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Rice (Oryza sativa) cultivar Azucena—belonging to the Japonica
subspecies—exudes high strigolactone (SL) levels and induces high
germination of the root parasitic plant Striga hermonthica. Consistent
with the fact that SLs also inhibit shoot branching, Azucena is a low-
tillering variety. In contrast, Bala, an Indica cultivar, is a low-SL pro-
ducer, stimulates less Striga germination, and is highly tillered. Using
a Bala × Azucena F6 population, a major quantitative trait loci—
qSLB1.1—for the exudation of SL, tillering, and induction of Striga
germination was detected on chromosome 1. Sequence analysis of
the corresponding locus revealed a rearrangement of a 51- to 59-kbp
stretch between 28.9 and 29 Mbp in the Bala genome, resulting in
the deletion of two cytochrome P450 genes—SLB1 and SLB2—with
high homology to theArabidopsis SL biosynthesis gene,MAX1. Both
rice genes rescue the Arabidopsis max1-1 highly branched mutant
phenotype and increase the production of the SL, ent-2′-epi-5-deox-
ystrigol, when overexpressed in Bala. Furthermore, analysis of this
region in 367 cultivars of the publicly available Rice Diversity Panel
population shows that the rearrangement at this locus is a recurrent
natural trait associated with the Indica/Japonica divide in rice.

QTL | plant hormone | CYP450

The root parasitic Striga spp. parasitize on roots of crops in
tropical and subtropical areas. The species typically parasit-

ize cereals, including economically important crops such as
maize, sorghum, millet, and rice (1). The parasitic relationship is
dependent on the ability of the parasite to detect the host, which
is mediated by the perception of strigolactones (SLs), molecules
exuded by the host into the rhizosphere, by the seeds of the
parasite (2). SLs are also signaling molecules for the establish-
ment of the symbiosis with arbuscular mycorrhizal (AM) fungi
(3) that help the plant to improve nutrient uptake. Under
low phosphate availability, SL exudation into the rhizosphere
is strongly enhanced, hence promoting AM symbiosis (4). As
a negative consequence, however, agricultural areas with poor
soils and low fertilizer input are strongly affected by Striga (1, 4).
In addition to their rhizosphere role, SLs also function as plant
hormones inhibiting shoot branching and modulating root ar-
chitecture (5–7), also in response to phosphate deficiency (8, 9).
SL biosynthesis or signaling mutants have increased axillary bud
outgrowth, resulting in a bushy and dwarf phenotype (10). Bio-
synthesis of SLs proceeds through isomerization of β-carotene by
β-CAROTENE ISOMERASE (D27), followed by cleavage by
CAROTENOID CLEAVAGE DIOXYGENASE 7 (CCD7) and
CAROTENOID CLEAVAGEDIOXIGENASE 8 (CCD8), which
results in the formation of carlactone (11–16). The gene(s) respon-
sible for the conversion of carlactone to a SL has/have not been
identified, although MORE AXILLARY GROWTH 1 (MAX1),
encoding a cytochrome P450 (CYP) in Arabidopsis, has been

suggested to be a candidate (8, 11, 17, 18). SL signaling is me-
diated by an F-Box protein (MAX2 in Arabidopsis; D3 in rice)
and an α/β-hydrolase protein (D14) (5, 6, 19, 20).
In the present study, molecular genetics was used to further

elucidate the SL biosynthetic pathway. We had observed that the
rice cultivars Bala and Azucena differ greatly in SL biosynthesis
and susceptibility to Striga infection. The Bala × Azucena F6
recombinant inbred line (RIL) population was used to map
quantitative trait loci (QTL) related to SLs. A major QTL was
detected explaining most of the variation in the concentrations of
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all five SLs detected in rice exudates. This locus was also
detected as a QTL for rice–Striga interaction in a previous study
that used the same population (21). Here we show that the QTL
is due to a rearrangement of a 51- to 59-kbp stretch between 28.9
and 29.0 Mbp of chromosome 1 in the Bala genome. This
rearrangement results in the deletion of two CYP genes, which
we show are orthologs of the Arabidopsis MAX1. The rear-
rangement of this locus is a recurrent natural trait, observed in
several rice cultivars.

