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Myosin-binding protein C (MyBP-C) is an accessory protein of
striated muscle thick filaments and a modulator of cardiac muscle
contraction. Defects in the cardiac isoform, cMyBP-C, cause heart
disease. cMyBP-C includes 11 Ig- and fibronectin-like domains and
a cMyBP-C-specific motif. In vitro studies show that in addition to
binding to the thick filament via its C-terminal region, cMyBP-C can
also interact with actin via its N-terminal domains, modulating thin
filament motility. Structural observations of F-actin decorated
with N-terminal fragments of cMyBP-C suggest that cMyBP-C
binds to actin close to the low Ca2+ binding site of tropomyosin.
This suggests that cMyBP-C might modulate thin filament activity
by interfering with tropomyosin regulatory movements on actin.
To determine directly whether cMyBP-C binding affects tropomy-
osin position, we have used electron microscopy and in vitro mo-
tility assays to study the structural and functional effects of N-
terminal fragments binding to thin filaments. 3D reconstructions
suggest that under low Ca2+ conditions, cMyBP-C displaces tropo-
myosin toward its high Ca2+ position, and that this movement
corresponds to thin filament activation in the motility assay. At
high Ca2+, cMyBP-C had little effect on tropomyosin position and
caused slowing of thin filament sliding. Unexpectedly, a shorter
N-terminal fragment did not displace tropomyosin or activate the
thin filament at low Ca2+ but slowed thin filament sliding as much
as the larger fragments. These results suggest that cMyBP-C may
both modulate thin filament activity, by physically displacing
tropomyosin from its low Ca2+ position on actin, and govern con-
tractile speed by an independent molecular mechanism.

muscle regulation | muscle activation

Myosin-binding protein C (MyBP-C) is an accessory protein
of vertebrate striated muscle thick filaments (1) that is

known to modulate cardiac muscle contraction (2). The skeletal
isoform includes 10 Ig-like (Ig) and fibronectin type 3-like (Fn)
domains, numbered C1 through C10 from the N terminus, to-
gether with a MyBP-C-specific motif (the M-domain) between
C1 and C2 and a Pro-Ala-rich sequence at the N terminus. The
cardiac isoform (cMyBP-C) has an additional N-terminal Ig
domain (C0), four phosphorylation sites in the M-domain, and
a 28-residue insert in the C5 domain (3) (Fig. 1). MyBP-C binds
to the thick filament in the C-zone of the sarcomeric A-band (4)
via its C-terminal domains (C8–C10) (5), whereas its N-terminal
region contains binding sites for myosin S2 (6-10) and the myosin
regulatory light chain (11).
In addition to binding to myosin, MyBP-C also interacts with

actin (12) and with thin filaments (13) via its N-terminal region
(9, 10, 14–17; cf. 18). In the in vitro motility assay, actin filament
sliding over myosin is slowed by N-terminal fragments of cMyBP-C
to the same extent as whole cMyBP-C (19), possibly by slowing
the myosin detachment rate from actin (19) or tethering the
thick to the thin filament (16, 19). In an assay closer to the in vivo

situation, the sliding of F-actin over native cardiac thick fila-
ments was slowed specifically in the C-zone, and this slowing was
ablated by removal of C0C1 and the first 17 amino acids of the
M-domain [known as C0C1f (16); Fig. 1] (20). On the basis of
yeast 2 hybrid experiments, it was concluded that the C1 and M
domains were necessary for actin binding and that replacement
of endogenous cMyBP-C with actin binding-ablated cMyBP-C
resulted in its abnormal sarcomeric distribution and disturbance
of the sarcomeric structure (9). These in vitro demonstrations of
actin binding are supported by electron tomographic observa-
tions showing MyBP-C extending from the thick to the thin fil-
aments in the intact sarcomere, consistent with a model in which
the N terminus of MyBP-C binds to the thin filament (21, 22).
Together, these results suggest that actin binding is physiologi-
cally relevant and that the slowing of actin filament sliding is one
possible mechanism by which cMyBP-C modulates cardiac con-
tractility (5, 23, 24).
The structural basis of cMyBP-C’s N-terminal binding to F-

