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Loading drugs into carriers such as liposomes can increase the
therapeutic ratio by reducing drug concentrations in normal
tissues and raising their concentrations in tumors. Although this
strategy has proven advantageous in certain circumstances, many
drugs are highly hydrophobic and nonionizable and cannot be
loaded into liposomes through conventional means. We hypoth-
esized that such drugs could be actively loaded into liposomes by
encapsulating them into specially designed cyclodextrins. To test
this hypothesis, two hydrophobic drugs that had failed phase II
clinical trials because of excess toxicity at deliverable doses were
evaluated. In both cases, the drugs could be remotely loaded into
liposomes after their encapsulation (preloading) into cyclodextrins
and administered to mice at higher doses and with greater efficacy
than possible with the free drugs.
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There is currently wide interest in the development of nano-
particles for drug delivery (1–7). This area of research is

particularly relevant to cancer drugs, wherein the therapeutic
ratio (dose required for effectiveness to dose causing toxicity) is
often low. Nanoparticles carrying drugs can increase this thera-
peutic ratio over that achieved with the free drug through several
mechanisms. In particular, drugs delivered by nanoparticles are
thought to selectively enhance the concentration of the drugs in
tumors as a result of the enhanced permeability and retention
(EPR) effect (8–18). The enhanced permeability results from
a leaky tumor vascular system, whereas the enhanced retention
results from the disorganized lymphatic system that is charac-
teristic of malignant tumors.
Much current work in this field is devoted to designing novel

materials for nanoparticle generation. This new generation of
nanoparticles can carry drugs—particularly those that are in-
soluble in aqueous medium—that are difficult to incorporate
into conventional nanoparticles such as liposomes. However, the
older generation of nanoparticles has a major practical advan-
tage in that they have been extensively tested in humans and
approved by regulatory agencies such as the Food and Drug
Administration in the United States and the European Medi-
cines Agency in Europe. Unfortunately, many drugs cannot be
easily or effectively loaded into liposomes, thereby compromis-
ing their general use.
In general, liposomal drug loading is achieved by either pas-

sive or active methods (9, 19–22). Passive loading involves dis-
solution of dried lipid films in aqueous solutions containing the
drug of interest. This approach can only be used for water-sol-
uble drugs, and the efficiency of loading is often low. In contrast,
active loading can be extremely efficient, resulting in high in-
traliposomal concentrations and minimal wastage of precious
chemotherapeutic agents (9, 23, 24). In active loading, drug in-
ternalization into preformed liposomes is typically driven by a
transmembrane pH gradient. The pH outside the liposome allows
some of the drug to exist in an unionized form, able to migrate
across the lipid bilayer. Once inside the liposome, the drug
becomes ionized due to the differing pH and becomes trapped
there (Fig. 1A). Many reports have emphasized the dependence
of liposome loading on the nature of the transmembrane pH

gradient, membrane–water partitioning, internal buffering capacity,
aqueous solubility of the drug, lipid composition, and other factors
(25–28). As described in a recent model (28), the aqueous solubility
of the drug is one of the requirements for efficient active loading.
Another key element for the success of remote loading is the
presence of weakly basic functional groups on the small molecule.
Only a small fraction of chemotherapeutic agents possesses

the features required for active loading with established techni-
ques. Attempts at active loading of such nonionizable drugs into
preformed liposomes result in poor loading efficiencies (Fig.
1B). One potential solution to this problem is the addition of
weakly basic functional groups to otherwise unloadable drugs, an
addition that would provide the charge necessary to drive these
drugs across the pH gradient. However, covalent modification of
drugs often alters their biological and chemical properties, and is
not desirable in many circumstances. We therefore attempted to
develop a general strategy that would allow loading of unmodified
hydrophobic chemotherapeutics devoid of weakly basic func-
tional groups. For this purpose, we used modified β-cyclodextrins
to facilitate the loading of such drugs into liposomes (Fig. 1C).
Cyclodextrins are a family of cyclic sugars that are commonly

used to solubilize hydrophobic drugs (29–32). They possess a
hydrophobic cavity and a hydrophilic surface and are known to
stably encapsulate a large variety of hydrophobic organic mole-
cules in aqueous media. Cyclodextrins bind to their cargos strongly
enough to form relatively stable complexes, but allow a slow efflux
of the entrapped drug and consequent steady concentrations of
free drug once administered in vivo (33, 34). Cyclodextrins are
nontoxic and biologically inert, and several have been approved
for use in humans (35–38).
In this work, we synthesized cyclodextrins with multiple weakly

basic or weakly acidic functional groups on their solvent-exposed
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surfaces. We hypothesized that these modified cyclodextrins
would still be able to encapsulate chemotherapeutic agents and
that the cyclodextrin–drug complexes could then be remotely
loaded into liposomes using pH gradients that exploited ionizable
groups on the cyclodextrins rather than on the drugs themselves.

