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Introduction: The Ubiquitous Nature  
of Bioaerosols

Bioaerosols are defined as a collection of particles suspended 
on a column of air derived from or incorporating material of 
biological origin. Individual particles within the bioaerosol can 
vary markedly in aerodynamic diameter from submicron (e.g., 
viruses) to many millimeters (e.g., pet dander). Importantly, 
bioaerosols can affect human health due to the presence of 
pathogens or allergens. The sources of bioaerosols containing 
pathogens are varied and individual aerosol particles may vary 
widely from submicron to several millimeters dependent on the 
method of aerosol generation and attachment to larger particu-
lates, for example skin cells (Table 1); although only those <100 
μm are within the inhalable range for humans, it should be noted 
that the initial particles will rapidly evaporate depending on the 
humidity of the local environment.4,33,34 The final inhaled par-
ticle size is dependent on a number of factors including the solid 
organic content of the initial particle (including pathogens) and 
location of an individual to the aerosol source. It is evident that 
even pollen grains that represent comparatively larger bioaerosols 

can travel large distances in conducive meteorological condi-
tions.15,35 Airborne dissemination whether outdoors or indoors 
is influenced by a number of inter-relating factors that impact 
on air mass movement, turbulence, and thermal convection 
including meteorology, vehicle/human activity, and ventilation 
that may far outweigh the terminal velocity of particles that are 
generally calculated in very still air.4,34 This review will concen-
trate on aerosols containing pathogens and the inter-relationship 
between factors governing particle size, deposition site, clearance, 
and inhalational infection.

Aerosol Transmission: Relation  
to Mechanism of Generation

The mechanism of generation influences the particle size of 
the resultant bioaerosol (Table 1), and these may be biotic (e.g., 
sneeze or pollen), or abiotic where the aerosol is produced by a 
non-living system (e.g., water cooling towers). Irrespective, all 
aerosols will be generated with an initial mass median aerody-
namic diameter (MMAD) that will decrease with increased 
distance from the source due to evaporation and settling depen-
dent on environmental parameters such as relative humidity and 
turbulence.

All mechanisms of human oro-nasal activity such as breath-
ing, talking, laughing, coughing and sneezing produce parti-
cles within the inhalable range for humans of <1 to >100 μm 
(Table 1). Significant variation occurs between studies regarding 
number of particles expelled, size range of the particles and the 
number of pathogens incorporated within the particles, attrib-
utable to differences in methodology and human factors where 
standardization is difficult.21,26,28,36,37,39 Comparatively, coughing 
and sneezing produce greater quantities of particles28,36,37 that 
travel further due to the velocity of expulsion from the nose or 
mouth.40 The majority of these particles reside in the inhalable 
fraction for humans (i.e., <100 μm) at 78.6–96.0% and 98.9% 
for coughing and sneezing respectively; while of this inhalable 
fraction, 7.1–46.7% and 18.8% produced by coughing and 
sneezing were less than 4 μm, evaporating to droplet nuclei and 
deposit in the bronchoalveolar region of the lung.28,36,37

The situation in relation to deposition is more complex due 
to evaporation. Atmospheric relative humidity (RH) and tem-
perature are generally lower than that of the body. Once the par-
ticles are in the atmosphere evaporation occurs at rates according 
to their original size and composition of the particle to reach 
equilibrium with atmospheric conditions. Hence, the aerosol 
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Particle size dictates where aerosolized pathogens deposit 
in the respiratory tract, thereafter the pathogens potential to 
cause disease is influenced by tissue tropism, clearance kinet-
ics and the host immunological response. This interplay brings 
pathogens into contact with a range of tissues spanning the 
respiratory tract and associated anatomical structures. In ani-
mal models, differential deposition within the respiratory 
tract influences infection kinetics for numerous select agents. 
Greater numbers of pathogens are required to infect the upper 
(URT) compared with the lower respiratory tract (LRT), and in 
comparison the URT infections are protracted with reduced 
mortality. Pathogenesis in the URT is characterized by infec-
tion of the URT lymphoid tissues, cervical lymphadenopathy 
and septicemia, closely resembling reported human infections 
of the URT. The olfactory, gastrointestinal, and ophthalmic sys-
tems are also infected in a pathogen-dependent manner. The 
relevant literature is reviewed with respect to particle size and 
infection of the URT in animal models and humans.
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produced is dynamic, changing with distance from the initial 
point of generation. Particles produced from sneezing and cough-
ing will contain varying amounts of saliva and mucus comprising 
inorganic and organic ions plus glycoproteins.33,38 Many aerosol 
transmission modeling studies are based on assumptions e.g., 
settling velocities and/or evaporation parameters of pure water 
droplets within a vacuum and droplet distributions from healthy 
volunteers.21,22 It is probable that irrespective of composition due 
to the small droplet sizes originating from a cough or sneeze that 
evaporation will be rapid unless the presence of solutes greatly 
retards evaporation, for example, a 5 μm water droplet will 

evaporate within 0.8 s in 97% RH.21 However, extrapolating 
to natural situations where the droplet composition will be very 
different and turbulence will exert a large effect on how rapidly 
particles deposit requires care. Indeed, one recent study demon-
strated that infected individuals generated larger aerosol particles 
than healthy counterparts.41 This could be attributable to differ-
ences in mucus (composition, quantity, and viscosity) produced 
during infection affecting evaporation and the location of the 
infection.33,42 The closer an individual is situated to an aerosol 
source then the greater the likelihood of large particles being 
inhaled prior to complete evaporation.