actin has been studied in several ways. Neutron scattering and
NMR titration analysis of F-actin decorated with the N-terminal
fragment C0C2 (Fig. 1) suggested that C0C2 binds to subdomain
1 (SD1) and the DNase loop of actin (25) via key regions within
C0 and C1 (10). More direct observations by negative stain
electron microscopy (26) and 3D reconstruction (27) suggest that
C0 and C1 bind to SD1 of actin, whereas the M domain crosses
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over SD2, possibly binding to the next SD1, and C2 and C3 lie
above the surface of the filament (27, 28).
The position of cMyBP-C binding on actin SD1 suggests that in

addition to inhibiting actomyosin interactions, it might also affect
thin filament regulation by interfering with the binding of tropo-
myosin/troponin (Tm/Tn) to actin. Tm and Tn regulate muscle
contraction by movement of Tm in response to calcium binding by
Tn (29). At low Ca2+, Tm lies on SD1, where it sterically blocks
the binding of myosin to actin (the “blocked” position); the con-
sequent inhibition of actin-myosin interaction leads to muscle
relaxation. On activation, Tn binds Ca2+, causing Tm to move
onto actin SD3 (the “closed” position), exposing myosin binding
sites on SD1 and initiating crossbridge cycling and contraction
(29–35). When a model of Tm in its low Ca2+ (blocked) state is
positioned on the reconstruction of F-actin decorated with C0C3,
it appears to clash with cMyBP-C’s C0 and C1 domains, suggesting
that cMyBP-C and Tm might compete for binding to SD1 in the
relaxed thin filament (25, 27, 28). As a consequence, cMyBP-C
might be expected to activate the thin filament by physically pre-
venting Tm from assuming its blocked position (25, 27, 28). Mo-
tility (19) and solution kinetics studies (36, 37) support this
concept, showing that the N-terminal C1C2 fragment activates
thin filaments in low Ca2+ similarly to rigor heads.
Here we have investigated cMyBP-C’s potential to modulate

cardiac contractility by contrasting mechanisms; that is, activat-
ing the thin filament and inhibiting maximal actomyosin me-
chanical activity. First we used negative-staining EM and 3D
reconstruction to investigate whether cMyBP-C displaces Tm at
low Ca2+, by decorating regulated thin filaments (containing
F-actin, Tm and Tn) with C0C2. In parallel experiments, we de-
termined the functional consequences of such N-terminal frag-
ments on regulated thin filament activation and sliding velocities
in an in vitro motility assay. We find clear structural evidence for
displacement of Tm toward the high Ca2+ (closed) position when
C0C2 binds to thin filaments under low Ca2+ conditions, sug-
gesting that N-terminal binding should activate the thin filament;
this was confirmed in the motility assay. We also demonstrate that
C0C2 has no effect on Tm position under high Ca2+ conditions but
inhibits maximal sliding velocity in the motility assay. Interestingly,
a smaller fragment (C0C1f; Fig. 1) binds to the thin filament under
low Ca2+ conditions but does not displace Tm or activate thin
filament sliding. However, C0C1f still inhibits thin filament sliding
at high Ca2+ to the same extent as the larger N-terminal frag-
ment. These results suggest that cMyBP-C may play two
physiological roles in intact muscle, displacing Tm from the
“blocked” position at low Ca2+ to modulate thin filament acti-
vation, and governing maximal sliding velocity at high Ca2+ by
a potentially independent molecular mechanism.

Results
Negative Staining of Thin Filaments Decorated with C0C2 at Low and
High Ca2+. Reconstituted and native thin filaments were mixed
with C0C2 (Fig. 1) at molar ratios of 1:6, 1:3, 1:1, or 7:1 (actin:
C0C2) in solutions containing KAc (or NaCl) at concentrations
from 100 to 180 mM (see Materials and Methods). Low Ca2+

solutions contained 0.2 mM EGTA, whereas high Ca2+ solutions
were the same, with Ca2+ added to total 0.33 mM [pCa (negative
log of calcium concentration), 3.9].
Negatively stained low-Ca2+ control (no C0C2 decoration)