Results
Rice Varieties Bala and Azucena Show Differential Susceptibility to
Striga hermonthica Infection. When the two parental lines were
grown in soil infected with Striga seeds, emergence of Striga
occurred fastest on Bala, and during the 2 wk after first
emergence, there was on average one Striga shoot in Azucena
and two in Bala (Fig. 1A). After 2 wk, however, the number of
Striga shoots increased more rapidly in Azucena, and after
5 wk Azucena had on average 19 Striga shoots, whereas Bala
had only 10.

Low Striga Infection Rate in Bala Correlates with Reduced SL
Exudation. To investigate whether the difference in Striga emer-
gence and infection between Bala and Azucena is the result of
differences in SL exudation, root exudates and extracts of the
parental lines were analyzed. Azucena root exudates induced
a higher percentage of Striga seed germination than Bala exu-
dates (Fig. 1B). Liquid chromatography (LC)-MS analysis of root
exudates and extracts of Bala and Azucena showed that the
higher germination in Azucena root exudate correlates with
higher amounts of the SLs orobanchol, ent-2′-epi-5-deoxystrigol,
and three methoxy-5-deoxystrigol isomers in Azucena (22, 23)
(Fig. 1 C–E).

QTL Mapping of SL Levels and Related Phenotypes. Given the dif-
ferent amounts of SLs found in the parental lines, we used the
Bala × Azucena mapping population (21) to map Striga germi-
nation, the level of SLs in root exudates, shoot and root fresh
weight (fwt), and tillering. The broad sense heritabilities of all
traits were high (78–97%) with the exception of methoxy-5-
deoxystrigol isomer 1 (44%). A major QTL for Striga germina-
tion, qSTRIGOLACTONE BIOSYNTHESIS 1.1 or qSLB1.1
[logarithm of the odds ratio (LOD) = 29.42, R2 = 66%], was
identified on chromosome 1 at 143,8 cM near marker C1370
(Fig. 2, Table S1, and Fig. S1). At the same position, QTLs were
detected for the levels of orobanchol (LOD = 29.25, R2 =
70.2%), ent-2′-epi-5-deoxystrigol (LOD = 32.7, R2 = 71.2%), and
methoxy-5-deoxystrigol isomers 1, 2, and 3 (LOD = 2.83, R2 =
6.7%; LOD = 20.83, R2 = 49.2%; and LOD = 29.17, R2 = 52.8%,
respectively). For all these traits, the positive allele was from
Azucena. In addition, tiller number (LOD = 12.43, R2 = 28.8%)
and shoot fwt (LOD = 6.64, R2 = 14.6%) mapped to this region,
however, with the positive effect from Bala. Minor QTLs for SL
levels and tillering mapped to chromosome 6 and 10 (Table S1
and Fig. S1). Although these QTLs have lower LOD scores (2.5–
4.6), the colocalization of QTLs for SL level and a SL-related
phenotypic trait makes them interesting candidate loci for ad-
ditional SL regulatory, biosynthetic, and/or signaling genes.

Molecular Analysis of the Major QTL on Chromosome 1 Reveals
a Genome Rearrangement in Bala. The genomic region for the major
QTL contained a genomic rearrangement (Fig. 3). Alignment of
the genomic sequence and predicted genes of Indica cultivar 93-11
from the Beijing Institute of Genomics (http://rise2.genomics.org.
cn/page/rice/download.jsp) with the International Rice Genome
Sequencing Project (IRGSP-1.0: http://rapdb.dna.affrc.go.jp/
viewer/gbrowse/irgsp1/) (24, 25) Nipponbare reference sequence
showed the following: (i) three predicted Nipponbare genes be-
tween 30,750 and 30,771 kbp are missing in the Indica sequence;
(ii) there is a gap in the Indica sequence within that region; and
(iii) the Indica cultivar appears to have two genes with homology
to a single gene, Os01g0701500, in Nipponbare (Fig. 3 A–C).
Alignment of Bala genomic sequence reads (88- to 120-bp lengths
at 55× genome coverage) to the IRGSP Nipponbare reference
sequence revealed a stretch of between 51 and 59 kbp with a Bala
read depth close to zero (Fig. 3F). This alignment also confirms
that Os01g0701500 is duplicated (Fig. 3 D–F) and that the Bala
genes in this region share 100% homology with the 93-11 Indica
sequence. Two of the genes in the rearranged region that appear to
be missing in 93-11 and Bala, have conserved domains that classify
them as CYP (Os01g0700900 and Os01g0701400). At the border of
the deleted region, Os01g0701500, which is present in Nipponbare
and is duplicated in 93-11 and Bala, also contains this conserved
domain. When annotation of the recent Build 5 of the IRGSP-1.0
was compared with the MSU v.7 annotation [Rice Genome An-
notation Project (RGAP)], it was found that Os01g0700900 is split
into two genes, LOC_Os01g50520 and LOC_Os01g50530 (Fig.
3 B and C). Os01g0701300 and Os01g0701400 correspond to
LOC_Os01g50570 and LOC_Os01g50580, respectively, whereas
Os01g0701500 is the same as LOC_Os01g50590 (Fig. 3 B and C).