Table 1. Sources of bioaerosol

Bioaerosol source Mechanisms Particle size distributiona,b Reference(s)

Healthcare Surgical or dental procedures Up to 50 μme 1 and 2

Hospital air <2 μm (22%), 2 to 6 μm (30%), >5 μm (48%) 3

Mechanical ventilators, bed making, and 
resuspension on dust or skin squamae

0.3 to >5 μm 4 and 5

Water industry Cooling towers <5 up to >100 μm (bimodal peaks at <5 μm and 
20–40 μm)

6

Wastewater irrigation sites 1.0 to 5.9 μm 7

Agricultural/forestry 
industries

Grain harvesting, food processing, dust,  
and/or feces from animal housing and 

farming activities

0.9 to 18.9 μm
0.5 to >5 μm (increase in 2 to >5 μm range)

8 and 9

Insecticidal crop spraying 4.6 to 39 μmd 10 and 11

12.3 to 37.1 μmc 12

15 to 45 μmc 13

60 to 100 μm (kromecote card); 5.3 to 7.3 μm 
(Anderson cascade impactor)

14

Genetic dispersion Pollen grains: 10 to 100 μme 15

Fungal spores: 1 to 50 μme 16

Postal and shopping 
industry

Mail sorting and opening 0.3 to >5 μm; 19.6-fold increase in particles >5 μm 17

Mist machine “between 40 and 70 μm” 18

Leisure activities Marine activities, e.g., surfing 24 to 44 μm, median 34 μm 19

Whirlpools <1 to 15 μm dependent on turbulence 20

Human activity Breathing <0.8 to 2 μm 21

Speaking 16 to 125 μm 22 and 23

<0.8 to 7 μm 21

Shouting 0.5 to 10 μm (mean = 1.0 μm) 24

Coughing 0.62 to 15.9 μm 21, 22, and 25–27

40 to 125 μm 23 and 28

Sneezing 7 to 125 μm 28 and 29

Vuvuzela playing 0.5 to >10 μm (mean = 1.3 μm) 24

Showering Hot water (5.2 to 7.5 μm) 30

Cold water (2.5 to 3.1 μm)

Miscellaneous Pulp waste water treatment plant 2.4 to 3.5 μm (median); 99.9% of particles were 
below 15 μm

31

Building tower (sweeping dust containing 
pigeon feces)

1.1 to 11.0 μm 32

aAerodynamic diameter; bdistributions should be viewed with caution as often experiments used samplers with cut off limits less than 15 μm and 
therefore were preferentially selective for particles smaller than this size; cspray-dried Bacillus thuringiensis produced at different homogenization speeds; 
dnon-biological aerosols for vector control; eprocedure- or species-dependent.
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Similar principles can be extrapolated to any aerosol present 
in Table 1, simply the mechanism of generation, the solute type 
and concentrations (organic and inorganic) plus the surrounding 
environment will differ and therefore the processes of evaporation 
and dissemination will accordingly vary. Irrespective of whether 
aerosol particles are generated by abiotic or biotic processes (e.g., 
Table 1), inhalation of particles into the warm humid respira-
tory tract will prompt rehydration and affect deposition due to 
particle growth.43 It is evident that there is significant potential 
for URT deposition depending on how close an individual is to 
the source.

Initial Site of Deposition and Infection  
is Dependent on Particle Size

The respiratory tract is complex, comprising a collection of 
specialized organs, tissues, and cells ranging from the nares to the 
alveoli.44 These tissues convey a range of physiological functions 
connected to breathing (i.e., air conditioning, air conductance, 
and gaseous exchange) and defense against foreign particulates 
(i.e., immune function and mucociliary or phagocytic clearance). 
After exposure to a bioaerosol containing pathogens, the initial 
site of deposition where infection may ensue is likely to be the 
respiratory epithelium. However, due to the interconnecting ana-
tomical features and clearance mechanisms within the mamma-
lian body, the ocular conjunctiva, olfactory epithelium, or URT 
immunological tissues may represent further sites where infec-
tion could initiate after inhalational exposure to a pathogenic 
aerosol (Table 2; Fig. 1). Various viruses with dual tropism for 
both ocular and respiratory tissues utilize the nasolacrimal duct 
to produce URT infection (e.g., influenza virus, respiratory syn-
cytial virus, and adenovirus).45 Depending on clearance mech-
anisms and the sensitivity of the pathogen to stomach acidity, 

gastrointestinal (GI) tissues may represent a further portal. The 
enteric Norwalk-like virus has been demonstrated to be transmit-
ted by aerosol, presumably via droplets produced during diarrhea 
and vomiting.46,47 Similarly, aerosol dissemination of Clostridium 
difficile spores has been observed in hospital wards48; however 
this has not been conclusively linked to infection via inhalation.

