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Nanomedicine results from nanotechnology where molecular scale minute precise nanomotors can be used to treat disease
conditions.Many such biological nanomotors are found and operate in living systemswhich could be used for therapeutic purposes.
The question is how to build nanomachines that are compatible with living systems and can safely operate inside the body? Here
we propose that it is of paramount importance to have a workable base model for the development of nanomotors in nanomedicine
usage. The base model must placate not only the basic requirements of size, number, and speed but also must have the provisions
of molecular modulations. Universal occurrence and catalytic site molecular modulation capabilities are of vital importance for
being a perfect base model. In this review we will provide a detailed discussion on ATP synthase as one of the most suitable base
models in the development of nanomotors.Wewill also describe how the capabilities ofmolecularmodulation can improve catalytic
and motor function of the enzyme to generate a catalytically improved and controllable ATP synthase which in turn will help in
building a superior nanomotor. For comparison, several other biological nanomotors will be described as well as their applications
for nanotechnology.

1. Introduction

Biological motors are molecular machines found in living
systems. These nanomachines are designed to carry out
specific functions. In order to perform their designated jobs
they use energy and convert it to mechanical work. The
majority of protein based molecular nanomotors use chem-
ical energy ATP to perform mechanical work [1]. Molecular
size nanomotors are commonly divided into two categories:
(I) biological and (II) nonbiological. In this review we will
focus on biological nanomotors, particularly ATP synthase.
Biological nanomotors are incredible molecular machines
which drive fundamental processes of life. In addition to
F
1
F
0
ATP synthase bacterial flagella, kinesin, dynein, myosin,

actin, microtubule, dynamin, RNA polymerase, DNA poly-
merase, helicases, topoisomerases, and viral DNA packaging
motors are some other prominent biological nanomotors.

In recent years many laboratories [2–10] have been trying
to create synthetic or nonbiological nanomotors, which is

not the topic of this review. However, before discussing the
biological nanomotors it would be helpful to briefly go over
nonbiological nanomotors too. The purpose of creating non-
biological nanomotors by mimicking the biological nanomo-
tors is to get the desired physiological function done within
the living systems. Interestingly, the nonnatural nanodevices
generally happen to be less efficient compared to their bio-
logical counterparts. Scientists in the field of nanotechnology
are continuously reconnoitering the possibility of creating
molecular motors de novo. These synthetic molecular motors
currently suffer many limitations that confine their use to
the research laboratory only. However, many of these defi-
ciencies can easily be dealt with comprehensive knowledge of
known biological nanomotors. Thus, the answer to the valid
question of how to manage the functional capabilities of the
nanomotors which could be used inside the living system can
be found in the naturally occurring biological nanomotors.
In this review we advocate that it is of paramount importance
to have a base model in order to develop nanomotors for
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Figure 1: Escherichia coli F
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ATP synthase structure: E. coli

ATP synthase in the simplest form contains water soluble F
1
and

membrane bound F
0
sectors. Catalytic activity ensues at the 𝛼/𝛽

interface of F
1
sector. Many inhibitors also bind to the F

1
sector

which comprises five subunits (𝛼
3
𝛽
3
𝛾𝛿𝜀). The proton pumping

occurs at the F
0
sector comprising three subunits (ab

2
c). This

structure of E. coli F
1
F
0
ATP synthase is reproduced from Weber

[27] with permission; copyright Elsevier.

nanomedicine usage. We also suggest that ATP synthase best
exemplifies the nanomotor for a right size base model.

2. F1F0 ATP Synthase

Among all known biological nanomotors, ATP synthase
stands alone for being the universal nanomotor found in all
living systems from bacteria to man. Ability of molecular
modifications of ATP synthase catalytic sites is of additional
advantage. In order to synthesize ATP, the cell’s energy cur-
rency, ATP synthase uses a mechanical rotation mechanism
to utilize the energy generated by oxidation of foodstuffs.
ATP synthase enzyme is critical to human health and is likely
to contribute to new therapies for multiple diseases, such
as cancer, bacterial infections, and obesity, that affect both
people and animals [11–15].