TheRearrangedRegiononBalaChromosome1ContainsMAX1Homologs.
A BLASTX search, using the predicted ORFs of the deleted
genes Os010700900 and Os01g0701400, revealed high similarity to
the SL biosynthetic gene MORE AXILLARY BRANCHES 1
(At2g26170) from Arabidopsis, which belongs to the CYP711A1
family. We could confirm experimentally by RACE PCR that
the IRGSP annotation for Os01g0700900 is correct, although
with different splicing form and start codon (Genbank acces-
sion no.: JX235697, Fig. S2A), whereas the RGAP annotation
for Os01g50520/30 is incorrect. We could also confirm
that Os01g0701300 and Os01g0701400 and the corresponding
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Fig. 1. Analysis of the parental lines of the RIL population Bala × Azu-
cena. (A) Emergence of Striga shoots per pot during a period of 78 d (●,
Azucena; ○, Bala). (B) Germination percentage of Striga seeds exposed to
crude exudates of the parental lines. (C and D) LC-MS peak areas of
orobanchol, ent-2′-epi-5-deoxystrigol (ent-2′-epi-5-DS), and methoxy-5-
deoxystrigol isomers 1–3 (MeO-5-DS is) in root exudates. (E ) Orobanchol
and ent-2′-epi-5-deoxystrigol in root extract. Error bars represent SEM
[n = 4 (A); n = 3 (B–E )]. (B–E ) Plants were grown under low-P nutrition for
1 wk, before exudate collection. (C–E ) Filled bars correspond to Azucena
and open bars to Bala.
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RGAP-annotated Os01g50570/80 are one single gene, which
from here on will be referred to as Os01g0701400 (Genbank
accession no.: JX235696; Fig. S2B). The protein sequences of
Os01g0700900 and Os01g0701400 show, respectively, 57.6% and
60.3% identity to AtMAX1 (Fig. S3). Quantitative RT-PCR
(qRT-PCR) showed that expression of Os01g0700900 in Nippon-
bare was induced by low-P treatment—just as expression of the P
starvation markerOsPI1 (26)—but not of Os01g0701400 (Fig. 4A).

Os01g0700900 and Os01g0701400 Rescue the Branched Phenotype of
Arabidopsis max1. Arabidopsis max1-1 was transformed with the
Os01g0700900 and Os01g07001400 cDNA under the control of
the CaMV35S promoter (p35S). p35S:AtMAX1 was used as a
positive control. Os01g0700900, Os01g07001400, and AtMAX1 all
fully restored the branching phenotype of max1-1 (P < 0.001)
(Fig. 4 B–D and Fig. S4), showing that these two rice CYP450
genes are AtMAX1 orthologs.

Os01g0700900 and Os01g0701400 Increase SL Levels in Root Exudates
of Bala. Bala was independently transformed with Os01g0700900
and Os01g0701400, driven by the p35S promoter. The levels of
ent-2′-epi-5-deoxystrigol in root exudates of P-starved p35S:
Os01g0700900- and p35S:Os01g0701400-transformed T1 Bala
plants (for which transgene expression was confirmed) both
significantly increased compared with the empty vector control,
but the effect of p35S:Os01g0700900 was much stronger than
that of p35S:Os01g0701400 (Fig. 4E).