native (Fig. 2 A and D) and reconstituted (Figs. S1A and S2 A
and D) thin filaments showed typical actin subunits and occa-
sional resolution of Tm strands (31). C0C2 decoration caused
a clear increase in filament diameter, most obviously when more
C0C2 was added (1:3 and 1:6 ratios of actin:C0C2; Fig. 2 C and
F; Fig. S1D; Table S1). In addition, 1:1 and 7:1 molar ratios
showed a smaller, but still visible, increase (Fig. 2 B and E; Figs.
S1 B and C and S2 B, C, E, and F; Table S1). Clear decoration
was observed in all ionic conditions with no major difference in
the level of decoration or background protein. The higher levels
of decoration obscured detailed actin and tropomyosin structure.
The appearance and diameter of filaments decorated under high
Ca2+ conditions (Fig. S3) were similar to those at low Ca2+.
Most experiments were carried out by adding C0C2 to native

or preformed reconstituted thin filaments. To determine
whether Tm and Tn could still bind to actin if C0C2 were bound
first, we also reversed the order of mixing. The apparent level of
decoration and the filament diameter appeared to be independent
of the order of mixing (Fig. S2; Table S1).

Fig. 1. Schematic of cMyBP-C and the expressed N-terminal fragments
C0C3, C0C2, and C0C1f used in this study. cMyBP-C consists of 8 Ig and 3 Fn
domains together with a cMyBP-C-specific M-domain, containing a phos-
phorylation region (orange) with 4 phosphorylatable serines (P), a ProAla-
rich domain, and a cardiac-specific insert (blue) in the C5 domain.

Fig. 2. Decoration of native thin filaments with C0C2 under low Ca2+

conditions. (A, D) Undecorated control. (B, C, E, F) Filaments decorated
with C0C2 at A:C0C2 molar ratios of 1:1 (B, E ) and 1:3 (C, F). Filaments in
D–F have been computationally straightened. [Scale bar (A–C) = 100 nm;
(D–F ) = 50 nm.)
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3D Reconstruction of Thin Filaments Decorated with C0C2 at Low and
High Ca2+. 3D reconstruction of computationally straightened
thin filaments was carried out by iterative helical real-space re-
construction (38). Control filaments (no decoration) in low and
high Ca2+ showed clear actin subunits and elongated Tm strands
running along each long-pitch actin helix (Fig. 3). At low Ca2+,
Tm is seen to lie near the junction of SD1 and SD3 of actin, over
the main myosin-binding site (the blocked position), as found in
previous studies (31, 32) (Fig. 3 A and D). At high Ca2+, Tm
moves to the “closed” position on the inner domain of actin,
exposing myosin-binding sites on SD1 (Fig. 3 B and E) (31, 32).
The two Tm positions were supported by fitting the recon-
structions with molecular models of F-actin-Tm, where Tm is in
the blocked or closed position (Fig. 3 A and B) (39). The change
in Tm position induced by Ca2+ was especially clear when high
and low Ca2+ reconstructions were superimposed (Fig. 3 C and F),
confirming that Tm and its well-documented Ca2+-induced
movement are clearly seen by our procedures. Similar results were
obtained for both native and reconstituted filaments (Fig. 3 A
and B; Figs. S4B and S5B).
To determine the effect of C0C2 on Tm position under low

Ca2+ conditions, reconstructions were computed for native fila-
ments decorated with C0C2 at different molar ratios (Fig. 4). All
reconstructions again showed clear actin subunits and Tm strands.
Actin subunit shape was similar to that in control filaments, es-
pecially at the lower levels of decoration. At higher levels, the
binding of C0C2 was visualized as an extra density on SD1 of actin
(Fig. 4F, arrows), similar to its binding position observed previously
(27, 28).