2.1. General Features. Figure 1 shows the general structural
and functional aspects of ATP synthase in its simplest
form found in Escherichia coli with a total molecular size
of ∼530 kDa and contains eight different subunits, namely,
𝛼
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. In chloroplast and mitochondria the general struc-
ture is similar to E. coli except that there are two isoforms and
7–9 additional subunits, respectively. It is also known that as a
complex they contribute only to a small fraction of additional
mass and may have regulatory roles [16–18]. F

1
F
0
-ATP

synthase is the smallest known biological nanomotor, found
in almost all living organisms including plants, animals, and
bacteria. This enzyme is responsible for ATP synthesis by
oxidative or photophosphorylation inmembranes of bacteria,

mitochondria, and chloroplasts. Thus, ATP synthase is the
central means of cell energy production in animals, plants,
and almost all microorganisms. A typical 70 kg human
with a relatively sedentary lifestyle will generate around 2.0
million kg of ATP from ADP and Pi (inorganic phosphate)
in a 75-year lifespan. Present understanding of the F

1
F
0

structure and mechanism can be found in references [4, 11,
14, 19–41].

ATP hydrolysis and synthesis occur on three catalytic
sites at the interface of 𝛼/𝛽 subunit in the F

1
sector, whereas

proton transport occurs through the membrane embedded
F
0
sector. Proton gradient-driven clockwise rotation of 𝛾 (as

viewed from the membrane) leads to ATP synthesis and
anticlockwise rotation of 𝛾 results in ATP hydrolysis [15].The
𝛾𝜀c
𝑛
forms the part of rotor, while b

2
𝛿 is the part of stator in

ATP synthase [38, 42–44].
The production of ATP reaction in the three catalytic

sites ensues sequentially. In this reaction mechanism, the
three catalytic sites have altered affinities for nucleotides
at any moment, and each undergoes conformational tran-
sitions which results in the direction of substrate (ADP +
Pi) binding→ATP synthesis→ATP release. In other words
catalysis requires sequential involvement of three catalytic
sites where each catalytic site changes its binding affinity for
substrates and products as it proceeds through the cyclical
mechanism known as “binding change mechanism” initially
proposed by Boyer [45–51].

Protonmotive force is converted in F
0
tomechanical rota-

tion of the rotor shaft, which drives conformational changes
of the catalytic domains in F

1
to synthesize ATP. Conversely,

hydrolysis of ATP induces reverse conformational changes
and consequently reverses rotation of the shaft. Rotation of
𝛾 subunit in isolated 𝛼

3
𝛽
3
𝛾 subcomplex has been observed

directly by Yoshida, Kinosita, and colleagues in Japan and
subsequently by several other labs [4, 25, 36, 52–58]. The
reaction mechanism of ATP hydrolysis and synthesis in F

1
F
0

and their relationship to the 𝛾-subunit mechanical rotation
is a fundamental question, has relevance to nanotechnology,
and applies to many ATPases and GTPases [59, 60].

2.2. Nature and Modulation of the Catalytic Site Residues.
Experimental data shows that modulations of catalytic sites
can result in enhanced catalytic and motor functions of ATP
synthase [61, 62]. For the purpose of catalytic site modifica-
tions of ATP synthase it is important to understand the terms
associated with catalytic sites and the residues involved in it.
According to X-ray crystallographers the three catalytic sites
of ATP synthase are 𝛽TP for ATP, 𝛽DP for ADP, and 𝛽E the
empty state to which Pi (inorganic phosphate) binds [63–
65]. Also, in active cells, the cytoplasmic concentrations of
ATP and Pi are approximately in the 2–5mM range, whereas
that of ADP is at least 10–50-fold lower. Equilibrium binding
assays have established that both ADP and ATP bind to
catalytic sites with relatively similar binding affinities [66–
69]. During ATP synthesis, proton gradient-driven rotation
of subunits drives𝛽E the empty catalytic site to bindPi tightly,
thus stereochemically precluding ATP binding and therefore
selectively favoring ADP binding [28].
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Figure 2: Catalytic sites X-ray structure of ATP synthase depicting spatial relationship between 𝛼 and 𝛽-subunit residues.The 𝛽DP site in the
AlF
4

−-inhibited enzyme structure is taken from [63]. E. coli residue numbering is used. It can be seen that removal of arginine from 𝛽R246
can be compensated by introduction of arginine in the neighboring residues 𝛼F291 or 𝛽N243. Dotted triangle shows the residues 𝛽Lys-155,
𝛽Arg-182, 𝛽Arg-246, 𝛼Arg-376, and 𝛼Ser-347, forming a triangular Pi binding site. Figure was modified from the originally published figure
in [75]. RasMol molecular visualization software was used to generate the figure.

