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Prediction error signals enable us to learn through experience.
These experiences include economic choices between different
rewards that vary along multiple dimensions. Therefore, an ideal
way to reinforce economic choice is to encode a prediction error
that reflects the subjective value integrated across these reward
dimensions. Previous studies demonstrated that dopamine pre-
diction error responses reflect the value of singular reward attri-
butes that include magnitude, probability, and delay. Obviously,
preferences between rewards that vary along one dimension are
completely determined by the manipulated variable. However, it
is unknown whether dopamine prediction error responses reflect
the subjective value integrated from different reward dimensions.
Here, we measured the preferences between rewards that varied
along multiple dimensions, and as such could not be ranked
according to objective metrics. Monkeys chose between rewards
that differed in amount, risk, and type. Because their choices were
complete and transitive, the monkeys chose “as if” they integrated
different rewards and attributes into a common scale of value. The
prediction error responses of single dopamine neurons reflected
the integrated subjective value inferred from the choices, rather
than the singular reward attributes. Specifically, amount, risk, and
reward type modulated dopamine responses exactly to the extent
that they influenced economic choices, even when rewards were
vastly different, such as liquid and food. This prediction error re-
sponse could provide a direct updating signal for economic values.
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Prediction errors represent the difference between predicted
and realized outcomes. As such they are an ideal way to learn
through everyday experiences (1). These experiences include
making value-based (economic) choices between different re-
wards and evaluating the outcome of such decisions. Some of the
most common economic decisions we face are between rewards
that lack a common quality for comparison. To facilitate con-
sistent choices between them, such rewards should be evaluated
on a common scale of value (2—4). Thus, an ideal way to facilitate
and reinforce economic decisions is to encode the prediction
error directly in terms of subjective value. Midbrain dopamine
neurons encode a reward prediction error (5-7) that is sufficient
to cause learning (8, 9). These neurons receive inputs from
several brain areas that encode subjective value and project axons
to every brain structure implicated in economic choice (10-21).
Therefore, dopamine neurons are ideally positioned to broadcast
a teaching signal that directly updates economic values.
Economic preferences between alternatives that vary in one
attribute are easily determined by the magnitude of the attribute
(22). For instance, larger rewards are preferred over smaller
ones, high reward probability is preferred over low reward prob-
ability, and reward delivered after a short delay is preferred over
the same reward delivered after a long delay. Subjective prefer-
ences can only be isolated from the underlying reward attributes
for rewards that vary in more than one dimension. Although
previous studies showed that dopamine responses reflected mag-
nitude, probability, and delay (23-25), it remained unclear how
dopamine responses would reflect individuals’ subjective preferences
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among rewards that vary along multiple dimensions. These rewards
cannot be ordered according to objective metrics; rather, the
subjective rankings of such rewards can only be inferred by ob-
serving an individual’s choices (26). If those choices are complete
and transitive, then the individual behaved as if she was maxi-
mizing subjective value (26). Completeness demonstrates that
the individual had preferences (or was indifferent) between all of
the rewards, whereas the transitive property provides strong
evidence that different reward attributes were integrated onto
a common scale, and that choices were made by selecting the
highest rank on that scale (27). Therefore, the activity of neurons
that encode subjective value should reflect the transitive order-
ing of rewards that vary in more than one attribute.

Here, we varied the amount, risk, and type of rewards and
used different behavioral economic paradigms to infer the sub-
jective value of these rewards from monkeys’ choices. These tests
provided a means to quantify the influence of singular reward
attributes on a common value scale. In close correspondence to
the behaviorally defined reward value, the dopamine prediction er-
ror response reflected the integrated subjective value derived from
different rewards rather than distinguishing between their attributes.