The aerodynamic diameter of inhaled particles determine 
where within the respiratory tract pathogens incorporated within 
the particles deposit and interact with host tissues. A number of 
mechanisms determine deposition of particles within the respi-
ratory tract including inertial impaction, Brownian diffusion, 
gravitational sedimentation, and electrostatic effects.44 Small 
particles (<1–3 μm) diffuse deep into the lung tissue, deposit-
ing in the alveoli by a number of mechanisms including diffu-
sion, sedimentation, and electrostatic effects. In contrast, larger 
particles (>8 μm) impact further up the respiratory airways due 
to greater inertion, depositing in a size-dependent manner from 
the nasal passages to the larger bronchioles. This relationship is 
extant across mammalian species albeit differences in respiratory 
anatomy and physiology dictate the penetration of a particular 
particle size into the respiratory tract.49-54 The size and body 
shape of the species determines the morphometry of the nasal 
cavity and respiratory airways influencing the size of the particles 
that may deposit in corresponding anatomical regions.51,55 Even 
within species, variables including age, body weight, breathing 
mode (oro-nasal/nasal), sex, strain (or ethnicity), activity (e.g., 
sleeping, exercise), and disease state (e.g., asthma, pneumo-
nia, emphysema, and chronic obstructive pulmonary disorder) 
influence biometry or affect respiratory physiology and hence 
deposition profiles.49,56,57 The propensity of humans to revert to 
oro-nasal breathing during exertion significantly increases the 
size of particles that may be inhaled into the respiratory tract 
due to the comparative size of the oral cavity and bypassing the 

Table 2. Tissues that may represent the primary site of deposition, clearance and infection during exposure to a bioaerosol

Anatomical region Tissue(s) Function Epithelium

Nasopharyngeal/
Oropharyngeal

Nares to nasopharynx Inhalation, filtration, and mucociliary clearance of foreign particles; 
warming/humidification of air

Ciliated

Paranasal sinuses Humidification of air; mucociliary clearance of foreign particles Ciliated

Olfactory epithelium Detection of odors Sensory

Mouth to oropharynx Mastication and ingestion; inhalation Non-ciliated

Tonsils, adenoidsa Defense against inhaled/ingested pathogens; URT mucosal immunity Lymphoepithelial

Tracheobronchial Larynx Sound generation; mucociliary clearance Ciliated/non-cilated

Trachea Air conduction; mucociliary clearance Ciliated

Bronchi to bronchioles Air conduction and particulate filtration; mucociliary clearance Ciliated

Pulmonary Respiratory bronchioles to alveoli Air conduction; gaseous exchange; pulmonary clearance and immunity Non-ciliated

Ocular Ocular conjunctiva Lubrication of ocular region Non-ciliated

Nasolacrimal duct Drainage of excess tear fluid Non-ciliated

Gastrointestinal Esophageal, stomach and 
intestinal epithelium

Digestion and absorption of ingested material, including inhaled 
particles trapped in the mucociliary escalator

Non-ciliated

Peyer patches Defense against ingested pathogens Lymphoepithelial

aNasal-associated lymphoid tissue (NALT) represents the rodent equivalent.
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filtration of the nasal cavity.49 Differences in deposition can then 
affect clearance mechanisms and rates and ultimately infection 
kinetics for an inhaled pathogen (Fig. 1).

Clearance Mechanisms in the Respiratory Tract

Clearance kinetics are fundamental to determining the dose 
of deposited pathogens within the respiratory tract and ulti-
mately systemically. A schematic of the interplay between depo-
sition site, clearance mechanisms and pathogen dissemination 
from the respiratory tract is illustrated in Figure  1. The nose 
effectively filters foreign particles that enter the nasal cavity in a 
manner dependent on particle size and air flow rate with filtra-
tion efficiency decreasing with particle size.49 Once deposited, 
the speed of nasal clearance depends on the deposition location in 

the nasopharynx. In healthy humans, clearance from the ciliated 
anterior region is much more rapid than the non-ciliated poster 
region, ranging from 1.3 to 12.6 mm min−1.58 These rates are 
comparable to reported tracheal and bronchial mucociliary rates 
that range from 0.8 to 12.4 mm min−1.59,60 Similarities exist in 
animal models however clearance rates are generally more rapid 
due to the decreased distances required to reach the larynx.61