Physical and chemical properties of amino acids in gen-
eral and positive charges in particular play critical role in the
catalytic sites. Positively charged arginine residues are known
to occur with high propensity in Pi binding sites of proteins
generally and in the Pi binding site of 𝛽E catalytic site of ATP
synthase specifically [70]. Earlier [22, 33, 61, 62, 71–75] it was
found that removal of positive charge from the catalytic site Pi
binding subdomain abrogates Pi binding and Pi binding was
restored by replacing a nonpositive neighboring residue with
positively charged arginine (see Figure 2).This study signifies
the importance of modulation of charge in the phosphate
binding site ofEscherichia coliATP synthase. It was found that
by inserting positive charges in incremental order in specific
positions in the catalytic site, it is possible not only to restore
Pi binding but also to enhance the catalytic activity of the
enzyme. This possibility of catalytic modification is of high
value in the creation of a catalytically controllable, superior
biological nanomotor.

2.3. Role in Disease Conditions. Normal functioning of ATP
synthase is indispensable to human health. Although failure
of the ATP synthase complex is implicated in wide variety of
diseases but simultaneously this enzyme may also be used as
a therapeutic drug target in the treatment of many disease
conditions such as cancer, tuberculosis, obesity, Alzheimer’s,
and microbial infections [14, 15, 21, 76, 77]. Subunit malfunc-
tions in ATP synthase are the cause of many diseases; for

example, the c-subunit of ATP synthase is involved in neuro
degenerative Battens disease [78]. Buildup of 𝛼-subunit and
reduction of 𝛽-subunit in the cytosol is seen in Alzheimer’s
disease patients [79, 80]. Subunit F6 has been associated
with hypertension [81, 82]. Occurrence of ATP synthase
on the multiple animal cell surfaces is linked with many
cellular processes, for example, angiogenesis, intracellular pH
regulation, and programmed cell death [83–91]. Moreover,
the inhibition of nonmitochondrial ATP synthase was found
to cause the inhibition of cytosolic lipid droplet buildup
making ATP synthase an appropriate molecular target for
antiobesity drugs [92].

2.4. Potential Molecular Drug Target. So far approximately
twelve binding sites for a variety of natural and synthetic
inhibitors have been identified onATP synthase.Thus the use
of ATP synthase as a potential molecular drug target seems
straight forward. Recently the role of dietary polyphenols and
peptides as antimicrobial and antitumor molecules targeting
ATP synthase came to prominence [15, 21, 93–97]. Defense
against dental cavities caused by the microbe Streptococcus
mutans presents an amazing example for this potential.
Inhibition of S. mutansATP synthase provides a prophylactic
effect against S. mutans metabolism by arresting biofilm
formation and acid production [98, 99]. Another valuable
example comes from Mycobacterium tuberculosis ATP syn-
thase, where twomutations (D32V andA63P) in its c-subunit
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cause resistance to the tuberculosis drug diarylquinoline [100,
101]. The importance of ATP synthase as a promising target
for drug development is also evident from the fact that many
antibiotics such as efrapeptins, aurovertins, and oligomycins
inhibit its function [21, 102–106].