Results

Behavioral Measurement of Value. We measured subjective value
by observing the choices two monkeys made between different
reward predicting cues (Fig. 14, Fig. S14, and Methods). Each
cue predicted black currant juice (juice 1), strawberry juice (juice
2; orange juice for monkey B), or an equiprobable (P = 0.5 each)
gamble between juices 1 and 2 (Fig. 1B). Moreover, each cue
predicted either a certain amount of juice (0.45 mL) or an
equiprobable gamble between a small and large amount (0.3 or
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Fig. 1. Monkeys choose as if they are maximizing economic value gained
from rewards. (A) Binary choice task. From left to right: the animal fixated on
a spot to start the trial, chose one of two cues, and received the chosen reward.
(B) Six cues predicting varying juice type and risk (R, risky magnitude: equi-
probable gamble between 0.3 or 0.6 mL; S, safe magnitude, 0.45 mL; green,
juice 1, blue, juice 2; red, equiprobable gamble between juice 1 and 2). (C)
Choice probabilities in monkey A. Each plot indicates the probability of
choosing the test cue (shown on the top of the plot) over alternative cues
(other five cues used in the experiment). For display purpose, cues were ordered
according to the overall probability with which they were selected. See Fig. S18
for monkey B. (D, Left) An example of choice probabilities across three cues that
satisfies weak stochastic transitivity. (D, Right) An example of choice probabil-
ities across three different cues that satisfies weak and strong stochastic tran-
sitivity. See Table S1 for all cue combinations. (E) The preference order of cues
in both monkeys. < indicates choice probabilities significantly greater than 0.5
(P < 0.01), suggesting choice preference. ~ corresponds to choice probabilities
not statistically different from 0.5 (P > 0.01), suggesting choice indifference. (F)
Correlations between observed and predicted choice probabilities (S/ Methods).
(G) PEST followed the same task sequence as the choice task shown in A. Over
consecutive trials, animals chose between one of the cues and a “currency cue”
that explicitly indicated a specific amount of black currant juice that varied trial
by trial. The procedure terminated when the animal was indifferent between
the two options. For a full description see Fig. S2 and Methods. (H) Indifference
points indicating subjective values for each cue in units of black currant juice
(averages from 25 and 40 PEST measurements per cue in monkey A and B,
respectively). Error bars indicate SEM. (/) Choice probabilities measured in the
binary choice task as a function of the estimated numerical value acquired
through PEST. Data are combined from both animals and include all choices.

0.6 mL). Thus, in this experiment we used the combination of the
animals’ preference for different juices and risk levels to elicit
a range of values in reward-predicting cues. The resulting choice
ratios demonstrated that the animals had a clear bias in their
selection probabilities and thus preferred some combinations of
reward attributes over others (Fig. 1C and Fig. S1B for monkey B).
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To infer economic value from choice probability, the choices
must be complete and transitive (26-28). We had imposed nominal
completeness by offering the animals choices between all pairs of
cues. To measure actual completeness for all pairs of options
a and b, we tested how close the choice behavior approached
the ideal choice behavior defined by P(a,b) + P(b,a) = 1, where
P(a,b) indicates the probability of choosing option a over b (28).
We found that the animals’ average error rates in making a
successful choice for a given pair of cues was 1% for all pairs.
Importantly, none of the error rates was statistically different from
the others (P > 0.05, ANOVA). Thus, both animals expressed
well-defined preferences between all possible pairs of cues. Next,
we quantified the transitivity of their choices. Stochastic transitivity
comes in two strengths: weak and strong (SI Methods), and both
strive to establish consistency among different binary choices (26).
Thus, for options a, b, and c, if the individual probabilistically
selects a over b, and b over ¢, she should then probabilistically
select a over c. If P(a,) is greater than 50%, then the choices
satisfy weak stochastic transitivity (Fig. 1D, Left). When P(a,c) is
greater than or equal to the maximum of P(a,b) and P(b,c), then
the choices satisfy both the weak and the strong axioms (Fig. 1D,
Right). The choices of both monkeys satisfied the weak axiom of
stochastic transitivity in all 20 three-cue combinations ordered
according to the animals’ probabilistic choices (cue a over b, and
cue b over ¢), and the strong axiom in 15 of 20 and 14 of 20
combinations, respectively (Table S1). Satisfying completeness and
transitivity established that the animals’ choices were consistent
with an ordinal ranking of the cues explained by a monotonic,
weakly increasing value function.