Both the nasal and tracheobronchial escalators comprise 
mucus that entraps deposited particulates and via the cumula-
tive action of the cilia remove deposited material to the GI tract. 
Mucus composition is highly variable comprising glycopro-
teins (mucins), proteins, proteoglycans, and lipids. The quanti-
ties of these components present at any particular time govern 
the viscoelasticity, adhesiveness, and wettability of the mucus 
and can influence the size of particles emitted by coughing or 

Figure 1. Schematic of the interplay between deposition sites and clearance mechanisms in the respiratory tract. BALT, bronchial-associated lymphoid 
tissue; LALT, lung-associated lymphoid tissue; LNs, lymph nodes; NALT, nasal-associated lymphoid tissue.
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sneezing.41,42,62 The diversity of oligosaccharide chains present on 
respiratory mucins and proteoglycans adds complexity providing 
a mechanism for microbial interaction and clearance.63 Factors 
such as underlying disease both infectious and non-infectious 
(e.g., cystic fibrosis, smoking, and diabetes) reduce mucociliary 
clearance rates,58,59,62,64 hence increasing residence time for depos-
ited pathogens within the respiratory tract.

The pulmonary region is non-ciliated and clearance of for-
eign particulates is conducted by resident alveolar macrophages 
that phagocytose particles and transport to the local lung asso-
ciated lymph nodes and play an important role in pulmonary 
immunity.65-67 Across species, numbers of alveolar macrophages 
increase in response to deposited foreign particles, however inter-
species variability exists with respect to the rate of chemotaxis 
and phagocytosis.68

Pathogenesis as a Function of Particle Size  
in Animal Models

Lung and URT lymphoid tissue infections
No studies exist investigating the effects of particle size on 

respiratory infection in humans. However, comparative stud-
ies in animal models have been conducted using experimental 
systems that can differentially deposit pathogens in the LRT 
and URT within small or large particle aerosols.69-77 The gen-
eral theme running through studies investigating the effects 
of aerosol particle size on infectivity is that greater numbers of 
pathogens need to deposit in the URT to produce lethal infec-
tion compared with the LRT (Tables 3 and 4). This is likely a 
function of the mucociliary escalators present in the nasal cavity 
and tracheobronchial regions clearing material to the gastrointes-
tinal tract. An increased time to death was observed in animals 
that inhaled large particles that in time-course studies could be 
related to differences in pathogenesis between infections initiat-
ing in the LRT and URT.69-77

The inhalation of pathogens within small particle aerosols 
results in the typical disease profile associated with deposition in 
the alveolar region across all the rodent and NHP models used. 
Bacterial pathogens such as Francisella tularensis, Burkholderia 
pseudomallei, Brucella suis, and Yersinia pestis proliferate within 
the alveolar spaces or alveolar macrophages causing an influx of 
neutrophils that contribute to a massive cytokine storm resulting 
in edema and pneumonic consolidation characteristic of primary 
pneumonia. Eventually tissue destruction leads to dissemination 
to visceral organs, septic shock and death.69-72,75,76,79-82 B. pseu-
domallei is further characterized by the formation of abscesses 
throughout infected tissues and the potential to relapse after 
completion of antimicrobial therapy.77 B. anthracis endospores 
are phagocytosed by alveolar macrophages and dendritic cells 
and trafficked to lung-associated lymph nodes where they germi-
nate and replicate destroying the lymph node before eventually 
disseminating via the bloodstream resulting in septicemic shock 
and toxemia.76,83

Deposition of these pathogens within the nasal cavity pro-
duces a different disease profile with some similarities across the 
different bacterial pathogens. Degradation and ulceration of the 

Ta
bl

e 
3.

 In
flu

en
ce

 o
f a

er
os

ol
 p

ar
tic

le
 s

iz
e 

on
 th

e 
re

sp
ira

to
ry

 le
th

al
 d

os
e 

va
lu

es
 fo

r r
es

pi
ra

to
ry

 p
at

ho
ge

ns

Pa
rt

ic
le

 
si

ze
 (μ

m
)

Ba
ci

llu
s a

nt
hr

ac
is

 (c
fu

)
Ye

rs
in

ia
 p

es
tis

 (c
fu

)
Fr

an
ci

se
lla

 tu
la

re
ns

is
 (c

fu
)

Br
uc

el
la

 su
is

 
(c

fu
)

Bu
rk

ho
ld

er
ia

 
ps

eu
do

m
al

le
i  

(c
fu

)

Co
xi

el
la

 
bu

rn
et

ii 
(c

fu
)

VE
EV

 (p
fu

)
EE

EV
a  (p

fu
)

Ri
ci

nb  
(μ

g 
kg

−1
)

