiated by a synergistic and
dysbiotic microbial community rather than by select ‘periodontal pathogens’ as traditionally
thought [2, 8].

The mechanisms responsible for periodontal dysbiosis are currently poorly understood but
likely include both microbial and host-related factors (e.g., congenital or acquired
immunodeficiencies). Environmental factors (e.g., diet and smoking) can also manipulate
the host-microbe balance unfavorably [9, 10]. From a microbe-centric perspective, the
keystone-pathogen hypothesis holds that certain low-abundance microbes can orchestrate
destructive periodontal inflammation by remodeling a normally symbiotic microbiota into a
dysbiotic state [4]. Keystone or keystone-like pathogens may also be involved in
polymicrobial inflammatory diseases occurring in other mucosal tissues [4, 5].

Porphyromonas gingivalis is a gram-negative asaccharolytic bacterium that has long been
implicated in human periodontitis [11]. Recent evidence suggests that this bacterium
contributes to periodontitis by functioning as a keystone pathogen [12, 13]. The objective of
this review is to summarize and discuss the virulence credentials that qualify P. gingivalis as
a ‘conductor’ in the orchestration of inflammatory bone loss in periodontitis.

The subgingival lifestyle of P. gingivalis
P. gingivalis resides in the subgingival crevice almost exclusively. Within this region, there
are three distinct microenvironments for P. gingivalis: the complex sessile community on
the root surface; the fluid phase of the gingival crevicular fluid (GCF); and in and on the
gingival epithelial cells that line the crevice. Moreover, P. gingivalis can transition among
these niches, each of which provides distinct opportunities and challenges for the organism.
Adaption of P. gingivalis occurs on a global scale and indeed the organism differentially
regulates around 30% of the expressed proteome according to community, planktonic or
epithelial cell conditions [14, 15].

The gingival epithelial cells (GECs) of the subgingival crevice constitute both a physical
barrier to microbial intrusion, and an interactive interface that signals microbial presence to
the underlying cells of the immune system. P. gingivalis rapidly and abundantly invades
GECs intracellularly, with both host cells and microbial interlopers remaining viable over
the long term [16, 17]. The internalization process initiates with the FimA fimbrial mediated
attachment of P. gingivalis to β1-integrin receptors on the GEC surface with the resultant
recruitment and activation of the integrin focal adhesion complex (Fig. 1) [18].
Simultaneously, P. gingivalis secretes the functionally versatile serine phosphatase SerB,
which can enter host cells and dephosphorylate and thus activate the actin depolymerizing
molecule cofilin [19, 20]. The resulting transient and localized disruption of actin structure
allows the organism to enter the interior of the cell. Integrin-dependent signaling also
converges cytoskeletal remodeling and restores actin structure albeit in a condensed
subcortical configuration [21]. P. gingivalis rapidly locates in the cell cytoplasm which is
generally anoxic [22], although later may traffic through autophagosomes before spreading
cell to cell [23, 24].

Internalized P. gingivalis bacteria waste little time before reprogramming host cell signal
transduction and gene expression [25]. Infection of GEC results in acceleration through the
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cell cycle and suppression of apoptosis [26]. Anti-apoptotic pathways activated by P.
gingivalis include those involving JAK-Stat and PI3K-Akt, which consequently suppress
intrinsic mitochondrial-mediated cell death (Fig. 1) [16, 27]. In addition, ATP scavenging by
a secreted nucleoside diphosphate kinase (Ndk) enzyme of P. gingivalis prevents apoptosis
through the P2X7 receptor [28]. Ndk also contributes to intracellular persistence of P.
gingivalis by increasing levels of glutathione which protect against reactive oxygen species
[29]. Long-term cohabitation of P. gingivalis within GECs leads to an overall subtle and
nuanced inter-kingdom interaction, which can affect innate immune status. For example, P.
gingivalis induces the production of a variety of microRNAs in GECs: e.g., miR-105 which
suppresses TLR2 production [30], and miR-203 which inhibits SOCS3 and SOCS6
production (see Fig. 1) [31]. Additional strategies employed by P. gingivalis to manipulate
GEC innate immune function are discussed below.