Results
Chemically Modified β-Cyclodextrins Can Be Remotely Loaded into
Liposomes. We first designed and synthesized a set of modified
cyclodextrins bearing ionizable groups at their 6′ position (Scheme
S1). In analogs II–V, the 6′ primary hydroxyl moiety was modified
to an amino group, an ethylenediamino group, or a fluorescent
version of either, whereas analog VIII involved introduction of
a succinyl group in that position. The rest of the analogs (VI,
VII, and IX) had all seven primary hydroxyls replaced by amino,
ethylenediamino, or succinyl moieties. All analogs were purified
by HPLC and characterized by MS and NMR spectra. Appro-
priate negative controls were synthesized by introducing similarly
sized chemical modifications not containing ionizable groups.
We then tested two fluorescent (dansylated) cyclodextrins

(compounds IV and V) for their ability to be loaded into lip-
osomes. The liposomes were generated by hydrating lipid films
with 200 mM citrate buffer, so that their internal pH was 4.0.
These liposomes were then dialyzed in PBS (pH 7.4) to remove
the citrate from outside the liposomes and incubated at 65 °C
for 1 h with cyclodextrins that had been dissolved in PBS. As a
control, PBS-loaded liposomes were generated by rehydration
of the lipid film with PBS instead of citrate. The incubation at
relatively high temperature (65 °C) enhanced the fluidity of the
lipid bilayer, thus allowing the cyclodextrins to cross it. The sus-
pensions were then dialyzed overnight in PBS to remove cyclo-
dextrins that had not been incorporated into liposomes, and
analyzed for dansyl fluorescence. These experiments showed
that >90% of each of these cyclodextrins were entrapped in the
liposomes (example in Fig. 2A and Fig. S1). In the absence of

a pH gradient, there was little incorporation of the same com-
pounds into the liposomes (Fig. 2A). Light scattering showed
that the preformed “empty” liposomes had a mean diameter of
98 nm with a narrow polydispersity index (PDI) (<0.10) (Fig.
2B). Incorporation of the cyclodextrins just slightly increased the
mean diameter to 105 nm, without changing the PDI (Fig. 2B).
Cryo-transmission electron microscopy revealed that the struc-
ture of the liposomes following incorporation of cyclodextrins
was unchanged except for an increased density within the lip-
osomes, presumably reflecting the high concentration of cyclo-
dextrins within them (Fig. 2C). In contrast, cyclodextrins incubated
with control, PBS-containing liposomes with no transmembrane
pH gradient resulted in irregularly shaped, large vesicles, with no
evidence of cyclodextrin incorporation within them (Fig. 2D).
The change in shape observed with the control liposomes was
presumably due to association of cyclodextrins with the lipid
bilayer, leading to destabilization and “bloating” of the liposomal
structure.