Rearrangement in Rice Chromosome 1 Is Associated with Low SL
Levels in a Collection of Accessions. To establish the presence of
the Bala rearrangement on chromosome 1 across rice germ-
plasm, a PCR assay was developed using multiplexed primers for
three genes (Os01g0700900, Os01g0701400, and Os01g0701500),
which all give a product in Azucena, but for which only
Os01g0701500 gives a product in Bala. The multiplex test was
applied to 367 cultivars of the publicly available Rice Diversity
Panel. In the indica and aus subpopulations within the Indica
subspecies (27) the Nipponbare/Azucena allele frequency was
3/74 (4.1%) and 4/59 (6.8%), respectively, whereas in the temperate
and tropical japonicas within the Japonica subspecies (27) it was
93/96 (96.9%) and 63/94 (67%), respectively, showing that the
genome rearrangement is associated with the Indica/Japonica di-
vide in rice. To evaluate how the deletion affects SL biosynthesis in
different genetic backgrounds, the SL content of root exudates and
root extracts was analyzed in pairs of cultivars that differed in the
allele under study but were otherwise from the same subspecies
and the same country of origin (Table 1). The lines containing the
Bala alleles (carrying the rearrangement) had more tillers, exuded
lower amounts of SL, had lower SL root content, and induced
lower Striga germination (Fig. 5 and Table S2) than the

genotypes containing the Azucena alleles in both the Indica and
the Japonica genetic backgrounds.

Discussion
A strong QTL for SL production in rice—qSTRIGOLACTONE
BIOSYNTHESIS (qSLB1.1)—was mapped to chromosome 1. In
this locus the Bala genome contains a 51- to 59-kbp rearrange-
ment compared with Nipponbare. The rearrangement spans two
CYP genes (Os01g0700900, SLB1; andOs01g0701400, SLB2) that
are present in Azucena but absent in Bala. Both genes share
high similarity with AtMAX1, the CYP that is required for the
biosynthesis of SLs (8, 17). Overexpression of either of the two
genes in Arabidopsis max1-1 rescued the branched mutant pheno-
type, and overexpression in Bala—particularly of Os01g0700900—
increased the level of ent-2′-epi-5-deoxystrigol in the root exudate.
Although it is possible that there are other elements or genomic
features present in the rearranged region that may also con-
tribute to the differential expression of SLs, the results show
that Os01g0700900 and Os01g0701400 contribute to SL bio-
synthesis in rice and that the deletion of these genes in the Bala
genome causes the low SL levels that are observed.
Our SL analyses show an overall reduction of all SL in Bala

exudates compared with Azucena but no differences in the
composition (Fig. 1C). This result suggests that the MAX1
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orthologs in rice discovered in the present work contribute to the
synthesis of all SLs present in rice, possibly at an earlier step of
the biosynthetic pathway, rather than to the biosynthesis of spe-
cific structural SL variants. The big difference in SL levels driven
by the Azucena allele also suggest that the SL biosynthetic CYP
genes characterized in this study make an important contribution to
SL biosynthesis across different genetic backgrounds. Nevertheless,
SLs are still produced in Bala, showing that there must be re-
dundancy for this biosynthetic step. In Arabidopsis, only a single
MAX1 ortholog is present, but indeed in rice, besides the two CYP
genes described in the present study, three other CYP genes ho-
mologous to MAX1 are present in the rice genome: Os01g0701500,
Os06g0565100, and Os02g0221900. Two of these, Os02g0221900
and Os06g0565100, also rescued the branched phenotype of Ara-
bidopsis max1-1 (28), suggesting that they have MAX1-like activity
as well. In fact, several other monocotyledonous species such as
maize and sorghum have two to five MAX1 orthologs, whereas in

dicotyledonous species such as petunia and Medicago, generally
only one and sometimes two are present (28, 29).
Gene duplication allows for diversification in metabolic reg-

ulation. This diversification was also observed for Os01g0700900
and Os01g0701400 in the present study. The expression of
Os01g0700900 was increased by P starvation but not that of
Os01g0701400 (Fig. 4A). In line with this finding, the expression
of Os01g0700900 and Os02g0221900, as well as the SL biosynthetic
genes D10, D17, and D27, was repressed by P replenishment,
whereas expression of Os01g07001400, Os01g07001500, and
Os06g0565100 were not (9). Finally, the levels of ent-2′-epi-5-
deoxystrigol obtained in root exudates of Bala overexpressing
Os01g0701400 were considerably lower than those of Bala
overexpressing Os01g0700900 (Fig. 4E). This difference may be
caused by diversification in gene function after duplication,
resulting in differences in enzymatic efficiency or specificity.
Combined, these observations suggest that MAX1 duplication
has led to diversification in the regulation of SL biosynthesis in
rice and other grass species, but not in dicots, for as-yet-unknown
reasons. The existence of multiple MAX1 orthologs in the rice
genome does explain why mutant screens have been unsuccessful
in detecting these genes, whereas in Arabidopsis this approach
was successful (10). It also demonstrates the power of QTL
mapping to address more fundamental questions, such as plant
hormone biosynthesis, because it allowed us to obtain more in-
sight into the SL biosynthetic pathway in rice. Two rice MAX1
orthologs were revealed, and additional QTLs with minor in-
fluence on SL levels and tillering were also detected on chro-
mosomes 6 and 10.
Population genetic analysis provides insights into the evolu-