While oral epithelial cells can harbor several species of oral bacteria simultaneously [32], it
is within the close confines of the multispecies biofilm on tooth surfaces that interbacterial
communication becomes most relevant. As a strict anaerobe, P. gingivalis relies on
antecedent colonizers such as streptococci and Fusobacterium nucleatum to reduce the
oxygen tension and also provide metabolic support [33]. Coadhesion among these organisms
facilitates nutritional and signaling interactions [34, 35]. P. gingivalis develops into
heterotypic communities with S. gordonii following multimodal adhesion that involves both
the FimA and Mfa1 component fimbriae of P. gingivalis that interact with streptococcal
GAPDH and SspA/B surface proteins respectively (Fig. 2). Engagement of Mfa1 with SspA/
B initiates a signal cascade within P. gingivalis. Increased expression of a protein tyrosine
phosphatase (Ltp1) ultimately elevates the amount of the transcription factor CdhR, which
suppresses production of Mfa1 and constrains further community development [33–36].
Moreover, tyrosine phosphorylation/dephosphorylation also regulates protease expression
by P. gingivalis, thus influencing pathogenic potential [37]. The ability of S. gordonii to
enhance P. gingivalis pathogenicity has also been established in vivo: oral co-infection of
conventionally reared (specific pathogen-free) mice with both organisms induces more
alveolar bone loss compared to infection with either species alone [38]. In the oral cavity, S.
gordonii, hitherto considered as a commensal, would therefore be more accurately
categorized as an accessory pathogen [34].

Not all interspecies interactions are synergistic, of course. Bacterial species compete for
nutrients and attachment sites, and produce bacteriocins and toxic metabolites such as ROS.
Interbacterial communication can also be antagonistic, for example arginine deiminase
produced by Streptococcus cristatus represses synthesis of the FimA fimbrial adhesin in P.
gingivalis [39]. Consequently, colonization and pathogenicity of P. gingivalis are impaired
(Fig. 2). Indeed P. gingivalis and S. cristatus are negatively correlated in the subgingival
biofilm [40,41]. The emerging perspective implicates the initial colonizers of dental biofilms
in the pattern of subsequent microbial colonization. Distinct streptococcal species can
determine the success or failure of keystone pathogen colonization and thus provide an
additional level of control for the pathogenic potential of the entire community.

Within the fluid phase of the GCF host immune cells and effector molecules strive to
minimize the impact of colonizing bacteria. Histological and electron microscopic
observations reveal that gingival crevicular neutrophils form a ‘defense wall’ against the
tooth-associated biofilm [42]. In periodontitis, however, the neutrophils largely fail to
control the bacteria, despite maintaining viability and capacity to elicit immune responses,
such as degranulation and release of ROS and extracellular DNA traps [42–45]. Although it
is sometimes assumed that biofilms are intrinsically resistant to phagocytosis, recent studies
have shown that neutrophils can be activated by biofilm matrix components or quorum-
sensing molecules in ways that enable them to interfere with developing biofilms,
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specifically through phagocytosis, degranulation, and formation of extracellular traps [46–
48]. In fact, depending on the nature and composition of biofilms, neutrophils can either
move into a biofilm structure and phagocytose bacteria, or display a relatively immobile
phenotype with limited capacity for phagocytosis, as shown in studies utilizing time-lapse
video microscopy and confocal laser scanning microscopy [46, 47, 49, 50]. These findings
suggest the operation of proactive microbial evasive mechanisms against neutrophils in the
gingival crevice. Although P. gingivalis and other periodontal bacteria can endure oxidative
stress [51–53], it is not known how they can resist the non-oxidative killing mechanisms of
neutrophils. If the bacteria can disarm neutrophils in the gingival crevice, the subversive
mechanism(s) involved should be appropriately targeted so as to not interfere with the host
inflammatory response, which is essential for nutrient acquisition and the sustenance of
dysbiotic microbial communities in periodontitis [4]. Accumulating evidence suggests that
P. gingivalis can transiently interfere with the recruitment of neutrophils in the early stages
of colonization and, moreover, has the potential to interfere with host immunity in a manner
that enhances the survival of the entire microbial community (next section).