Chemically Modified β-Cyclodextrins Can Encapsulate Small Hydrophobic
Compounds and Ferry Them into Liposomes. We then used organic
dyes (coumarins) to determine whether the modified cyclodextrins
could encapsulate and transport hydrophobic compounds across
the liposome bilayer. Coumarins are very hydrophobic, and a
dramatic improvement in aqueous solubility was observed after
they were encapsulated into 6′-monoethylenediamino-6′-deoxy-
cyclodextrin (compound III). We found that the most efficient
and convenient way to encapsulate the coumarins was by freeze
drying (39, 40). The solubility of the coumarins increased at least
10- to 20-fold (from 100 μg/mL to 1–2 mg/mL) through this pro-
cedure. Once dissolved, the cyclodextrin–coumarin complexes
were incubated with preformed liposomes exactly as described
above, using a pH gradient to drive the compounds across the
bilayer. Following overnight dialysis to remove unincorporated
complexes, the liposomes were subsequently disrupted with meth-
anol and the coumarin fluorescence was measured. As shown by
fluorescence spectroscopy, all cyclodextrin–dye complexes were
incorporated into liposomes with high efficiency (>95%; Fig. 3).
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Fig. 1. Schematic representation of active loading of a liposome. (A) Re-
mote loading of an ionizable hydrophilic drug using a transmembrane pH
results in efficient incorporation. (B) A poorly soluble hydrophobic drug
results in meager incorporation into preformed liposomes under similar
conditions. (C) Encapsulation of a poorly soluble drug into an ionizable cy-
clodextrin (R = H, ionizable alkyl or aryl groups) enhances its water solubility
and permits efficient liposomal loading via a pH gradient.
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Fig. 2. Active loading of modified β-cyclodextrin using a transmembrane
pH gradient. (A) Fluorescence of β-cyclodextrin V in relative fluorescence
units loaded into liposomes with a pH gradient (citrate liposomes) compared
with that of the same compound loaded into liposomes in the absence of
a pH gradient (PBS liposomes). (B) Dynamic light-scattering measurements
show a marginal increase in hydrodynamic radius but no change in the
PDI of liposomes remotely loaded with cyclodextrin V. (C and D) Cryo-
transmission electron microscopy images of dansylated β-cyclodextrin V
loaded with a pH gradient (C) (citrate liposomes) or without a pH gradient
(D) (PBS liposomes).
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To ascertain that this highly efficient loading was indeed due to
active transportation of the complex across the lipid membrane
and not due to enhanced water solubility only, we evaluated the
loading efficiencies of coumarin 314 in the absence of cyclo-
dextrins and found it to be poorly incorporated into liposomes
under the identical conditions (Fig. S2). Importantly, coumarin
314 encapsulated in unionizable native β-cyclodextrin only mar-
ginally improved the loading efficiency, despite substantially in-
creased aqueous solubility of the dye. The incorporation of
coumarin dyes into liposomes was easily discerned by the naked
eye: The coumarin–cyclodextrin liposomes were bright yellow,
whereas control liposomes (made without cyclodextrins, for ex-
ample) were colorless (Fig. 3 A–C).

Chemotherapeutic Agents Can Be Loaded into Liposomes After
Cyclodextrin Encapsulation. We next investigated the ability of
these amino-functionalized cyclodextrins to engender a lipo-
somal formulation of BI-2536 (Fig. S3). BI-2536, developed by
Boehringer Ingelheim, is a highly selective inhibitor of polo-like
kinase-1 (PLK1), an enzyme required for the proper execution
of mitosis (41–43). It has been shown that BI-2536 has potent
tumoricidal activity against cancer cells, particularly those
harboring mutations in TP53 (44–47). BI-2536 was the subject of
several clinical trials in patients with cancers of the lung, breast,
ovaries, and uterus (48–53). Although it showed evidence of
efficacy in cancer patients, its development was abandoned after
phase II trials revealed unacceptable toxicity (grade 4 neutropenia)
at subtherapeutic doses.
We found that aminated cyclodextrins VI and VII dramati-

cally improved the aqueous solubility of BI-2536. As with the
coumarins, we were able to reproducibly load the BI-2536 com-
plexes into liposomes using compound VI, achieving stable aqueous
solutions containing 10 mg/mL of drug. By comparison, the maxi-
mum aqueous solubility of free BI-2536 was determined to be
0.5 mg/mL. To assess the activity of cyclodextrin-encapsulated,
liposomal (CYCL) forms of BI-2536, we assessed their effects in
nude mice bearing s.c. xenografts of human HCT116 colorectal
cancer cells. Three weeks after HCT116 cells were s.c. injected
into the mice they were treated with empty liposomes, free BI-2536,
or CYCL-BI-2536. At the initiation of treatment, the tumors were

already relatively large, averaging ∼300 mm3 and more closely
mimicking clinical situations than small tumors. Severe acute tox-
icity was evident when the free drug was administered intravenously
(i.v.) at 125 mg/kg: The mice became lethargic within minutes,
their eyes turned glassy, they exhibited ruffled fur, and died a few
hours later (Fig. 4A). Mice treated with a slightly lower dose of
free BI-2536 (100 mg/kg) were somewhat lethargic immediately
after drug administration, but survived. However, delayed tox-
icity, manifest as a drastic decrease in peripheral WBCs, was
evident within 24–36 h after free drug administration. This type
of toxicity was identical to that observed in human clinical trials
(53–55). Although toxic to bone marrow, the free BI-2536 was
able to induce a significant antitumor response, slowing tumor
growth by ∼30% after two doses at its maximum tolerated dose
(MTD) (Fig. 4B). This efficacy was previously observed in other
murine models (41, 47, 56–59), and provided the rationale for
the clinical trials.
CYCL-BI-2536 proved far superior to the free form, with re-