tionary history of genomes and traits, and our analysis of a Rice
Diversity Panel revealed a striking difference in the frequency of
the rearrangement found in this study between the two major
rice varietal groups. The prevalence of the high-SL Azucena
allele in the Japonica group and its virtual absence in the Indica
group suggests that it is likely to have originated in a Japonica
ancestor. By extension, this finding also supports the hypothesis
that Indica and Japonica were domesticated from divergent
populations of their wild ancestor, Oryza rufipogon (30). The fact
that the Indica low-SL allele is present in ∼33% of the tropical
japonica varieties in the Diversity Panel is consistent with in-
trogression from indica and aus varieties into tropical japonica
varieties growing sympatrically in tropical environments. This

Table 1. Lines from the Diversity Panel selected to test the
impact of the genomic rearrangement on SL levels, tillering,
and Striga germination

Line Subgroup* Country of origin

Azucena allele
Azucena TRJ Philippines
DZ-78 AUS Bangladesh
Aswina-330 AUS Bangladesh
Kun-Min-TH IND China
Ta-Mao-T TEJ China
Sinaguing TRJ Philippines

Bala allele
Bala IND India
Dhala-S AUS Bangladesh
Kachilon AUS Bangladesh
Guan-Yin-T IND China
Sung-Liao-2 TEJ China
Asse Y Pung TRJ Philippines
Kinastano TRJ Philippines

*According to Zhao et al. (27).
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Fig. 4. Expression analysis (A) and functionality of rice CYP genesOs01g0700900
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by low P nutrition measured by qRT-PCR (n = 4–5). (B–D) Complementation
of axillary bud outgrowth ofmax1-1 by overexpression of Os01g0700900 (B),
Os01g07001400 (C), and AtMAX1 (D) under control of the 35S promoter
(n = 2–9). Significance values (Student t test) are shown as follows: *P < 0.05;
**P < 0.01); ***P < 0.001. (E ) Levels of ent-2′-epi-5-deoxystrigol mea-
sured in root exudates of Bala cultivar transformed with Os01g0701400 or
Os01g0700900 under control of the 35S promoter and empty vector
control pHm43GW (n = 2–4). Different letters indicate significantly different
means at P < 0.05, using ANOVA followed by Student t test on log-trans-
formed data. Values shown in the graph are back transformed. Bars represent
mean values ± SE.
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pattern of allele divergence and introgression in Oryza sativa has
been documented in other studies (31–34).
SLs regulate overall plant architecture. In shoots, SLs inhibit

tillering; in roots, SLs influence root and root hair elongation
and lateral root development (5, 7, 9, 35, 36). Indeed, tillering
mapped to the same SL locus on chromosome 1. Interestingly, in
previous QTL studies using an IR64–Azucena and the Bala–
Azucena mapping populations, several root architectural traits
were mapped in the same region, suggesting that they may also
be controlled by this locus (37, 38). These findings emphasize the
potential of qSLB1.1 for the improvement of important agro-
nomic traits in rice. Our study demonstrates once more the
positive correlation between SL production and Striga germina-
tion (22, 39). However, although decreased SL biosynthesis
results in less Striga germination, it is unclear whether SL levels
also affect Striga attachment. In earlier work, Striga tolerance
mapped to the same region as qSLB1.1, with the Azucena allele
increasing Striga tolerance (21), even though in the present study
we showed there were more Striga emerging on Azucena in
controlled environments (Fig. 1A). The later establishment of
infection in Azucena likely explains the higher tolerance to Striga,
similar to what was observed in sorghum, where tolerant varieties
generally exhibit later Striga emergence (40). Intriguingly, Striga
postattachment resistance mapped to the same position on chro-
mosome 1 as the QTL discussed in the present work (near marker
C1370) in a cross between Nipponbare and Kasalath (21), with the
Nipponbare allele conferring greater resistance (41). Nipponbare
contains the same allele as Azucena, and we confirmed that
Kasalath carries the same allele as Bala for the locus under study.
This observation offers the intriguing hypothesis that higher SL
levels increase Striga germination but reduce the subsequent effi-
ciency of parasitization.