Manipulation of innate and adaptive immunity
Normal neutrophil recruitment is an important feature of the healthy periodontium. Genetic
defects that compromise this function (e.g., leukocyte-adhesion deficiency) are associated
with aggressive forms of periodontitis [54]. Adjacent to the tooth surface, the junctional
gingival epithelium produces CXCL8 (IL-8) and generates a gradient for the recruitment of
neutrophils to the gingival crevice [55]. GECs exposed to P. gingivalis fail to produce
CXCL8 even when stimulated with other bacterial species that are otherwise potent inducers
of this chemokine [56]. This ‘local chemokine paralysis’ depends upon the capacity of P.
gingivalis to invade the epithelial cells [56] and secrete the serine phosphatase SerB, which
specifically dephosphorylates S536 on NF-κBp65 (Fig. 1) [57]. P. gingivalis additionally
acts on endothelial cells and inhibits the upregulation of E-selectin by other periodontal
bacteria, thereby potentially interfering with the leukocyte adhesion and transmigration
cascade [58]. In vivo studies in mice showed that the subversive effects of P. gingivalis on
CXCL8 and E-selectin expression are transient [13], suggesting that P. gingivalis can only
delay rather than block the recruitment of neutrophils. At least in principle, however, this
mechanism could allow adequate time for P. gingivalis and other bacteria sharing the same
niche to establish colonization in the relative absence of neutrophil defenses. Consistent with
this notion, a SerB-deficient isogenic mutant of P. gingivalis induces enhanced neutrophil
recruitment to the periodontium and is less virulent than the WT organism in terms of bone
loss induction [59].

Studies in the oral gavage model of mouse periodontitis have shown that P. gingivalis can
persist in the periodontium of both specific pathogen-free and germ-free mice [13]. This
observation is consistent with the capacity of P. gingivalis to escape immune clearance
through proactive manipulation of several leukocyte innate immune receptors and other
defense mechanisms activated in concert, such as the complement cascade [60–62] (Fig. 3).
Intriguingly, bystander bacterial species likely benefit from the ability of P. gingivalis to
impair host defenses, since the colonization of P. gingivalis is associated with increased total
counts and altered composition of the periodontal microbiota [13]. Although the precise
mechanisms are uncertain, these dysbiotic alterations are required for periodontal
pathogenesis as suggested by the failure of P. gingivalis to cause disease by itself in germ-
free mice [13].

In the mouse model, subgingival dysbiosis and periodontitis require intact complement C5a
receptor (C5aR) signaling. Indeed, P. gingivalis fails to colonize the periodontium of C5aR-
deficient mice, whereas treatment of mice with a C5aR antagonist applied locally in the
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periodontium eliminates P. gingivalis, reverses dysbiosis, and inhibits development of
periodontitis [13,63]. It is possible that P. gingivalis exploits C5aR signaling in several
leukocyte types although this concept has thus far shown only in macrophages. In these
cells, the C5aR-dependent subversive effects strictly require a crosstalk with TLR2, and
both receptors can be activated in tandem by P. gingivalis [64]. Notably, P. gingivalis does
not rely on immunological mechanisms for C5aR activation, since it can activate this
complement receptor through C5a generated locally by its Arg-specific gingipains (HRgpA,
RgpB) that have C5 convertase-like activity [64, 65]. P. gingivalis also expresses a number
of potent TLR2 ligands including serine lipids and lipoproteins [66, 67].