The effects of C0C2 binding on Tm position were determined
by superimposing decorated and control filament reconstructions
(Fig. 4 D–I) and by fitting of blocked and closed position A.Tm
atomic models (39) to the reconstructions (Fig. 4 A–C). Addition
of C0C2 appeared to cause a small movement of Tm in the di-
rection of the closed position when the lower amounts of C0C2
were used (Fig. 4 A, B, and E), and a larger movement, as far as
the closed position or slightly further, with the highest amount of
C0C2 (Fig. 4 C, F, and H) or when C0C2 was added to F-actin
before the addition of Tm.Tn (Fig. S4D). These results, showing
displacement of Tm from its low-Ca2+ position by C0C2, suggest
direct competition between C0C2 and Tm for Tm’s low-Ca2+
binding region on actin. This displacement would be expected to
activate the thin filament.
Visibility of C0C2 in the reconstructions varied with con-

ditions. In filaments showing a large Tm shift (high ratios of

Fig. 3. 3D reconstructions of native control thin filaments under low and
high Ca2+ conditions. (A) Low Ca2+ filament (gray surface rendering) fitted
with ribbon depiction of low-Ca2+ A.Tm atomic model (39) (actin monomers,
yellow; Tm, red). (B) High-Ca2+ reconstruction (yellow surface rendering),
fitted with high-Ca2+ A.Tm atomic model (actin monomers, yellow; Tm,
green). (C) Superposition of A and B demonstrating Tm shift on to inner
domain of actin at high Ca2+ (note: slight variations in actin contours in A
and B cause either gray or yellow to appear on the actin surface in C). (D and
E) Transverse sections of low and high Ca2+ reconstructions, respectively,
showing positioning of Tm (arrows) near the junction of actin SD1 and SD3
in low Ca2+, and on SD3 in high Ca2+. (F) Superposition of D and E, dem-
onstrating the shift of Tm. Filaments in A–C oriented with pointed end at
top; actin subdomains are marked in A and D. (Scale bar = 5 nm.)

Fig. 4. 3D reconstructions of native thin filaments decorated with C0C2
under low Ca2+ conditions. (A–C) Reconstructions with the indicated ratios
of A:C0C2 fitted with A.Tm atomic models (39), as in Fig. 3, with Tm in
blocked (red) or closed (green) position. With low levels of C0C2, there was
a small movement of Tm from the blocked position (A and B), whereas with
the highest level, Tm shifted to approximately the closed position (C). (E and
F) show superposition of B and C, respectively, on the low Ca2+ control (D),
demonstrating the smaller and larger shifts; black arrows indicate protrusion
on SD1 surface, close to Tm, which we attribute to proximal region of C0C2.
(G and H) Transverse sections of D and C, respectively, showing the shift of
Tm from the blocked position in control (red arrows) to the closed position in
C0C2-decorated filament (green arrows). (I) Superposition of G and H. Fila-
ments in A–F oriented with the pointed end up. (Scale bar = 5 nm.)
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C0C2 added and reverse order of addition), C0C2 density ap-
peared stronger than in those showing a smaller shift (lower
ratios, normal order; Fig. 4C and Fig. S4D; compare with Fig. 4
A and B and Fig. S4C). These observations support the view that
Tm and C0C2 compete for similar sites on actin. The recon-
structions show only the proximal region of C0C2, and we as-
sume that the more distal domains are not well ordered under
our experimental conditions.
In high Ca2+ conditions, the position of Tm in C0C2-deco-

rated thin filaments was similar to that of control high Ca2+
filaments, and clear C0C2 density was visible on SD1 of actin
(Fig. S5) in a similar position to that seen in F-actin decorated
with C0C2 (27). Thus, C0C2 did not displace Tm from its closed
position, suggesting that C0C2 and Tm occupy different binding
interfaces on actin at high Ca2+.

3D Reconstruction of Thin Filaments Decorated with C0C1f at Low and
High Ca2+.We also studied the effect on Tm position of a shorter
fragment (C0C1f; Fig. 1) known to bind to F-actin (16, 27).
Filaments decorated with C0C1f were wider than controls,
clearly demonstrating binding of the fragment (Fig. S6 A and B;
Table S1). However, 3D reconstructions showed no change in
position of Tm compared with controls, either at low (Fig. 5) or
high Ca2+ (Fig. S7), suggesting that C0C1f would have no acti-
vating effect. The site of binding of C0C1f was mainly on the
front of actin SD1, although the density was not strong (Figs. 5
and Fig. S7).