2.5. ATP Synthase as a Nanomotor. It’s noteworthy that ATP
synthase has been widely studied by many laboratories using
biochemical, biophysical, genetic, and molecular biology
techniques. X-ray crystallographic studies have clarified the
detailed subunit composition. The coupling between the
mechanical force generated by rotation of subunits and
chemical reactions of ATP synthase has also been eluci-
dated [107–109]. The smallest known single molecule of F

1
-

ATPase acting as a rotary motor by direct observation of
its motion was observed first time in 1997 by Noji et al.
[36]. They suggested that the 𝛾-subunit of F

1
-sector rotates

within the 𝛼/𝛽 interface.This speculation has been supported
by structural, biochemical, and spectroscopic studies. They
attached a fluorescent actin filament to the 𝛾-subunit and
detected the motion directly. In the presence of ATP, the F

1

rotated for more than 100 revolutions. The single-molecule
measurements of rotation catalyzed by the F

1
F
0
ATP synthase

from Frasch lab [4] have provided new insights into the
molecular mechanisms of the F

1
F
0
molecular nanomotors.

Finally universal presence of ATP synthase makes it more
fascinating than other known biological nanomotors which
are restricted to certain species, cells, or tissues. This enzyme
can also work both in forward and reverse directions.

3. Bacterial Flagella

3.1. General Features. Flagellum is an attachment that over-
hangs from the body of some eukaryotic and prokaryotic
cells. The established role of the flagellum is propulsion but
it is also sensitive to chemicals and temperatures outside
the cell, thus functioning as a sensory organelle. However,
while both prokaryotic and eukaryotic flagella are used for
swimming, they vary significantly in protein composition,
structure, and mechanism of propulsion [110, 111]. The bacte-
rial flagellum is made up of the protein flagellin and is driven
by a protein rotary engine (the Mot complex), located at the
flagellum’s anchor point on the inner cell membrane. The
flagellum is powered by a proton motive force. H+ ions move
across the cell due to a concentration gradient. Some bacterial
species flagella are driven by a sodium ion pump rather than
a proton pump [112].

3.2. Rotatory Properties. The rotary action transports protons
across the membrane. Although the rotor part itself can
operate at ∼6–15K rpm, flagella filament typically attain a
maximum speed of 200–1000 rpm. The tubular shape of
flagella is suited to movement of microscopic organisms,
where the viscosity of the surrounding water is much more
important than its mass or inertia [113]. The intensity of
proton motive force controls the rotational speed of flagella
which in turn permits extraordinary speed in proportion to
their size. Some bacteria can achieve up to 60 times to their
cell length per second [114–116].

3.3. Structural and Functional Properties. Structurally bacte-
rial flagellar nanomotors consist of a nonrotating stator part
composed of MotA and MotB proteins and rotor made of
FliG, FliM, and FliN proteins. The stator complex couples
ion flow to rotation through cyclical conformational changes
in MotB protein. The rotor complex is also referred to as
“switch complex” because it can mediate counterclockwise
to clockwise (CCW to CW) reversals. The switch complex
forms a large cylindrical ring (C-ring) comprised of multi-
meric rings of FliG, FliM, and FliN proteins. Chemotactic
protein phospho-CheY binds to FliM to signal a direction
switch through FliG. A CCW to CW switch occurs with a
conformational change in FliG subunit [117]. Interestingly, a
three-amino acid deletion mutant of FliG has been studied
which is locked in the CW direction [118].

3.4. The Base Model Question. The question of paramount
importance is whether or not bacterial flagella can be used
as a base model in the development of nanomotors in
nanomedicine usage. Since it would be difficult to recon-
stitute flagellar motors from isolated motor proteins, most
work in this area employs intact cells with preassembled
motors. The attendant problem of limited cell lifetime could
be best overcome if “old” cells could be swapped out with
new cells. One application for nanotechnology of the flagellar
nanomotor is as a living fluid mixer [119]. A tethered flagel-
lum allows rotation of E. coli cells at about 240 rpm to drive
local solution mixing. Construction of a hybrid microrotary
motor driven by Mycoplasma mobile cells was achieved
by Hiratsuka et al. [120]. Although gliding bacteria differ
in mechanism from bacteria flagellar motors, mechanical
walking of rod-like structures driven by motors is believed
to be involved. In these studies continuous rotation of 20𝜇m
SiO
2
fabricated rotors at about 2 rpm was observed. This was

the first example of “flagellarmotors” drivingmicrofabricated
structures. Microdevices which employ bacterial flagellar
motors for fluid transport or mixing have been fabricated
[121]. Patterning of attached bacteria in these microdevices
showed linear velocities of microspheres up to 150𝜇ms−1.
Motile bacteria which exhibit magnetotaxis, such as strain
MC-1, amarine coccus, are being developed as drug targeting
vehicles [122]. Advantages for these motile organisms are in
vivo steerability and external control by MRI systems favors
this type of “nanorobot”. Technical hurdles, such as bacterial
navigation in large blood vessels, still need to be overcome.
MRI imaging of these motile bacteria truly sets this system
apart and bodes well for near future applications inmedicine.