A
ni

m
al

 
sp

ec
ie

s
G

ui
ne

a 
pi

g
M

ou
se

 
(A

/J
ol

a)
G

ui
ne

a 
pi

g
M

ou
se

 
(B

al
b/

c)
G

ui
ne

a 
pi

g
Rh

es
us

 
m

ac
aq

ue
G

ui
ne

a 
pi

g
M

ou
se

 
(B

al
b/

c)
G

ui
ne

a 
pi

g
G

ui
ne

a 
pi

g
G

ui
ne

a 
pi

g
M

ou
se

 
(B

al
b/

c)
M

ou
se

 
(B

al
b/

c)

1.
0–

3.
0

0.
23

–3
.4

 ×
 

10
5

2.
43

 ×
 1

03
0.

3–
1.

0 
× 

10
5

6.
01

 ×
 1

02
2.

5
14

–1
7.

3
A

N
N

EX
 A

 
1.

3–
1.

9 
× 

10
2

4.
0–

5.
0

1.
9 

× 
10

6
20

0.
52

–1
.1

 ×
 

10
4

4.
6–

6.
2 

× 
10

2

12
.2

4.
0–

6.
5

2.
21

 ×
 1

05
N

D
N

D
N

D
6.

5 
× 

10
3

2.
4 

× 
10

2
N

D
N

D
5.

27
 ×

 1
07

1.
9 

× 
10

4
N

D
N

D
N

D

8.
5–

13
.0

0.
7–

5.
7 

× 
10

6

7.
65

 ×
 1

03
0.

7–
2.

1 
× 

10
5

2.
95

 ×
 1

03
1.

95
 ×

 1
04

5.
5–

8.
72

 ×
 

10
2

A
N

N
EX

 B
 

0.
88

–1
.6

 ×
 1

06

12
.0

> 
2.

4 
× 

10
9

2.
8 

× 
10

5
3.

0 
× 

10
4

2.
9 

× 
10

5
N

o 
le

th
al

ity

20
.0

–2
5.

0
N

D
N

D
N

D
N

D
N

D
3.

75
–4

.4
5 

× 
10

3

N
D

N
D

N
D

N
D

N
D

N
D

N
D

M
et

ho
d 

1–
3 
μ

m
COLL


COLL


COLL


COLL


N

K
A

to
m

iz
er

COLL


N
K

N
K

N
K

COLL


COLL


COLL


M
et

ho
d 

>4
 μ

m
ST

AG
FF

AG
ST

AG
FF

AG
N

K
ST

AG
ST

AG
N

K
N

K
N

K
ST

AG
ST

AG
ST

AG

Re
fe

re
nc

es
70

 a
nd

 7
3

76
71

75
73

69
 a

nd
 7

3
72

77
73

73
74

74
78

cf
u,

 c
ol

on
y 

fo
rm

in
g 

un
it;

 COLL



, C

ol
lis

on
 n

eb
ul

iz
er

; EEEV


,
 e

as
te

rn
 e

qu
in

e 
en

ce
ph

al
iti

s 
vi

ru
s; 

FF
AG

, f
lo

w
-f

oc
us

in
g 

ae
ro

so
l g

en
er

at
or

; N
D

, n
ot

 d
et

er
m

in
ed

; N
K,

 n
ot

 k
no

w
n;

 p
fu

, p
la

qu
e 

fo
rm

in
g 

un
it;

 S
TA

G
, s

pi
n-

ni
ng

 to
p 

ae
ro

so
l g

en
er

at
or

; VEEV


,
 V

en
ez

ue
la

n 
Eq

ui
ne

 E
nc

ep
ha

lit
is

 v
iru

s.
 a

, v
al

ue
s 

re
pr

es
en

t L
D

50
 v

al
ue

s 
fr

om
 tw

o 
vi

ru
s 

st
ra

in
s 

(A
rg

M
 a

nd
 N

J1
95

9)
; b

, n
o 

le
th

al
it

y 
us

in
g 

45
 μ

g 
kg

−1



852	V irulence	V olume 4 Issue 8

nasal epithelium precedes infection of the URT lymphoid tis-
sues such as the nasal-associated lymphoid tissue (NALT) and 
tonsils. Eventually cervical lymphadenitis is observed prior to 
dissemination to other tissues and septic shock.69-72,75-77 NALT is 
the rodent equivalent of the Waldemeyer rings in primates com-
prising the adenoids and tonsils. Lung infection is often observed 
despite primary deposition in the URT. There are two reasons 
for this, first a limitation of the aerosol device that produces a 
polydisperse aerosol comprising some 1–3 μm particles in addi-
tion to the larger aerosol particle sizes. These will deposit in the 
alveoli producing dual infection of the LRT and URT in organ-
isms such as B. pseudomallei that have a very low infectious dose 
of a few bacteria.77 Second, secondary pneumonia may occur very 
late in infection in mice that inhaled Y. pestis aerosolized within 
12 μm particles resulting from hematogenous spread from the 
bloodstream into the alveolar spaces presumably after bacterae-
mic spread from the URT lymphoid tissues.71,75