Monkey A preferred juice 1 over juice 2 and was risk-neutral.
Monkey B preferred juice 1 over juice 2 but also preferred risky
over safe options. Both animals associated the six cues with three
levels of subjective value, although with different ordering in each
animal. As such, although they preferred some of the cues to
others, they showed choice indifference among some pairs of cues
(Fig. 1E; P < 0.01, binomial test). Both animals showed stable
behavior in their valuation over multiple sessions of testing (Fig.
S1C). Moreover, the saccadic response times showed weak inverse
relationship with the subjective value of the chosen cue (Fig. S1D).

To determine whether the animals assigned menu-invariant
values to each cue, we examined the relationship between the
strength of the stochastic preferences (27). We predicted the
probability of choosing cue a over ¢ from the observed proba-
bilities of choosing cue a over b and cue b over ¢ and then
compared the predicted with the observed probability of choosing
cue a over ¢ in each combination (SI Methods). The predicted and
observed choice probabilities were highly correlated (Fig. 1F;
p = 0.68 and 0.82, P < 0.01 for monkeys A and B, respectively,
Pearson’s correlation). These results suggest that when making
a choice between rewards the animals assigned stable and menu-
invariant values to options and probabilistically selected the option
with the highest value on that scale.

Because any monotonically increasing utility function would
be consistent with the measured value rankings, these tests did
not reveal numerical values. However, a numerical scale is vital
to quantify the influences of individual reward properties on
common scale value and provides a measure for analyzing neu-
ronal data. To obtain such a scale, we used a psychometric choice
method, parameter estimation by sequential testing (PEST) (29,
30). We used black currant juice as a common reference and
measured the amount of this juice that was subjectively equiva-
lent to the value of each cue (Fig. 1G, Fig. S2 4 and B, and
Methods). Therefore, milliliters of black currant juice at choice
indifference provided a numerical estimate of value for each cue
(Fig. 1H and Fig. S2 C and D). The choice probabilities from the
binary choices reflected the values acquired psychometrically,
suggesting that the two methods for measuring economic value
were broadly consistent (Fig. 17). The larger the difference was
between the measured values, the greater was the probability of
choosing the higher-valued option (p = 0.90, P = 0.01 and p =
0.93, P = 0.007 in monkeys A and B, respectively, Pearson’s

Lak et al.


http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321596111/-/DCSupplemental/pnas.201321596SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321596111/-/DCSupplemental/pnas.201321596SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321596111/-/DCSupplemental/pnas.201321596SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321596111/-/DCSupplemental/pnas.201321596SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321596111/-/DCSupplemental/pnas.201321596SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321596111/-/DCSupplemental/pnas.201321596SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321596111/-/DCSupplemental/pnas.201321596SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321596111/-/DCSupplemental/pnas.201321596SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321596111/-/DCSupplemental/pnas.201321596SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321596111/-/DCSupplemental/pnas.201321596SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321596111/-/DCSupplemental/pnas.201321596SI.pdf?targetid=nameddest=ST1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321596111/-/DCSupplemental/pnas.201321596SI.pdf?targetid=nameddest=STXT
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1321596111/-/DCSupplemental/pnas.201321596SI.pdf?targetid=nameddest=SF2
www.pnas.org/cgi/doi/10.1073/pnas.1321596111

L T

/

1\

=y

correlation). These converging behavioral results allowed us to
define the value of the reward-predicting cues on a common scale
and in a convenient currency (milliliters of black currant juice).