At the molecular level, the P. gingivalis-induced C5aR-TLR2 crosstalk in macrophages
leads to synergistic activation of cAMP-dependent protein kinase A for inhibition of
glycogen synthase kinase-3β (GSK3β) and of iNOS-dependent intracellular bacterial killing
[64] (Fig. 3). In the murine periodontal tissue, C5aR signaling synergizes with TLR2 to
induce secretion of cytokines that promote periodontal inflammation and bone loss (TNF,
IL-1β, IL-6, and IL-17A). This is likely to enhance the fitness of P. gingivalis and other
periodontitis-associated bacteria which require an inflammatory environment to secure
critical nutrients; that is, tissue breakdown products including peptides and hemin-derived
iron. In stark contrast to the upregulation of bone-resorptive inflammatory cytokines, P.
gingivalis-induced C5aR signaling in macrophages downregulates TLR2-induced IL-12 and
hence inhibits IFN-γ production and cell-mediated immunity against the bacteria [63, 65].
The selective inhibition of bioactive IL-12 (IL-12p35/IL-12p40) associated with C5aR-
TLR2 crosstalk involves ERK1/2 signaling-dependent suppression of the IFN regulatory
factor-1 (IRF-1), a transcription factor that is crucial for the regulation of IL-12 p35 and p40
mRNA expression [65, 68]. Importantly, genetic ablation of C5aR or TLR2 promotes the
killing of P. gingivalis in vivo [64, 69].

The inhibitory ERK1/2 pathway that regulates TLR2-induced IL-12 is also activated when
P. gingivalis binds complement receptor 3 (CR3) on macrophages [70, 71] (Fig. 3). CR3 is a
β2 integrin (CD11b/CD18) that can bind ligands when its high-affinity conformation is
transactivated via inside-out signaling by other receptors such as chemokine receptors. P.
gingivalis induces TLR2-mediated transactivation of CR3 through an inside-out pathway
that involves RAC1, PI3K and cytohesin-1 [72, 73] (see Fig. 3). Upon binding CR3, P.
gingivalis not only downregulates IL-12 but also enters macrophages in a relatively safe way
[74], perhaps because CR3 is not linked to strong microbicidal mechanisms such as those
activated by FcγR-mediated phagocytosis [75]. Indeed, P. gingivalis can persist
intracellularly in WT macrophages for longer times than in CR3-deficient macrophages
[74].

As alluded to above, P. gingivalis can activate C5aR signaling independently of the
canonical activation of complement [64, 65]. In fact, P. gingivalis can block the canonical
complement cascade regardless of the initiation pathway involved (classical, lectin, or
alternative) since its gingipains readily degrade C3, the central complement component
where all initiation pathways converge [76, 77] (Fig. 3). As a consequence, the deposition of
C3b opsonin or the membrane attack complex on the bacterial surface is suppressed,
whereas genetic or pharmacological ablation of the gingipains restores these complement
functions [78,79]. It should be noted that although P. gingivalis generates biologically active
C5a through direct C5 conversion, the resulting C5b fragment is readily degraded by the
gingipains, ostensibly to prevent the formation of the membrane attack complex [80] (Fig.
3). All three gingipain enzymes mediate complement inactivation through C3 degradation,
although HRgpA and RgpB are more potent than the Lys-specific gingipain (Kgp) [76].
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P. gingivalis also employs degradation-independent mechanisms to interfere with
complement activation. Specifically, P. gingivalis uses HRgpA to capture the circulating
C4b-binding protein on its cell surface, thereby acquiring the ability to negatively regulate
the classical and lectin pathways [81] (Fig. 3). All these mechanisms are consistent with the
exquisite resistance of P. gingivalis to the lytic action of complement [76, 78]. Curiously,
however, gingipain-deficient mutants appear to be as resistant as the WT organism after
exposure to human serum, despite the deposition of active complement fragments on the
bacterial surface of the mutants [78, 82]. This intrinsic resistance was attributed to an
anionic polysaccharide structure anchored to the cell surface by lipid A (also known as A-
LPS). An intriguing question, therefore, is why P. gingivalis has developed mechanisms to
suppress an antimicrobial system that cannot kill it. As microbial evasive mechanisms
seldom provide full protection, P. gingivalis may be using a number of different reinforcing
mechanisms to maximize protection against complement. An alternative, though not
mutually exclusive, interpretation is that inactivation of complement by P. gingivalis serves
to protect otherwise complement-susceptible organisms in the same subgingival niche, in
line with its role as a keystone pathogen.