Gastrointestinal, olfactory, and conjunctival infections from 
inhalational deposition

Intriguingly, differences in pathogenesis were observed 
between the bacterial pathogens upon deposition in the URT. In 
mice that inhaled 12 μm particles containing B. anthracis endo-
spores GI pathology was observed with primary gastritis (17%), 
and activation and degeneration of GI lymphoid tissues such as 
the Peyer patches (72%) and mesenteric lymph nodes (67%).76 
This pathology was not observed in other species, and is per-
haps related to a combined effect of mucociliary clearance of the 
endospores to the stomach and the hardiness of endospores to 
the harsh acidic environment of the stomach. Bacteria such as 
Y. pestis, F. tularensis, and B. pseudomallei that do not produce 
GI pathology after URT deposition are much more sensitive to 
low acidity.84-86 Mice that inhaled B. pseudomallei within 12 μm 

particles demonstrated tropism toward the olfactory epithelium 
with sequential infection and resultant inflammatory responses 
within the olfactory neurone and olfactory bulb (100%) culmi-
nating in brain abscessation (33%).77 Similar observations were 
observed in an intranasal infection model.87 Ocular infection 
characterized by severe conjunctivitis associated with “purulent 
discharge from the nose and eyes” was observed in 16% of rhesus 
macaques that inhaled F. tularensis within 12–24 μm particles. 
In contrast, inhalation of 1–8 μm particles did not produce this 
pathology.69

In contrast, for the encephalitic alphaviruses, the demarcation 
between LRT and URT infection is much less marked demon-
strating the difficulties in employing rigid health-related demar-
cations to particle size penetration into the respiratory tract. 
Mice challenged with 1–3 μm particle aerosols containing VEE 
virus or after intranasal deposition demonstrated neuroinvasion 
via trans-synaptic spread through the olfactory or trigeminal 
neuronal pathway to the brain. The terminal stages of infection 
were characterized by multifocal necrotising encephalitis.88-92 
Intranasal deposition resulted in the presence of higher viral 
titers in the nasal mucosa, NALT, and cervical lymph nodes.90,93 
Similarly, intranasal challenge in the Guinea pig resulted in tar-
geted infection of the olfactory bulb prior to viremia.93 Similar 
pathogenesis has been observed in the Rhesus macaque, however, 
the virus localized in the olfactory bulb apparently not progress-
ing to the brain.94,95 In eastern equine encephalitis virus (EEEV) 
the olfactory neuronal pathway is important for inhalational but 
not parenteral routes of infection in rodent models.74,92 Utilization 
of the olfactory neurone to cross the cribriform plate into the 
central nervous system has also been observed in URT infec-
tion models for Nipah virus, Japanese encephalitis virus, Hendra 
virus, herpes simplex virus, influenza virus (H5N1 subtype), 

Table 4. Effect of aerosol particle size and deposition site on infection kinetics and pathology for selected pathogens in animal models of infection

Pathogen Yersinia pestis (murine) Bacillus anthracis (murine) Burkholderia pseudomallei 
(murine)

Francisella tularensis 
(Rhesus macaque)

Particle size 1 12 1 12 1 12 1 12

Deposition site Lungs Nasal mucosa Lungs Nasal mucosa Lungs Nasal mucosa Lungs Nasal mucosa

MLD (cfu) 6.01 × 102 2.95 × 103 2.43 × 103 7.65 × 103 4 12 17 8.72 × 102

MTTD (h) 72 ± 0 90 ± 11.5 101.6 ± 10.4 161.0 ± 16.1 73.8 ± 11.3 174.7 ± 14.9 138.9 ± 8.8 224.5 ± 9.6

Mortalitya (%) 100 80 78 56 100 90 100 83

Pathogenesis 1° pneumonia Nasal 
ulceration

BALT infection Nasal 
ulceration

1° pneumonia Nasal 
ulceration

1° pneumonia Nasal 
ulceration

Splenitis NALT infection Mediastinal 
LN

NALT infection Splenitis NALT infection Splenitis Tonsillitis

Septicemia Cervical 
adenitis

Splenitis Cervical 
adenitis

Septicemia Cervical 
adenitis

Septicemia Cervical 
adenitis

Splenitis Septicemia Splenitis  Splenitis  Splenitis

Septicemia   Septicemia  Septicemia

Primary 
gastritis

    