4. Kinesins

4.1. General Features. A kinesin is another motor protein
found in eukaryotic cells. Kinesins are ATPases which require
ATP hydrolysis for their movement along the microtubule
filaments. Several cellular tasks such as mitosis, meiosis, and
transport of cellular cargo, for example, axonal transport are
achieved by active movement of kinesins. The kinesins are
responsible for anterograde or outward transport of cargo
from the cell center. Primarily, kinesins were discovered
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as microtubule based anterograde intracellular transport
nanomotors [123]. In recent years as the kinesin superfamily
became very large a variety of naming patterns started
floating around, leading to duplication and confusions. To
address this and other issues that were in the classification,
American Society for Cell Biology meeting in 2003 formu-
lated a standardized kinesin nomenclature based on 14-family
designations [124–126].

4.2. Overall Structure. The overall structure of kinesin super-
family members differs but the exemplary kinesin-1 consists
of heavy (KHCs) and light chains (KLCs), thus forming a
heterotetramer. The motor domain or the globular head of
the KHC at the amino terminal end is connected to the
stalk, a long alpha-helical coiled-coil domain, which ends in
a carboxy terminal tail domain and in turn is associated with
the light-chains.The stalks of two KHCs intertwine to form a
coiled-coil that directs dimerization of the two KHCs.Mostly
transported cargo binds to the KLC but in some cases cargo
can also bind to the KHC c-terminal domains [127].

4.3. Motor Domain. Amino acid sequence of the globular
head domain is highly conserved among various kinesins.
The globular head has two discrete binding sites for the
microtubule and for ATP. ATP binding → ATP hydrolysis
→ ADP release causes the conformational changes in the
microtubule-binding domains that result in the movement of
the kinesin. Kinesins are structurally related to G proteins,
which hydrolyze GTP instead of ATP. Nanomotor proteins
such as kinesins transport large cargo by unidirectional walk-
ing along the microtubule tracks by hydrolyzing one ATP
molecule at each step [128]. Multiple kinesin nanomotors are
also known to cooperatively transport the cargoes in-vivo
[129–132].The detailed discussion on ATP powered step-wise
movement of kinesin head along with microtubules can be
found in the references [133, 134].

4.4. Applicability in Nanomedicine. Applications of kinesin
nanomotors to nanotechnology continue to evolve. Two
basic configurations for kinesin motors are fixing of kinesins
to fluidic channels to propel microtubules or microtubule
immobilization for kinesin tracking. Steering ofmicrotubules
has been achieved by application of an electric field per-
pendicular to kinesin coated microfluidic channels [135]. By
reversing the electric field, sorting of red or green labeled
microtubules to left and right collecting reservoirs was
achieved. One goal for kinesin nanomotors is the devel-
opment of microfluidic devices which can deliver specific
analytes from cargo loading chambers to detector ports,
thus achieving sorting and concentration functions. A major
drawback for the use of kinesins for nanotechnology is a
deficiency of specific docking systems of the cargo.

5. Dyneins

Like kinesins dyneins are also cytoskeletal type of molecular
motor proteins, which require the energy from ATP to
perform mechanical work. In contrast to the kinesins, which

transport the cellular cargo from the center of the cell towards
the periphery, the plus-end dyneins transport cellular cargo
towards the cell center, the minus-end of the microtubule.
Thus dyneins and kinesins are named minus-end and plus-
end directed nanomotors, respectively.

Dynein walks in such a way that at any given time one
of its stalks is continuously attached to the microtubule. This
allows the dynein to move a substantial distance along the
microtubule without detaching. Cytoplasmic dynein helps
transport cargo needed for cell functions and is also involved
in the movement of chromosomes and positioning the
mitotic spindles for cell divisions [136]. Dynein as a motor
is a complex protein assembly composed of many smaller
polypeptide subunits.