spect to both toxicity and efficacy. CYCL-BI-2536, even at a dose
of 500 mg/kg, did not cause any noticeable adverse reactions; this
dose was fourfold higher than the dose of free drug, which killed
every animal (Fig. 4A). At a dose of 100 mg/kg (equivalent to the
MTD of the free drug), CYCL-BI-2536 induced a significantly
improved tumor response, slowing tumor growth by nearly 80%
after only two doses (Fig. 4B). At a dose of 400 mg/kg, CYCL-
BI-2536 resulted not only in slower growth but also in partial
regressions of tumors (Fig. 4B). The equivalent dose of free
CYCL-BI-2536 could not be administered, because the mice
could not survive a dose even close to this amount (Fig. 4A).
Moreover, relatively little bone marrow toxicity resulted from
treatment with CYCL-BI-2536, as the WBC decrease was much
less and did not pose a risk to the animals (Fig. 4C). Finally, we
found that CYCL-BI-2536 had much greater efficacy than the
free drug against a second human colorectal cancer model
(HCT116 cells with genetically inactivated TP53 alleles). In both
cases, significant regressions were observed with the CYCL form
of the drug, but not with free drug.
To establish biodistribution and pharmacokinetics of the

CYCL liposomes, we used liposomes loaded with coumarin 334
encapsulated in cyclodextrin VI and treated HCT116-bearing
mice by i.v. injection. Samples from major tissues harvested at 2,
24, and 48 h posttreatment were analyzed for their fluorescence.
As expected, coumarin 334 was cleared from most of the tissues
examined at 48 h after treatment. Importantly, the agent en-
capsulated in liposomes persisted in the blood and tumor, which
is consistent with the typical pharmacokinetics of PEGylated
liposomes (Fig. S4).
We then compared our cyclodextrin-based loading method with

the most common approaches to entrapping hydrophobic and
insoluble agents in liposomes. First, we attempted to directly
entrap BI-2536 in the lipid bilayer. BI-2536 was coevaporated with
hydrogenated egg phosphatidylcholine–cholesterol–1,2-distearoyl-
sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene
glycol)-2000] to prepare a thin film, which was subsequently
hydrated with 1 mL PBS and extruded through a 100-nm poly-
carbonate membrane at 700 psi to prepare small, unilamellar
vesicles [average particle size (Zavg) 126 nm; PDI 0.09]. Upon
overnight dialysis against PBS to remove unentrapped drug, the
drug-containing liposomes rapidly swelled (Zavg 539 nm; PDI
0.49) and released nearly 90% of the entrapped drug. Second,
we hydrated the lipid film with an aqueous formulation of BI-2536
(passive loading). Hydration of the lipid film, followed by ex-
trusion and dialyses, led to stable liposomes. However, the en-
capsulation efficiency was <10%, 20-fold less than achievable
with our modified cyclodextrins.
To determine whether other hydrophobic drugs could be en-

capsulated using our approach, we evaluated PD-0325901 (Fig. S3)
(60, 61), a mitogen-activated protein kinase kinase 1 (MEK1)
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inhibitor developed by Pfizer that was abandoned because it
caused retinal vein occlusion in phase II trials (62–64). We tested