2° pneumonia Peyer patches  Olfactory 
neuritis

 Conjunctivitis

Mesenteric LN  Brain abscess   

aMortality indicated for retained dose of 103 cfu in the lungs or nasal cavity; cfu, colony-forming unit. Data from references 69 and 75–77.
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Borna virus, Balamuthia mandrillaris, Naegleria fowleri, B. pseu-
domallei, Streptococcus pneumoniae, Listeria monocytogenes, and 
Neisseria meningitidis.77,87,96-105 Interestingly, recently differential 
phagocytosis of Escherichia coli and Burkholderia thailandensis 
was observed in vitro by olfactory sheathing and Schwann cells 
perhaps representing a mechanism for colonization, infection, or 
clearance.155

These studies demonstrate that deposition site can profoundly 
influence infection kinetics and pathogenesis within inhalational 
animal models. Depending on the initial site of deposition and 
clearance kinetics, aerosolized pathogens may come into contact 
with a range of tissues and organs through which infection may 
occur: nasal mucosa, nasal and URT lymphoid tissues, olfactory 
epithelium, bronchoalveolar epithelium, gastrointestinal tract, 
and ocular conjunctiva.

Can CDC Select Agents Cause Infection  
of the URT in Humans?

In the United States, possession and transfer of biothreat 
agents is regulated under the Select Agent Program (SAP) 
administered by the Centers for Disease Control and Prevention 
(CDC). The pathogens and toxins controlled by the SAP are 
commonly referred to as select agents and represent a potential 
severe threat to the health and agriculture sectors. This review 

specifically deals with those select agents that are harmful to 
humans.

It is difficult to extrapolate animal studies to humans directly 
because time-course data are not available in humans and there-
fore the intricacies of pathogenesis cannot be related to respira-
tory tract deposition. The reported pathology in human cases of 
inhalational infections is generally from terminal cases or during 
treatment regimens where the infection is already at a progressed 
stage and it is difficult to be certain where the infection initiated. 
It is further complicated by the high mortality, often approach-
ing 90%, for the LRT infections caused by these pathogens.

However, cases of human infections caused by select agents 
occur that originate in the URT and demonstrate similar pathol-
ogy to that described in inhalational animal infection models of 
the URT. Patients present with febrile illness, tonsillitis, pharyn-
gitis, and cervical lymphadenitis prior to septicemia (Table 5). 
These presentations are generally termed pharyngeal or oro-
pharyngeal infections and are predominantly associated with 
consumption of contaminated meats or water for Y. pestis,106-110 
B. anthracis,111-118 and F. tularensis.119-123 B. pseudomallei presents 
as a pharyngocervical infection predominantly in children, how-
ever there are adult cases.124-129

Two respiratory forms of plague have been observed from 
outbreaks of bubonic and pneumonic plague, one that results in 
primary pneumonia and a second that results in tonsillitis and 
cervical lymphadenopathy in the absence of pneumonia.130-133 

Table 5. Upper respiratory tract symptoms in bacterial select agents

Symptoms
Percentage of patients with symptom (%)

Plaguea 
(Pharyngeal)

Tularemia 
(Oropharyngeal)

Anthrax 
(Nasopharynx)

Anthrax 
(Oropharyngeal)

Anthrax 
(Laryngeal)

Melioidosis 
(Pharyngocervical)

Fever 92 96 83 97 50 60

Tonsillitis 75 - - 63 - 15

Pharyngitis 92 81 33 72 - 30

Nasal/sinus complaints - - 83 3 0 10

Malaise/fatigue 92 54 33 - 25 -

Headache 92 62 17 6 0 -

Cervical/submandibular 
lymphadenitis

83 92 50 100 - 85

Arthralgia/myalgia 83 35 - - - 5

Abdominal pain 50 - 17 25 -

Vomiting/nausea 50 - 0 3 25 5

Cough 42 - 0 6 0 5

Dysphagia 17 - 17 - 0 -

Diarrhea 17 - - 3 - -

Hemoptysis/dyspnea 8 - 17 39 75 -

Anorexia - 46 17 - - -

Depression - 50 17 - 0 -

Concentration - 42 - - - -

Sleep disturbance - 46 - - - -

Mortality 40%  < 10% 50% 40% 50%  < 10%

Treatable + + + + + +

aAlso known as tonsillar plague. Data taken from references 107–113, 117, 118, 121, and 124–128.
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Flexner131 and Crowell130 respectively stated that “of all the buc-
cal structures, the tonsils seem to be most frequently the one 
attacked” and “tonsils have formed the portal of entrance for the 
bacilli and that the involvement of the cervical glands occurs sec-
ondarily through the lymph stream”. Meyer133 further implied 
that “perhaps only the larger particles can lodge in the URT and 
give rise to tonsillar or septicemic plague”. The described URT 
pathology closely resembles that observed in NHPs, Guinea 
pigs, and mice (Table 4).71,75,133 Interestingly, Guinea pigs suffer-
ing from pneumonic plague demonstrated 17% cross-infection 
to healthy control animals during cross-infection studies. The 
cross-infected animals all suffered from the URT infection.75 It 
was implied that this may be a contributory factor toward the 
cessation of pneumonic plague outbreaks because the URT form 
is less infectious and has reduced mortality rates.133 It is note-
worthy that for B. anthracis,117,134 B. melitensis,135 B. mallei,136,137 
and Coxiella burnetii138 there are also bona fide cases of inhala-
tional infections that lack LRT involvement and present with the 
aforementioned pathology indicative of primary infection via the 
URT. Furthermore, in humans, VEE, WEE, and EEE viruses 
can infect via the inhalational route and cause neurological 
sequelae similar to that observed in animal models.139 However 
it is not known in humans whether the olfactory neurone plays a 
role in the pathogenesis of these viruses or B. pseudomallei.