Effect of N-Terminal Fragments on Native Thin Filament Sliding at Low
and High Ca2+. The sliding of native cardiac thin filaments on
mouse cardiac myosin was observed in an in vitro motility assay
over a range of Ca2+ concentrations (Fig. 6 and Fig. S8). Thin
filament sliding was fully regulated by Ca2+, with little to no
motion observed at low Ca2+ (pCa > 7) and sigmoidal increases
in velocity and fraction of filaments moving at higher Ca2+ con-
centrations (Fig. S8, controls). Multiplying the thin filament ve-
locity by the fraction of filaments moving (Fig. S8) gives an
effective activation curve with a pCa50 of 6.15 ± 0.09 (Fig. 6,
control). Although the shorter C0C2 fragment was used in our
structural studies (to minimize interference with Tm visibility in
the reconstructions), we have shown previously that C0C2 and
C0C3 bind similarly to actin filaments (27) and are functionally
identical in their inhibition of actin filament motility (16). On
addition of 1 μM C0C3 (Fig. 1) to the assay, thin filament sliding
was now observed even at the lowest Ca2+ level (Fig. S8), and
there was a significant shift in pCa50 for the effective activation
curve to 7.78 ± 0.33 (P < 0.05; Fig. 6). At high Ca2+, maximal
sliding velocity was inhibited by 50% (Fig. S8), as reported pre-
viously for C0C2 (19). In contrast, addition of 1 μMC0C1f showed

no activation of the thin filament at low calcium (Fig. S8) and no
change in pCa50 for the effective activation curve (6.42 ± 0.15; P >
0.05; Fig. 6) but showed inhibition of maximal velocity by 47% at
higher Ca2+ concentrations, similar to C0C3 (Fig. S8). The in-
ability of C0C1f to activate the thin filament despite retaining its
inhibitory capacity suggests that thin filament activation and in-
hibition of maximal velocity may be governed by two independent
molecular mechanisms.

Discussion
Elimination of MyBP-C from muscle fibers by chemical extrac-
tion or genetic ablation results in changes to the muscle’s Ca2+

sensitivity of force production (40–42), to its shortening velocity
(43, 44), and to the kinetics of tension recovery after stretch (45).
These alterations emphasize the physiological roles played by
MyBP-C in both Ca2+-dependent muscle activation and in
modulation of cardiac contractility. However, the structural basis
for these distinct functions has not been determined. Using a
combination of structural and molecular functional assays, we
have shown that the N terminus of cMyBP-C displaces Tm to
activate native thin filaments at low Ca2+ and slows thin filament
sliding velocity at high Ca2+, presumably through independent
molecular mechanisms.

Effect of cMyBP-C on Thin Filament Activation. Previous structural
studies of MyBP-C binding to F-actin suggested that the N-terminal
region might interfere with Tm binding to actin, especially when
Tm is in its low Ca2+ position (25, 27, 28). We tested this proposal
directly by decorating regulated thin filaments (containing Tm and
Tn) with C0C2. Our results, showing clear movement of Tm from
the blocked toward the closed position under low Ca2+ conditions,
directly support the hypothesis that the N terminus of cMyBP-C
competes with Tm (in its blocked position) for the same binding
region on actin; this competition is further suggested by the
greater movement of Tm that occurs when cMyBP-C is added to
F-actin before Tm and Tn. This cMyBP-C-induced shift of Tm
could straightforwardly explain the activation of thin filament
sliding in the in vitro motility assay by C0C3 (Fig. 6) and C0C2
(19), the reduced Ca2+-sensitivity of contraction of cardiac myo-
cytes from cMyBP-C knockout mice (40), and the activation of
myosin ATPase activity by thin filaments under low Ca2+ con-
ditions when cMyBP-C N-terminal fragments are present (36, 37).
Interestingly, solution ATPase assays found strong activation

Fig. 5. 3D reconstructions of native thin filaments decorated with C0C1f
under low Ca2+ conditions. (A) Low Ca2+ control filament (gray surface
rendering). (B) C0C1f-decorated filament (blue). (C) Superposition of low Ca2+

control (A) and C0C1f-decorated filament (B) showing no Tm shift. (Scale
bar = 5 nm.)