The interactions of P. gingivalis with complement are quite complex in that its gingipains
can exert dose-dependent biphasic effects on complement activation. At low concentrations,
the gingipains not only cannot inhibit complement but actually activate the C1 complex and
hence trigger the classical pathway [76]. It can be speculated that the diffusion of released
gingipains away from the biofilm generate appropriate enzyme concentrations that activate
complement and hence the flow of inflammatory exudate (gingival crevicular fluid), which,
as discussed above, provides essential nutrients. Importantly, immunohistochemical studies
have detected a concentration gradient of gingipains extending from the subgingival biofilm
to the subjacent gingival connective tissue [83].

Besides TLR2, P. gingivalis can also interact with TLR4 by means of LPS, although in a
rather unusual way. The organism can enzymatically modify the lipid A moiety of its LPS to
either evade or antagonize TLR4 activation (Fig. 3), in contrast to the classical
enterobacterial LPS which is a potent TLR4 agonist [55]. These modifications involve the
generation of atypical LPS molecules with 5-acyl monophosphate lipid A structure (weak
TLR4 agonist) or with 4-acyl monophosphate lipid A structure (potent TLR4 antagonist)
[12, 55]. The atypical nature of P. gingivalis LPS molecules not only explains the failure of
TLR4 to contribute to the host response against P. gingivalis in vivo [69] but additionally
protect the organism against cationic antimicrobial peptides [84, 85].

P. gingivalis possesses a plethora of other mechanisms to manipulate innate immunity,
possibly reflecting its ability to cope with diverse challenges or in different settings. For
instance, through the use of distinct virulence factors, P. gingivalis is thought to exploit
interactions with erythrocytes, DC, and aortic endothelial cells, which not only promote its
fitness but also contribute to the pathogenesis of atherosclerosis [86–88]. Additional in vitro
and animal model studies suggest that, through enzymatic modification of host proteins, P.
gingivalis can breach immune tolerance in susceptible individuals and exacerbate
rheumatoid arthritis [89]. The reader is referred to specialized reviews for additional
information on systemic effects associated with P. gingivalis [62, 90–92].

Recent studies indicate that P. gingivalis can potentially also manipulate adaptive immunity
by acting on APC GECs. Indeed, the interaction of P. gingivalis with DC induces a cytokine
pattern that favors CD4+ T helper 17 (Th17) polarization at the expense of the Th1 lineage
[93]. Specifically, P. gingivalis induces IL-1β, IL-6 and IL-23, but not IL-12, which
moreover is particularly susceptible to proteolysis by the P. gingivalis gingipains [93].
GECs stimulated with P. gingivalis produce a potent admixture of pro- and anti-
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inflammatory cytokines and chemokines [17, 94]. For example, P. gingivalis infected GECs
overexpress pro-IL-1β, although secretion requires an additional stimulus such as
extracellular ATP, to activate the processing enzyme caspase-1 through the NLRP3
inflammasome [29, 95]. One major function of IL-1β is to enhance the antigen-driven
proliferation of CD4+ T cells; however, P. gingivalis additionally inhibits GEC production
of CXCL10 (IP-10) and other Th1 chemoattractants (CXCL9 and CXCL11) through
downregulation of IRF-1 and Stat1 expression (Fig. 1) [96]. The inhibitory effect on
CXCL10 is ‘dominant’ in that GECs exposed to P. gingivalis cannot express this chemokine
in response to other oral bacteria that otherwise can readily induce CXCL10 [96]. In a
related context, the ability of P. gingivalis to induce TLR2-dependent IL-10 production
leads to inhibition of IFN-γ production by CD4+ and CD8+ T cells [97]. It could, therefore,
be hypothesized that P. gingivalis modulate T-cell development and function in ways that
promotes Th17-mediated inflammation over a Th1-dependent cell-mediated immune
response, which is thought to promote clearance of P. gingivalis [60]. Numerous Th17 cells
can be observed in periodontitis lesions [93] and can function as an osteoclastogenic subset
that links T-cell activation to inflammatory bone loss [98, 99]. On the other hand, Th1 cells
are thought to play a protective role in periodontitis [100] although some studies have
attributed destructive effects to Th1 cells [101]. Overall, more research is warranted to better
understand the roles of T-cell subsets in periodontitis and the biological relevance of their
modulation by P. gingivalis in the context of its role as a keystone pathogen.