These cases demonstrate that in humans these pathogens 
can produce infection via the URT and although mortality 
is reduced compared with the respective LRT infections, the 
rates are not insignificant if untreated (Table 5). Similar to 
the LRT infection, the URT infections caused by select agents 
are treatable by intervention with antimicrobial therapy, and 
prognosis is good if promptly administered. Furthermore, 
the window of opportunity is longer compared with the LRT 
infection due to the protracted course of infection. However, 
misdiagnosis is problematic resulting in incorrect treatment 
regimens because symptoms resemble common URT diseases. 
For example, similar URT pathogenesis characterized by adeno-
tonsillar disease, pharyngitis and /or cervical adenitis has been 
observed for a range of common pathogens including respira-
tory viruses, measles virus, Staphylococcus aureus, Hemophilus 
influenzae, Streptococcus pyogenes, Streptococcus pneumoniae, and 
Mycobacterium spp.140-146

Gastrointestinal anthrax, different from the oropharyngeal 
form, is known to occur in humans due to consumption of con-
taminated meats with mortality rates reaching 29% if untreated. 
It presents typically as a febrile illness with severe abdominal pain, 
mesenteric lymphadenopathy, hemorrhagic ascites, hematemesis, 
and diarrhea.115 Complications can include hemorrhagic gastri-
tis.147 Interestingly, a recent case of GI anthrax occurred after 
exposure to endospores aerosolized during drumming, the infer-
ence being that the deposited endospores were cleared from the 
respiratory tract to the GI tract.148 This supports observations 
in mice where infection of the GI tract occurred in mice that 
inhaled 12 μm particles containing B. anthracis endospores with 
pathology similar to that described for humans.76

Conjunctivitis was observed in NHPs exposed to 12–24 μm 
particles containing F. tularensis.69 In humans, F. tularensis can 

cause a rare presentation known as oculoglandular syndrome 
characterized by conjunctivitis, ulceration and preauricular 
lymphadenitis,149 although this appears to be a result of direct 
contact with fomites or vector-borne rather than airborne 
transmission.

Conclusions

It is difficult to predict the particle size that an individual may 
inhale from a bioaerosol because any source comprises a particle 
distribution (Table 1) that changes with time and distance due 
to the local climate (e.g., meteorology, turbulent activity, ventila-
tion, etc.) and removal from the air column. As such, from the 
view-point of inhalational infections the respiratory tract should 
be considered as a continuum with deposition occurring through-
out and the probability of infection dependent on the interplay 
between respiratory physiology, regional dose, clearance kinet-
ics, host-pathogen colonization mechanisms and immunological 
response. Therefore, a range of tissues that have perhaps not been 
thought of as routes of inhalational challenge are brought into 
consideration including the URT lymphoid tissues, olfactory sys-
tem, GI tract and potentially the ophthalmic system.

The site of deposition after an inhalational event can affect 
disease kinetics and pathogenesis, however, the deposition of 
respiratory pathogens in the lungs will generally result in the 
more rapid aggressive infection with higher mortality rates. 
However, evidence exists in both animal models and humans for 
a number of select agents for URT infections involving the URT 
lymphoid tissues as the initial foci followed by dissemination via 
the cervical lymph nodes and bacteremic spread. In addition to 
LRT presentations, other presentations have been observed in a 
pathogen specific manner including neurological infection via 
the olfactory system, GI tract infection, and conjunctivitis.

Increased understanding of the pathogenesis and immunology 
of infections resulting from inhalation and resultant clearance will 
aid in the development of vaccine candidates and antimicrobial 
regimens. Research into host-pathogen interactions and the immu-
nology of URT infections is still in its infancy compared with LRT 
and systemic infections.67,80,150 However, recent years have seen an 
increased understanding of host-pathogen and pathogen-pathogen 
interactions throughout the URT and the function of immuno-
logical tissues.151-153 In humans it is unknown whether the olfactory 
system is utilized as a direct pathway from the URT to the brain. 
However, it remains a potential route and only recently has the 
immune response within the olfactory system been researched for 
viruses154 and the picture is even less clear for bacteria.
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