Fig. 6. Effect of N-terminal cMyBP-C fragments on native thin filament
sliding in in vitro motility assays. The graph shows “effective activation”
(thin filament velocity × fraction of filaments moving) vs. pCa. The black line
shows native thin filaments demonstrating a sigmoidal response to Ca2+. The
red line shows C0C3 activated the thin filaments at low Ca2+, increased Ca2+

sensitivity, and inhibited maximal velocity. The blue line shows C0C1f had no
effect on activation or Ca2+ sensitivity but inhibited maximal velocity. See
Fig. S8 for individual velocity and fraction-moving data.
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even at low levels of added C1C2 (actin:C1C2 = 7:1) (37), where
Tm movement in our reconstructions was small. Variations in
conditions between the ATPase and EM experiments may ac-
count for this difference. For example, thin filament activation
was measured by the rate of nucleotide release from thin fila-
ment-bound myosin subfragment 1 (S1), whereas S1 is absent
from our experiments. Sparse decoration of thin filaments by
cMyBP-C fragments may weaken Tm binding in the blocked
position without significantly changing its average position ob-
served by EM. This could increase the freedom of movement of
Tm so that single S1 binding events are no longer significantly
inhibited. Physiological experiments in which N-terminal fragments
of cMyBP-C are diffused into skinned myocytes (46, 47) also
demonstrate activation of contraction at low (relaxing) Ca2+

concentrations. In these experiments, it was suggested that
cMyBP-C affects crossbridge cycling primarily by binding to
myosin, thus affecting myosin crossbridge mechanics, although
mechanisms involving actin binding were also considered pos-
sible. Our results suggest that cMyBP-C increases thin filament
calcium sensitivity by binding to actin and displacing Tm toward
the closed position.
The cMyBP-C domains primarily involved in binding actin

appear to be the C1 and M-domains (9, 15, 16, 20), although
there is evidence that C0 may be important (10, 14). Previous
modeling suggested that the C0 and C1 domains could clash with
Tm in its blocked position (25, 27, 28), whereas experiments in
which expressed N-terminal fragments were added to skinned
cardiac myocytes implicated the ProAla-rich domain between C0
and C1 in modulating Ca2+ activation of crossbridge cycling (46).
However, in similar skinned fiber experiments, the ProAla-rich
domain was found to have no effect, whereas the C1 andM-domains
were critical to the Ca2+-sensitizing and activating effects of var-
ious N-terminal domains (48). This too was the case in the present
study, as only the N-terminal fragments containing the C1 and
M-domains were able to displace Tm (C0C2) and activate the thin
filament (C0C3). C0C1f (containing C0, the ProAla-rich domain,
C1, and the first 17 amino acids of the M-domain; Fig. 1) was
capable of binding to thin filaments at low Ca2+ but did not dis-
place Tm from the blocked position and did not activate thin fil-
ament sliding. Therefore, thin filament activation by the N
terminus of cMyBP-C under relaxing conditions (pCa > 7) likely
involves multiple sites of interaction with actin to move Tm into
the closed position. Assuming that C0C1f binds to the thin fila-
ment through the same contacts as C0C2, then additional sites of
actin interaction must exist beyond the first 17 amino acids of the
M-domain that are present in the C0C1f fragment. For example,
arginines 279/280 (further along the M-domain) have been iden-
tified as critical to actin binding (9), and when mutated to ala-
nines, they diminish the capacity of C1C2 fragments to activate
thin filaments in skinned rat trabeculae (49).

Effect of cMyBP-C on the Inhibition of Sliding Velocity. In addition to
the thin filament activating effects of cMyBP-C at low Ca2+,
cMyBP-C also governs contractility, as evidenced by enhanced
unloaded cardiac muscle shortening velocities in cMyBP-C null
mice (43). The inhibition of velocity in the presence of cMyBP-C
occurs through cMyBP-C’s N terminus, as observed previously by
ourselves and others (16, 19, 20, 50) and confirmed here (Fig. 6).
Because our structural studies demonstrate that C0C2 and
C0C1f bind to the thin filament at high Ca2+, inhibition of
maximal sliding velocity could be explained by tethering of the
thin filaments to the motility surface by the N-terminal domains,
imparting a load on the actomyosin interactions (16), or by
preventing myosin from interacting with the thin filament by
occupying available myosin binding sites. In the intact sarcomere,
MyBP-C is thought to bind by its 3 C-terminal domains to the
thick filament backbone, whereas the rest of the molecule extends
to adjacent thin filaments (5, 22, 51, 52). Thus, although the molar
ratio of MyBP-C to actin subunits in the C-zone is only ∼1:10, the
proximity of its N termini to actin may make their effective local
concentration high enough to bind the thin filament without