Keystone pathogens and models of disease
In inflammatory conditions associated with bacterial communities, traditional concepts of
pathogen and commensal have become obsolete. This is well illustrated by periodontal
disease where P. gingivalis can remain quiescent for long periods of time before (and after)
expressing pathogenicity through manipulation of the host response and disruption of
homeostasis. Conversely, organisms usually considered commensals, such as S. gordonii,
can act as accessory pathogens and elevate the pathogenicity of P. gingivalis. Commensal
organisms can also act as pathobionts, that is, following homeostasis breakdown and
initiation of inflammation, these commensals-turned-pathogens can propagate and amplify
destructive periodontal inflammation. In this regard, a recent study identified a bacterium
(designated NI1060) in the murine oral cavity that selectively accumulates in damaged
periodontal tissue and causes inflammatory bone loss by activating the intracellular PRR
Nod1 [102]. NI1060 appears to thrive under inflammatory conditions, apparently because it
can readily procure nutrients derived from tissue breakdown in an inflammatory
environment. NI1060, moreover, contributes to the exacerbation of inflammation by
inducing neutrophil-specific chemokines, thereby augmenting neutrophil infiltration in the
periodontal tissue [102]. Other commensals (NI440 and NI968) dominate exclusively in
healthy sites and do not behave as periodontal pathobionts [102]. The notion that there are
pathobionts that can opportunistically contribute to periodontitis is consistent with recent
metagenomic studies showing a strong association of previously underappreciated bacteria
(including the Gram-positive Filifactor alocis and Peptostreptococcus stomatis and other
species from the genera Prevotella, Megasphaera, Selenomonas, and Desulfobulbus) with
periodontitis [8, 103, 104]. Moreover, as the bacterial biomass increases with increasing
periodontal inflammation, the ecological shift from health to disease involves the emergence
of newly-dominant community members as opposed to the appearance of novel species [8].
This finding further supports the idea that many periodontitis-associated bacteria are
commensals in some circumstances, but under certain conditions can thrive beyond a
threshold sufficient to cause or exacerbate periodontitis. This threshold could be numerical
or physiological, or a combination of both. It therefore takes a ‘team effort’ to cause
periodontitis in that the disease requires cooperative interactions among bacteria with
different roles.
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A recently formulated model that accommodates these concepts is called the Polymicrobial
Synergy and Dysbiosis (PSD) model [2]. This model holds that physiologically compatible
organisms assemble into heterotypic communities which exist in a controlled immuno-
inflammatory state. While they are proinflammatory and can produce toxic products such as
proteases, overgrowth and overt pathogenicity are controlled by the host response. The
microbial constituents of the communities can vary among individuals, among sites, and
over time. Colonization by keystone pathogens such as P. gingivalis elevates the virulence
of the entire community following interactive communication with accessory pathogens.
Initially, host immune surveillance is impaired and the dysbiotic community increases in
number. Subsequently, the community proactively induces inflammation to sustain itself
with derived nutrients, which will also shape a modified ‘inflammophilic’ community. The
action of pathobionts in the community, in addition to overt pathogens, eventually leads to
destruction of periodontal tissues. The PSD model reconciles a number of features of
periodontal disease that were discordant with earlier concepts of pathogenicity. These
include: the variable microbiota at disease sites, even within the same patient; the presence
of pathogens in the absence of disease; the episodic nature of the disease; and the failure of
P. gingivalis to cause periodontitis in the absence of the commensal microbiota [13].