aminated (Scheme S1, compounds VI and VII) as well as suc-
cinylated (Scheme S1, compounds VIII and IX) cyclodextrins
for their ability to encapsulate PD-0325901 and load them into
acidic or basic liposomes, respectively. The free drug was ex-
ceedingly insoluble (0.1 mg/mL in water), and its solubility in-
creased by nearly 40-fold after encapsulation into cyclodextrins.
The best liposome loading was achieved with succinylated cy-
clodextrin IX, and this formulation was tested in animals bearing
human tumor xenografts as described for BI-2536 above. As with
BI-2536, we were able to reproducibly load the PD-0325901
complexes into liposomes, achieving stable solutions containing
5 mg/mL of drug. To assess the activity of CYCL forms of
PD-0325901, we examined their effects in the RKO xenograft
model. With the free drug, severe acute toxicity was evident. In
previous studies, the free drug was administered by oral gavage,
because its solubility is not sufficient for i.v. dosing. After oral
gavage at 200 mg/kg, the treated animals were lethargic within
minutes and over the next few hours they appeared hunched,
always dying within 24 h (Fig. 5A). Mice treated with a slightly
lower dose of free PD-0325901 (150 mg/kg) exhibited similar
symptoms immediately after dosing but recovered over 24 h.
However, a single dose of free PD-0325901 was unable to induce
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a dramatic antitumor response, slowing tumor growth only by
∼5% (Fig. 5B). This result was consistent with those previously
reported in other murine models; higher efficacy of the free
drug required multiple doses.
CYCL-PD-0325901 proved far superior to the free drug. Even

at a dose of 500 mg/kg, CYCL-PD-0325901 did not cause any
noticeable adverse reactions; this dose was 2.5-fold higher than
the dose of free drug that killed every animal (Fig. 5A). At a
single dose of 250 mg/kg, CYCL-PD-0325901 resulted not only
in slower growth but also in partial regressions of tumors (Fig.
5B). Finally, we evaluated CYCL-PD-0325901 against the two
other human colorectal cancer models (HCT116 and its isogenic
counterpart with genetically inactivated TP53 alleles) and simi-
larly observed higher efficacy and lower toxicity compared with
the free drug (Fig. S5).

Discussion
The results described above suggest a general strategy for load-
ing hydrophobic drugs into liposomes. This strategy employs
modified cyclodextrins with ionizable groups on their external
surfaces (Scheme S1). The “pockets” of these cyclodextrins can
encapsulate hydrophobic drugs and ferry them across the bi-
layer membrane of conventional liposomes using simple pH
gradients. We have successfully encapsulated several types of
compounds into the modified cyclodextrins, including coumarin
dyes and drugs of potential clinical importance (Figs. 2–5). This
incorporation not only dramatically increased the aqueous solu-
bility of all these compounds but also allowed them to be remotely
loaded into liposomes. And, most importantly, the loaded lip-
osomes exhibited substantially less toxicity (Fig. 4) and greater
activity (Figs. 4 and 5) when tested in mouse models of cancer.
Previous attempts to combine cyclodextrin inclusion complexes

with liposomes were limited to passive loading of insoluble drugs
(65–71) or active loading of soluble drugs (72). Passive loading
often leads to undesirable membrane incorporation, lowering
liposome stability, and is much less efficient than active loading.
For example, the drug:lipid ratios achieved through the unique
approach described here ranged from 0.4 to 0.6, which is more

than 1,000-fold higher than the drug:lipid ratios commonly
achieved through passive loading (65–69, 72).
Because many of the most promising drugs developed today

and in the past are relatively insoluble, the approach described
here may be broadly applicable. It not only increases water
solubility but also enhances the selectivity of drug delivery to
tumors through an EPR effect, as noted in the introduction.
The experiments with BI-2536 provide a striking example of the
benefits of these attributes—simultaneously increasing solubility
and selective tumor delivery, resulting in less toxicity and higher
efficacy. Our strategy therefore has the capacity to “rescue” drugs
that fail at one of the last steps in the laborious and expensive
process of drug development, allowing administration at higher
doses and with less toxicity than otherwise obtainable.
Although we believe our strategy can be applied to many in-

soluble compounds, we caution that it cannot be applied to all.
Previous experiments with unmodified β-cyclodextrins have shown
broad, but not universal, potential for encapsulation of hydro-
phobic compounds (29, 35, 36). However, other forms of cyclo-
dextrins, such as α- or γ-forms, have pockets of different sizes, in
theory affording encapsulation of additional compounds. More-
over, the basic idea proposed here—the use of weakly ionizable
groups on carriers to remotely load hydrophobic compounds—
could be extended to excipients other than cyclodextrins.

Materials and Methods
Detailed descriptions of the materials and methods used in the synthesis of
ionizable cyclodextrins as well as preparation of liposomes for active and
passive loading are provided in SI Materials and Methods. Preparation and
loading of encapsulated complexes and in vivo evaluation performed with
them are described in detail in this section. Other techniques used in this
work can also be found in SI Materials and Methods.
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