Cue Responses. To unambiguously relate the neuronal responses
to the value of specific rewards, we recorded from single dopa-
mine neurons in a task in which the reward-predicting cues were
displayed individually. Of 80 dopamine neurons tested with dif-
ferent risks and juice types, 77 responded to unpredicted reward
and were further analyzed (Figs. S3 and S4 and Methods). Each
trial started with a central fixation point (FP), to which the an-
imal shifted its gaze. Subsequently, one of the six cues appeared
in the center of the monitor for 1.5 s and extinguished upon
reward delivery (Fig. 24 and SI Methods). Because the intertrial
interval (ITI) duration was random and the animals could not
predict trial onset, the reward prediction during the ITI was close
to zero, whereas the value at the FP was the average value of all trial
types. Thus, the prediction error at the FP was the constant differ-
ence between the average value of all trial types and the prediction
of zero. When one of the cues appeared, the prediction shifted from
the average value at the FP to the specific value at the cue.
Dopamine neurons displayed identical phasic activations at FP
onset in all trial types that reflected the uniform prediction error
at the FP (Fig. 2B and Fig. S5, P > 0.2, one-way ANOVA across
trial types in both monkeys; see SI Results for saccadic response
times to FP). Onset of the cue coincided with a robust dopamine
response that reflected the value predicted by the cue. Cues with
the lowest values elicited substantial neuronal depressions (Fig.
2C, Left), whereas cues with highest values induced pronounced
activations (Fig. 2C, Right). Importantly, cues with similar values
elicited indistinguishable neuronal responses, despite predicting
rewards with different attributes (Fig. 2C and Fig. S64). This
pattern of neuronal activity was clearly visible at the population
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level (Fig. 2D and Fig. S64). The dopamine neurons did not
encode the objective properties of the upcoming reward (Fig.
2D, Inset and Fig. S6B). These observations suggested a close
relationship between the neuronal encoding and the behavioral
manifestation of subjective value.

We quantified the prediction error using the numerical esti-
mation of the economic value in milliliters of black currant juice
(Fig. 1F). For example, the size of the prediction error with
the most preferred cue was 0.14 mL of black-currant juice
(0.56 mL — 0.45 mL, Fig. 24). The neuronal responses to cues
were highly correlated with the numerical values (Fig. 2E). Cues
eliciting a negative prediction error in value resulted in graded
depressions, whereas cues eliciting a positive prediction error
induced graded activations in dopamine neurons. This positive
relationship with the prediction error in economic value was
significant in two thirds of single neurons (Fig. 2F; P < 0.05,
linear regression) and in the population of all sampled neurons
in both animals (Fig. 2G; R* = 0.27 and 0.28, respectively, P <
0.0001). Other factors that might influence the activity of do-
pamine neurons include reinforcement history (7, 31) and moti-
vational decline owing to satiety effects (32). However, the neuronal
recordings took place after the animals were highly trained in
a stable environment, and thus learning should be minimal.
Accordingly, cues and rewards presented in the previous trials
had negligible effects on the neuronal responses (Fig. S7 A-D
and SI Results). Moreover, rewards accumulated over a session
had only a small effect on the behavioral performance and on the
neuronal responses to FP in monkey B (Fig. S7E, P = 0.001 and
P =0.008 for behavior and neurons, respectively, linear regression).
Thus, the neuronal prediction error responses to the cues reflected
the subjective value of the predicted reward.

In four trial types, juice type and risk varied orthogonally. We
used receiver operating characteristics (ROC) analysis to quantify

Fig. 2. The dopamine response encodes a pre-
diction error in economic value. (A) Neuronal re-
cording task and schematic representation of pre-
diction errors during a trial. Following successful
fixation for 0.5 s, one of the six cues was presented.
Rewards ocurred 1.5 s after cue onset. (B) Responses
of single dopamine neuron from monkey A to fix-
ation spot (Upper: peristimulus time histograms
(PSTH); Lower: rastergrams). These responses were
“ identical regardless of trial type (Fig. S5). (C) Re-