Conclusions and future perspectives
Bacteria on human mucosal surfaces tend to accumulate into complex multispecies
communities, a process controlled by a sophisticated series of interbacterial signaling and
host response interactions. Within these communities, bacteria have specialized roles, such
as provision of an essential enzyme for progressive nutrient metabolism. Bacteria that
influence the pathogenicity of the entire community are keystone pathogens, the best-
documented example of which is P. gingivalis. While P. gingivalis can affect gene and
protein expression in other community members, the major keystone-related influence of the
organism is likely through interference with host immunity. This is accomplished by a
multipronged approach that compromises immune function on a number of levels (Fig. 1
and 3). It is important to bear in mind, however, that periodontitis is an inflammatory
disease, and thus the timing, location and context of immune suppression by P. gingivalis
will have major significance for the ultimate progression of disease. Upon initial
colonization of the subgingival area, chemokine paralysis and immune evasion contribute to
the persistence of P. gingivalis infection. As the reduced immune surveillance begins to
benefit the entire biofilm community, local overgrowth of organisms may then overwhelm
the structural integrity of the tissues, and cause inflammation to rebound. These host
responses, however, may be insufficient to control P. gingivalis and, worse, contribute
further to tissue damage and bone resorption. Tissue destruction also releases peptides and
heme-containing compounds which stimulate the growth of P. gingivalis. Nutrients derived
from inflammation and tissue degradation select for community members that are
inflammophilic. Subsequently, however, the activities of P. gingivalis can be constrained,
most likely due to a combination of host protective responses and the aggregate efforts of
the bacterial community, and a controlled immuno-inflammatory state can be restored. This
notion is consistent with the ‘burst model’ of periodontitis, according to which disease
chronicity may not represent a constant pathologic process but rather a persistent series of
acute insults (bursts) separated by periods of remission [105].