Materials and Methods
Mapping Population Plant Material. A mapping population of 115 F6 RILs
derived from Bala × Azucena described in Price et al. (42) was used. The
experiments were conducted under controlled conditions (28 °C/25 °C; 450
μM·m−2·s−1; 10-h light/14-h dark; and 70% relative humidity) in randomized
design with three replicates, each consisting of one pot with five plants.
After root exudate collection, the number of tillers per pot was counted,
plants were removed from the pots, and root and shoot fwt were de-
termined. Allelic frequencies of the rearrangement in the different sub-
populations were assayed by using 367 diverse accessions from the publicly
available Rice Diversity Panel (27, 34). Eleven of these lines (Table 1) were
multiplied at the University of Aberdeen and sent to Wageningen University for
physiological characterization. Arabidopsis growing conditions are described in
SI Materials and Methods, Complementation of Arabidopsis max1-1 Mutants.

Complementation of Bala. Transformation of Bala with constructs p35S:
Os01g0700900, p35S:Os01g0701400, and empty vector pHm43GW is de-
scribed in SI Materials and Methods, Rice Bala Variety Complementation.
Transgenic T1 plants were selected for exudate collection after confirmation
on selection medium with hygromycin and verification of transgene expres-
sion by qRT-PCR. Equivalent average expression levels of the transgenes were
ensured when plants were pooled and transferred to pots (three plants per
pot) for root exudate collection (see below). Statistical tests were performed by
using Genstat (Genstat for Windows 15th Edition; VSN International).

SL Collection from Root Exudates and Root Extracts. For the mapping pop-
ulation, SLs were collected from 5-wk-old rice plants in three replicates with
each replicate consisting of one pot with five plants as described (39). For the
transgenic rice, root exudates were collected from pots containing three
4-wk-old plants. The exudates were collected at 3, 6, and 9 d after the start
of P starvation, and the three samples were pooled for SL analysis. The root
exudates were passed through an SPE C18-Fast column (500 mg per 3 mL),
and the SL was eluted with 6 mL of 100% acetone. For root extracts, 1 g fwt
of ground root tissue was extracted following the method described (39),
but the resulting extracts were evaporated to dryness, taken up in hexane,
loaded on preequilibrated Silica gel Grace Pure SPE (200 mg/3 mL) columns,
and eluted with 2 mL of hexane:ethyle acetate (1:9) for further purification.
The solvent was evaporated, and the residue was redissolved in 200 μL of

25% (vol/vol) acetonitrile in water and filtered through Minisart SRP4 0.45-
μm filters (Sartorius) before LC–tandem MS (LC-MS/MS) analysis.

SL Analysis Using LC-MS/MS. SLs were analyzed by comparing retention times
and mass transitions with those of SL standards using a Waters Xevo TQ mass
spectrometer equipped with an electrospray-ionization source and coupled
to a Waters Acquity ultraperformance LC system using the settings described
(39) with some modifications specified in SI Materials and Methods,
Detection and Quantification of Strigolactones by Liquid Chromatography–
Tandem Mass Spectrometry (LC-MS/MS). The analyses were performed in
three biological replicates.

Striga Germination Bioassay. Root exudate germination stimulatory activity
was assessed by using a germination bioassay with S. hermonthica as
described (39, 43). Approximately 50–100 preconditioned Striga seeds on
a 9-mm diameter glass fiber filter paper disk (Sartorius) were exposed to
the column-purified root exudates (50 μL per disk) after acetone evap-
oration. Germination was scored after 48-h incubation in darkness at
30 °C. The synthetic SL GR24 (3.3 μM) was used as positive and water as
negative control. Three biological replicates and three discs per replicate
were used.