0.8 sponses of single dopamine neuron shown in B to
cue onset (Upper: cues and rastergrams; Lower:
PSTH). Solid PSTH corresponds to R (risky) cue;
dashed PSTH represents S (safe) cue. Responses to
cues with the same subjective value are shown in
the same panel. (D) Averaged neuronal population
responses in monkey A. Line and color conventions
are as in C. (Inset) The averaged neuronal pop-
ulation activity for singular reward attributes. The
thick horizontal bar indicates the epoch used in
statistical analysis. Data for monkey B are shown in
Fig. S6. (E) Relationship between example neuron,
shown in C, and numerical estimates of subjective
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value (Fig. 1H). Bars represent change in the firing
rate in epoch indicated in Fig. 2C. Red line indicates
average subjective values. Error bars are SEM across
trials (black) and PEST measurements (red). (F) Lin-
ear regressions of normalized activities of all neu-
rons (from both animals) onto subjective value
prediction errors. Solid lines indicate regression
slopes significantly different from zero. Nonsignificant
regressions are shown by dotted lines. The purple line
is the regression slope of the example neuron shown
in C. (G) Regression of normalized neuronal pop-
0.15 ulation responses to cues onto subjective value pre-
diction error.
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the effect of these attributes on both the subjective values and the
neuronal response to cues (SI Methods). In monkey A, this anal-
ysis revealed good discrimination between the distributions of
values arising from the different juices but largely overlapping
value distributions arising from different risk levels (Fig. 34, Left;
P < 0.0001 and P > 0.3 for juice type and risk, respectively,
bootstrap test). Correspondingly, the neuronal responses in this
animal were largely sensitive to juice type but not risk (Fig. 34,
Right; P < 0.0001 and P > 0.5 for juice type and risk, respectively,
bootstrap test). In monkey B, the behavioral sensitivity to both
juice type and risk was paralleled by the neuronal sensitivity to
these two attributes (Fig. 3B, Left, behavior: P < 0.0001 and P <
0.008; Fig. 3B, Right, neurons: P < 0.0001 and P < 0.0001 for juice
type and risk, respectively, bootstrap test). ROC analysis of in-
dividual neuronal responses revealed that 63% of all tested neu-
rons reflected the behavioral sensitivity to different reward
attributes in a subject-specific manner (Fig. 3C). This result mir-
rors the 66% of neurons whose activity was significant in single
linear regressions on subjective value (Fig. 2F). Because monkey
A was risk-neutral in the tested gambles, we could not conclude
whether the dopamine responses integrated the preference for
risk. Therefore, we measured risk preference in a different gamble
with higher expected value and higher risk (equiprobable gamble
between 0.1 and 1.2 mL). The subjective value of the gamble was
significantly larger than the subjective value of a safe reward with
equal expected value (P < 0.0001, Wilcoxon signed-rank test).
Accordingly, the cue responses in a subset of five dopamine
neurons were larger for the gamble than for the safe reward and
thus reflected the higher subjective value of risky compared with
safe rewards observed in behavioral tests (Fig. S8, P = 0.0002,
Wilcoxon rank-sum test across trials). Together, these findings
indicate that singular reward attributes modulated dopamine
responses exactly to the extent that they influenced economic
choices. Thus, the majority of dopamine neurons encode sub-
jective value by integrating the behavioral weight of different
reward attributes into a common scale of value.

To investigate whether results presented so far extend beyond
liquid rewards, in a separate set of experiments we measured
preferences between food and juice rewards of varying magnitude
(SI Methods) and then recorded the responses from 20 additional
dopamine neurons to cues that predicted these rewards. Binary
choices among cues were stochastically transitive (in all possible
cue combinations) and revealed that the tested food rewards were
preferred to small juice rewards, but less preferred than large juice
rewards (Fig. 44, P < 0.01, binomial test). Psychometric estima-
tion of the numerical subjective values correlated well with the
binary choices (p = 0.99, P < 0.0001, Pearson’s correlation). Do-
pamine responses scaled with these subjective values, independent
of the identity or physical properties of these rewards, and dem-
onstrated a highly significant positive relationship with prediction
error in economic value in both single neurons (Fig. 4B, 15 of 20
neurons, P < 0.05, linear regression) and the population (Fig. 4C,
R* = 0.45, P < 0.0001, linear regression). Thus, the dopamine
responses reflected the common scale value of rewards with
very different physical properties.