substantial occupancy of S1 binding sites. With only minimal
steric interference with S1 binding, the inhibition of maximal
velocity would likely arise from tethering between the thick and
thin filaments. However, our structural studies cannot exclude
the possibility that N-terminal domains inhibit thin filament ve-
locity in the in vitro motility assay by binding to myosin S2 (47) or
the regulatory light chain (11) to alter myosin kinetics.

Conclusions
We conclude that the N-terminal region of cMyBP-C binds to F-
actin at a location that directly competes with Tm in the blocked
position. This competition is sufficient to displace Tm toward the
closed position and activate the thin filament, providing a means
of modulating the Ca2+ sensitivity of thin filaments in cardiac
muscle. Similar modulation may also occur in skeletal muscle. In
addition to activating the thin filament, cMyBP-C’s N terminus
can also inhibit myosin-generated thin filament sliding. However,
these two distinct functions appear to occur through indepen-
dent mechanisms, as emphasized by the inability of C0C1f to
activate the thin filament despite retaining its inhibitory capacity,
in contrast to the larger C0C2 and C0C3 fragments, which ac-
tivate the thin filament (by Tm movement) while also slowing
filament sliding. Although thin filament activation must be in
part a result of cMyBP-C binding directly to actin, mechanical
inhibition may still be through either actin and/or myosin bind-
ing. Experiments to distinguish which binding partner cMyBP-C
interacts with to inhibit actomyosin interactions will be critical.
We note, finally, that cMyBP-C phosphorylation in response to
beta-adrenergic stimulation leads to enhanced cardiac contrac-
tility (53). Serine phosphorylation in cMyBP-C’s M-domain by a
host of kinases reduces the affinity of the N terminus for actin (15)
and myosin (7). Therefore, modulation of cMyBP-C’s binding
capacity by phosphorylation may add a measure of tunability
to cMyBP-C’s regulation of cardiac contractility in response to
physiological stress.

Materials and Methods
Detailed methods are provided in SI Materials and Methods and sum-
marized here.

Proteins. F-actin was purified from chicken pectoralis muscle (54) and native
thin filaments from porcine cardiac muscle (55, 56). Bovine cardiac tropo-
myosin and troponin were produced as previously described (57). cMyBP-C
N-terminal fragments C0C1f (1–269), C0C2 (1–448), and C0C3 (1–539) were
bacterially expressed as described previously (27). For the motility assays,
myosin (58) and native thin filaments (59) (with modifications described in SI
Materials and Methods) were freshly isolated from mouse hearts.

Electron Microscopy. Native thin filaments, or F-actin preincubated with
tropomyosin and troponin (60), were mixed with varying ratios of C0C1f and
C0C2 under different buffer conditions used in previous thin filament
studies (27, 36, 37, 60). Five-microliter aliquots were applied to EM grids
coated with thin carbon and negatively stained with 1% (wt/vol) uranyl
acetate. Dried grids were observed in a Philips CM120 electron microscope
(FEI) and low-dose images acquired at a pixel size of 0.35 nm, using a 2K × 2K
CCD camera (F224HD, TVIPS GmbH).

3D Reconstruction. Thin filaments were unbent using ImageJ and selected
regions converted to SPIDER format and cut into segments in SPIDER (v11.2;
Wadsworth Center). Iterative helical real-space reconstruction was carried out
using SPIDER (38, 61), with F-actin as an initial reference model. UCSF Chimera
(62) was used for visualization, analysis, and atomic fitting of 3D volumes.

In Vitro Motility. In vitro motility assays were performed on the surface of a
nitrocellulose-coated flow cell, and the motion of actin filaments was ob-
served by epifluorescence microscopy, as previously described (63).
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