Dynein has a molecular mass of about 1.5MDa and
comprises nearly twelve polypeptide subunits. Two of them
are identical heavy chains of∼520 kDa containing theATPase
activity and are thus responsible for generating movement
along the microtubule. Two are 74 kDa intermediate chains
which are thought to attach the dynein to its cargo; four are
∼56 kDa intermediate chains; and the rest are less known light
chains. Also, another multisubunit protein dynactin (dynein
activator complex), essential formitosis, regulates the activity
of dynein. Dynein gets activated by binding to dynactin
which in turn facilitates cargo attachment to dynein [137].
Due to the more complex structure of dyneins compared to
the kinesins, applications to nanotechnology have yet to be
developed.

6. Myosin

Myosin is a family of ATP-dependent motor proteins and is
mainly involved in muscle contraction. Structurally myosin
molecule is composed of two large polypeptide heavy chains
and four smaller light chains. Both heavy and light chain
polypeptides combine to form two globular heads, while only
heavy chains intertwine to form the tail part. The myosin
molecules makeup the core of thick filament and remain
oriented in opposite directions. Each globular head contains
two binding sites one for actin and other for ATP. Overall
muscle contraction requires involvement of another thin
filament protein actin. In essence myosin provides actin-
based motility [138–140].

As far as myosin’s role in nanomedicine is concerned
investigations into use of contractile cell grafts formyocardial
regeneration have begun [141]. Also, the transport of lipo-
some tethered to bundled actin over myosin coated surfaces
has also been examined [142]. The applications of myosin-
actin in nanomedicine are still in infancy stages and are just
emerging.

While detailed structural and functional aspects of F
1
F
0

ATP synthase are available to use for its role in nanomedicine
for other nanomotors it still seems a long way to go. Analysis
of all biological nanomotors shows that many nanomotor
proteins link catalytic ATPutilization to linear, unidirectional
force generation. More is known of the kinesins and myosins
than dyneins, primarily due to the greater molecular com-
plexity of the latter type. Kinesins are microtubule motors
which consist of 45 members in the mammalian kinesin
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superfamily. Kinesins are involved in cargo transport in cells
by tethering different cargo vesicles to divergent tail domains.
Most kinesins track processively along microtubules towards
the plus end with a few members of the family track-
ing to the minus end [143]. Force production of kinesins,
and structurally related myosins, involves conformational
changes in motor proteins converting strain relieving recoil
into force generation [144]. A kinesin force-producing con-
formational change within the motor protein, upon ATP
binding, results in altered motor to filament interaction.
Processive movement of the kinesin is believed to be due to
chemical gating which requires communication between the
two motor headpieces. Conserved motifs within the kinesins
are the nucleotide binding P-loop and switch I and II loops
[145]. During the nucleotide catalytic cycle small movements
of the loop regions are transmitted to movement of the neck
linker segment.

In this review we have focused on nanomotors that have
shown some promise of being applicable in nanomedicine.
Many biological nanomotors such as myosin, actin, micro-
tubule, dynamin, RNA polymerase, DNA polymerase, heli-
cases, topoisomerases, and viral DNA packaging motors
currently have few nanomedicine applications; therefore they
are subject of a separate future review article.

7. Conclusions

Being relatively new nanobiology or nanobiotechnology cov-
ers a variety of related technologies.This is basically a merger
of molecular biology with technology that covers nanode-
vices, nanoparticles, protein motors, and other nanoscale
phenomenon in the living cells. One of the objectives behind
nanobiology is to apply nanotools to solve relevant medi-
cal/biological problems. Developing new tools and refining
them for delivering better health care is another principal
objective of nanotechnology [146].

Overall rotatory motor functions and universal presence
makes F

1
F
0
ATP synthase a front runner base model in

the development of nanomotors for nanomedicine usage.
Moreover, the first tentative steps in nanotechnology with
biological nanomotors have begun. It will be of great interest
to see the development of hybrid technologies which link
microfabrication to various biological nanomotors. The real-
ization of the full potential in this exciting area will begin to
occur when useful devices driven by nanomotors appear.
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