Reward Responses. We next investigated whether the dopamine
responses to rewards reflected the preferences the animal has
over different rewards. We tested this hypothesis by varying type
and amount of the juice rewards, both together and separately.
When there was an equiprobable gamble between amounts (0.3
or 0.6 mL) but juice type was fully predicted, the prediction error
derived only from juice amount. Dopamine neurons showed the
typical positive and negative prediction error responses for juice
amount, independently of juice type (Fig. 54). However, when
neither juice type nor amount was fully predicted, the prediction
error resulted from both attributes. Accordingly, the graded
positive and negative prediction error responses reflected both
juice type and amount (Fig. 5B). This influence of juice type on
prediction error responses was also apparent in the population
responses (Fig. S94, P < 0.0001, bootstrap test) even when juice
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Fig. 3. Dopamine responses reflect the behavioral integration of reward
attributes. (A) Areas under the ROC curve (auROC) for distributions of nu-
merical subjective values (acquired through PEST) and neuronal responses
with orthogonal variations of juice type and risk. An auROC >0.5 indicates
higher subjective value (neuronal response) for preferred juice (compared
with nonpreferred juice) or preferred risk (compared with nonpreferred
risk). Error bars represent SEM across days of behavioral testing and neurons.
(B) As in A for monkey B. (C) Scatter plot of auROC measures of individual
neurons for juice type and risk. For display purpose, only neurons that were
significant in the linear regression (Fig. 2F) are shown. Dotted lines indicate
the 95% bootstrapped confidence intervals estimated using single-cell data.

amount was fully predicted (Fig. S9 B and C, P < 0.0001, Wil-
coxon rank-sum test). Regression of neuronal responses to all
tested rewards onto the prediction errors in economic value was
highly significant in both animals (Fig. 5C, R* = 0.17 and 0.16,
respectively, P < 0.0001). These data demonstrate that the pre-
diction error response at the time of reward encodes the integrated
value derived from reward type and amount. Thus, the reward
responses mirrored the value encoding of the cue responses. As
such they would be an eligible substrate for training economic value.

Discussion

This study investigated the relationship between dopamine pre-
diction error responses and economic value. We demonstrated
that the choices monkeys made among rewards of different types
and different attributes satisfied the fundamental requirements
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Fig. 4. Dopamine responses encode economic values of liquid and food
rewards. (A) The preference order of monkey B among cues predicting dif-
ferent amounts of juice (black currant) or food (mashed mixture of banana,
chocolate, and hazelnut). < and ~ are as in Fig. 1E. (B) Response of single
neuron (from monkey B) to the cues. Line and color conventions are as in A.
(C) As in B for averaged neuronal population responses. (Inset) Regression of
normalized neuronal population responses to cues onto subjective value
prediction errors measured using PEST.
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Fig. 5. Dopamine responses encode the economic value, not the identity or
magnitude, of primary rewards. (A) Prediction error responses to juice amount
when juice type was fully predicted. Rastergrams and PSTHs from the single
neuron shown in Fig. 2. Green and blue PSTHs show responses to preferred and
nonpreferred juice, respectively. (B) Prediction error responses to juice type and
amount, when neither attribute was fully predicted. The same conventions as
in A. Thick horizontal bars in A and B indicate the epoch used in the sub-
sequent statistical analysis. (C) Regression of normalized neuronal population
responses to rewards on common scale prediction errors.

of economic valuation, completeness and transitivity. Monkeys
chose as if they were maximizing value on a common scale that
reflected the integrated value of different reward attributes, such
as amount, risk, and reward type. The dopamine neurons, at the
time of the cues and at the time of the reward itself, encoded the
integrated subjective values rather than changes in the objective
properties of rewards. This coding scheme held not only when
cues predicted different attributes of liquid rewards (amount,
risk, and type) but also when the experiment involved rewards
that were physically very different (liquid versus food). These
neuronal responses paralleled the individual weightings used to
construct value from reward attributes during choices.