Recent concepts of keystone pathogens in a PSD model of periodontal disease have a
profound impact on the development of therapeutic options for periodontal disease.
Targeting of P. gingivalis directly, historically the strategy of choice, is no longer the most
rational approach as it is difficult to completely eliminate the organism and P. gingivalis is
effective keystone pathogen at low levels of abundance. The ability of P. gingivalis to
survive inside epithelial cells also hinders elimination as intracellular P. gingivalis are
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protected from antibiotics and can serve as a source for recrudescence of infection [106,
107]. Rather, community manipulation has emerged as an option, albeit still theoretical.
Elevating numbers of organisms that normally constrain P. gingivalis and reducing those
that are synergistic with P. gingivalis would foster commensalism and prevent the transition
to a pathogenic community. Targeting of host cell processes is another avenue worthy of
exploration. This could involve anti-inflammatory approaches to inhibit destructive
inflammation which indirectly would also exert antimicrobial effects (limitation of
inflammatory exudate-derived nutrients) or the targeted blockade of immune evasion
pathways. In this regard, antagonizing complement pathways in the gingival tissues could
lock the host in a mode that is non-responsive to the subversive activities of P. gingivalis,
and potentially to other keystone pathogens. Moreover, enhancing protective innate
immunity in ways that counteract chemokine paralysis, TLR4 antagonism, and other
bacterial strategies with community-wide impact may also help restore periodontal tissue
homeostasis.
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Figure 1. P. gingivalis interactions with gingival epithelial cells (GECs)
Internalization of P. gingivalis is initiated by binding and activation of β1-integrin receptors
on the GEC surface mediated by the FimA fimbriae. P. gingivalis secretes the serine
phosphatase SerB, which can enter host cells and activate the actin-depolymerizing
molecule cofilin by dephosphorylating the Ser 3 residue. The resulting transient and
localized disruption of actin structure allows entry of the organism into the cytoplasm.
Integrin-dependent signaling through FAK and paxillin (PXN) also converges on the actin
cytoskeleton, inducing a later and more long-lasting subcortical condensed microfilament
arrangement. Intracellular P. gingivalis secretes SerB which dephosphorylates the Ser 536
residue of the p65 subunit of NF-κB, thus preventing nuclear translocation of p65
homodimers of NF-κB and suppressing CXCL8 (IL-8) production. Levels of Stat1 are
diminished by P. gingivalis which reduce the activity of IFN regulatory factor 1 (IRF1) and
downregulate CXCL10 (IP-10) synthesis. Decreased secretion of the neutrophil chemokine
CXCL8 and the T-cell chemokine CXCL10 from GECs is called localized chemokine
paralysis. Internalized P. gingivalis activates the JAK1-Stat3 and PI3K-Akt pathways
thereby suppressing apoptosis. P. gingivalis increases the levels of a number of microRNAs
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within GECs. miR-105 suppresses TLR2 production, and miR-203 inhibits SOCS3 and
elevates Stat3 production.
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Figure 2. Synergistic and antagonistic interactions between P. gingivalis and oral streptococci
(A) P. gingivalis fimbrial adhesins FimA and Mfa1 engage the S. gordonii adhesins GAPDH
and SspA/B, respectively, and the two species accumulate into a heterotypic community.
Mfa1 binding activates a signal transduction cascade within P. gingivalis based on protein
tyrosine (de)phosphorylation. Ultimately expression of Mfa1 is downregulated and
community development is constrained. Production and activity of P. gingivalis proteases is
elevated and the heterotypic community has enhanced pathogencity in bone loss models in
vivo. (B) Contact of the P. gingivalis FimA fimbriae with arginine deiminase (ArcA) on the
surface of S. cristatus results in downregulation of FimA. Consequently P. gingivalis fails to
adhere to S. cristatus, colonization is impeded, and P. gingivalis is inversely correlated with
S. cristatus in vivo.

Hajishengallis and Lamont Page 17

Eur J Immunol. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 3. Manipulation of complement, TLRs, and their signaling crosstalk by P. gingivalis
P. gingivalis gingipains (Kgp, HRgpA, RgpB) inhibit the classical, lectin, and alternative
pathways of complement activation by degrading the central complement component C3.
This prevents the deposition of C3b opsonin or the membrane attack complex (MAC) on the
bacteria. P. gingivalis protects itself against complement also by using HRgpA to capture
the circulating C4b-binding protein (C4BP), a negative regulator of the classical and lectin
pathways. P. gingivalis interacts with TLR2 (specifically with the CD14–TLR2–TLR1
signaling complex) and with TLR4. TLR4 activation is prevented by the bacterium’s
atypical LPS that can act as a TLR4 antagonist. A subset of TLR2 responses is subverted by
P. gingivalis through instigation of signaling crosstalk with complement receptors. By
means of its HRgpA and RgpB which release biologically active C5a from C5, P. gingivalis
activates the C5a receptor (C5aR) in macrophages and induces intracellular Ca2+ signaling
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which synergistically enhances the otherwise weak cAMP responses induced by TLR2
activation alone. The resulting activation of protein kinase A (PKA) inactivates glycogen
synthase kinase-3β (GSK3β) and inhibits iNOS-dependent intracellular killing (in
macrophages). P. gingivalis-activated TLR2 also induces an inside-out signaling pathway,
mediated by RAC1, PI3K and cytohesin-1 (CYT1), which transactivates complement
receptor-3 (CR3). Activated CR3 binds P. gingivalis and induces ERK1/2 signaling, which
in turn selectively downregulates IL-12 p35 and p40 mRNA expression through suppression
of IFN regulatory factor 1 (IRF1). This ERK1/2 pathway is also induced downstream of
C5aR. Inhibition of IL-12, and secondarily IFN-γ, results in defective immune clearance of
P. gingivalis.
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