Striga Emergence. Striga emergence was studied as described (39). Approx-
imately 25 mg of Striga seeds were mixed thoroughly with 1 L of the 50:50
sand and soil mixture, which was then used to fill 1.5-L pots. Pregerminated
rice seeds were transferred to the pots (one seed per pot) and grown at 28 °C
day (14 h) and 25 °C night (10 h) with relative humidity at 70% and 400
μM·m−2·s−1 of light. Striga emergence was assessed at 2-d intervals in
four replicates.

RNA Extraction. RNA was extracted from roots of Nipponbare rice grown with
full nutrition or P deprived for 5 d before tissue collection of roots. The RNA
was purified from 70 mg of homogenized ground roots using 500 ml Trizol
(Invitrogen) and further purified with chloroform. After precipitation with
70% (vol/vol) ethanol, the RNA was recovered with an RNAeasy Mini Kit
column (Qiagen) and DNA was removed using the DNAase I Kit (Qiagen),
according to manufacturer’s instructions.

Gene Expression Analysis. cDNA was synthetized by using the iScript cDNA
Synthesis Kit (BioRad) using 1 μg of total RNA per sample following the
manufacturer’s instructions. The qRT-PCR reactions were prepared by using
iQ SYBR Green Supermix (BioRad). Per reaction, each primer at a concen-
tration of 0.3 μM and 1 μL of 10-fold diluted template cDNA was used. The
amplification was detected with a BioRad qRT-PCR detection system and
thermocycler. The primers are listed in Table S3. The expression data are the
average of five (control) or four biological replicates (P deprived).

Characterization of Os01g0700900 and Os01g0701400 Transcripts. RNA from
Nipponbare rice roots was used for cDNA synthesis according to instructions
for the SMART RACE cDNA Amplification Kit (Clontech). The primers and
nested primers of RACE PCR were designed based on the predicted mRNA
sequences in the National Center for Biotechnology Information (NCBI) (GI:
115439412; accession no. NM_001050521) and are listed in Table S4.
The 5′ and 3′ RACE PCR products were cloned into pJET1.2 (Fermentas)
and sequenced.

Complementation of Arabidopsis max1-1. Constructs p35S:Os01g0700900 and
p35S:Os01g0701400 were transformed into Arabidopsis max1-1 plants (Co-
lumbia-0 background) as described in SI Materials and Methods, Comple-
mentation of Arabidopsis max1-1 Mutants. Rosette branching was measured
on independent single-insertion homozygous lines: nine lines (20 plants per
line) for p35S:Os01g0700900, five lines (three to five plants per line) for p35S:
AtMAX1, and two lines (five to seven plants per line) for p35S:Os01g0701400.
Rosette branching was measured by using the decapitation method (44).

Phylogenetic Studies of Rice MAX1 Homologs. The confirmed amino acid
sequences of Os01g0700900 and Os01g0701400 and the predicted sequences
of Os01g0701500, Os06g0565100, and Os02g0221900 in IRGSP were aligned
with Arabidopsis MAX1, and a phylogenetic tree made with ClustalW2
(www.ebi.ac.uk/Tools/msa/clustalw2).

QTLMapping. Before QTL analysis, germination percentage and SL production
were log-transformed. QTL analysis was conducted as described in Price et al.
(45). The molecular map (46) contains 164 markers covering 1,833 cM on 12
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linkage groups. The identification of QTLs was performed by composite in-
terval mapping using QTLCartographer (47). Background markers (maxi-
mum of 10) for composite interval mapping were selected by forward
stepwise regression with backward elimination using the default setting.
The 5% genome-wide threshold for QTL detection was determined after
1,000 permutations.

Bala and Azucena Genome Sequencing. The Bala and Azucena genomic DNA
was extracted, made into pair-end libraries, and sequenced on an Illumina
Genome Analyzer II at Cornell University providing reads of 88-, 100-, and
120-bp lengths for Bala and 100 bp lengths for Azucena. To report SNP calls,
reads were aligned to the Nipponbare reference by using Panati (48) and ref.
49. Fastq data have been deposited in the NCBI Short Read Archive
(Acc_ID SRA050654.1).

Assessing Allelic Diversity. Allelic diversity was accessed by multiplex PCR in
a single reaction (25-μL mix) of 5-min denaturation at 95 °C, 35 cycles of 94 °C
for 30 s, 58 °C for 30 s, 72 °C for 1 min, and 5 min of final extension at 72 °C.
Primers are listed in Tables S5.
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