We estimated subjective value with two independent techniques:
binary choice that revealed the preferred option probabilistically
over several trials and psychometric measurement of subjective
equivalents that directly estimated the numerical values of the cues
in units of one currency (29, 30). Binary choice is well tested, and
the strong degree of choice transitivity provided a reliable ordi-
nal value ranking of the rewards. The psychometric procedure
provided a direct estimate of numerical value. When an in-
dividual is indifferent between two goods, then by definition
those goods have the same numerical value. Hence, the in-
difference point of the psychometric procedure provided a sim-
ple estimate of numerical value in units of juice volume. The
high degree of correlation (p > 0.90) between the choice prob-
abilities and the numerical value estimates is strong evidence
that our measurements were reliable. Thus, these measures
provided a strong foundation for examining the encoding of
prediction errors in the space of economic value.

We used a nonchoice task for the neuronal recording to attain
the best isolation of prediction errors in value. Multiple lines of
evidence suggest that the value of the cues was stable between
choice (behavioral) and nonchoice (recording) tasks. First, the
animals displayed the same ranking of cues regardless of the type
of choice task (Figs. 17 and 4). Second, the preference of animals
was stable over several days of testing (Fig. S1C). Third, and
most importantly, the values were menu-invariant within the
choice set (Fig. 1F). That is, the value of a cue was independent
of the value of the other options. These results suggest that the
economic values were, to a great extent, stable across time and
behavioral context. The linear regression analysis demonstrated
that the neuronal responses in the nonchoice task reflected the
value function derived from behavioral choices (Figs. 2G and
4C). In other words, if phasic dopamine activity encodes economic
value, then the value represented by dopamine neurons in a non-
choice context is consistent with the values used for choice.
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Brain structures processing subjective value could provide the
input used by dopamine neurons to compute prediction errors.
Anatomical studies in rodents have demonstrated that dopamine
neurons receive inputs from a variety of regions involved in re-
ward processing, including the lateral hypothalamus, the amyg-
dala, and the orbitofrontal cortex (OFC) (20). Neurons in the
lateral hypothalamus code subjective reward value (33) and re-
flect internal states, such as satiety (34). These neurons receive
inputs from the prefrontal cortex (PFC) (35), possibly conveying
subjective value signals to dopamine neurons. Furthermore,
GABAergic neurons of the ventral tegmental area, which di-
rectly inhibit dopamine neurons (36), could signal expected re-
ward (37). Thus, this circuit could relay some of the observed
subjective value signals to dopamine neurons (38, 39).

Given the evidence that dopamine neurons encode economic
value, what role might this activity play in brain function? Do-
pamine neurons project axons to every structure that has been
implicated in economic decision making. These include the stria-
tum, OFC, medial prefrontal cortex, anterior cingulate cortex,
amygdala, and parietal cortex (12). In these structures, dopamine
is released most efficaciously by stimulation with a pattern that
most closely resembles the phasic prediction error responses (40).
The release of dopamine in downstream structures following
valued events will affect the synaptic strength in these structures.
Neurons in the striatum encode action values during economic
choices (14). These signals are likely to be stored and updated
through corticostriatal synapses on the dendrites of medium spiny
neurons (41). Current views suggest that dopamine prediction
error signals might differentially modulate the efficacy of these
synapses in a time-dependent manner via subtypes of dopamine
receptors (42). Accordingly, optogenetic stimulation of striatal
dopamine D1 and D2 receptor-expressing neurons introduce op-
posing biases in the distribution of choices (43, 44). Thus, in this
hypothetical model, the prediction error signal could be used to
update the stored action values and thus affect subsequent choices.

Although dopamine neurons project axons to the prefrontal
cortex, less is known about the role of their prediction error
signal there. Most studies of frontal dopamine function infused
D1 receptor (D1R) agonists and antagonists. These manipu-
lations simulated changes in baseline dopamine levels produced
by tonic dopamine activity, rather than dopamine transients
produced by prediction error responses. Nevertheless, a recent
study has demonstrated that disruption of D1R activity in PFC
results in attenuation of value-based learning of cue-response
contingencies and can lead to noneconomical choice patterns,
such as perseveration (45). Furthermore, dopamine actions seem
to extend beyond learning. D1R-mediated dopamine activity
enhances the suppression of working memory fields in the PFC,
sculpting and sharpening the response of the PFC network for
greater task fidelity (46, 47). Moreover, the optimal dopamine
levels seem to be task-dependent. Higher dopamine levels are
useful for tasks that demand greater fidelity (47). Although do-
pamine neurons do not show enhanced activity during delay
periods (48), the size of the cue-evoked prediction error re-
sponse could function to set the PFC network to its optimal
state, based on the subjective value of the task. Algorithmically,
this would be akin to adjusting the slope of the softmax rule.
Thus, dopamine prediction errors broadcast to the cortex might
contribute to modulating economic behavior.

In summary, dopamine neurons encode prediction errors on
a common scale of values derived from several reward attributes
such as amount, risk, and type of reward. The demonstrated
economic value coding would allow the dopamine signal to play
a simple and rapid role in updating value-based decision mech-
anisms in target structures.

Methods

Animals. The Home Office of the United Kingdom approved all experimental
procedures. Two male monkeys (Macaca mulatta) weighing 13.4 and 13.1 kg
were used in the experiment. Neither animal had been used in any prior study.
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Binary Choice Task. A central fixation spot indicated onset of each trial. After
successful gaze fixation, two randomly drawn cues appeared to the left and right
on the monitor (Figs. 1A and 4A and Fig. S1). The animal had 1 s to indicate
its choice by shifting its gaze to the center of the chosen cue and holding it there
for another 0.5 s. The chosen reward was delivered at offset of the chosen cue.

PEST. PEST was used to measure the amount of black currant juice that was
subjectively equivalent to the different rewards. The rules governing the PEST
procedure were adapted from Luce (30). Each PEST sequence consisted of
several consecutive trials during which one of the cues was presented as
a choice option against the currency cue. The currency cue consisted of
a horizontal bar on a vertical axis (Fig. 1G and Fig. S2A). The height of the
bar was a safe and explicit indicator of the volume of the black currant juice.
The procedure converged by locating currency offers on either side of the
true indifference value. The indifference value was measured by averaging
the last two currency offers. We repeated the PEST procedure several times
for each of the cues, which allowed us to compare the distribution of in-
difference values acquired for each cue (Fig. S2D) and measure the area
under the ROC curve (auROC, Fig. 3).

Identification and Recording of Dopamine Neurons. We recorded the extra-
cellular activity of single dopamine neurons within the substantia nigra and in
the ventral tegmental area. We localized the positions relative to the re-
cording chamber using X-ray imaging and functional properties of surrounding
cell groups (Fig. S3). We identified discharges from putative dopamine neurons
using the following classic criteria: (/) polyphasic initially positive or negative
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waveforms followed by a prolonged positive component, (ii) relatively long
durations (>2.5 ms measured at 100 Hz high-pass filter), and (iii) irregular
firing at low baseline frequencies (fewer than eight spikes per second). Most
neurons that met these criteria showed the typical phasic activation after
unexpected reward (Fig. S4), which was used as a fourth criterion for inclusion.
We did not test the responses of neurons to unexpected aversive stimuli.
However, if any of the dopamine neurons encoded motivational salience, rather
than reward value, they should have responded to unexpected reward (as
a motivationally salient event) and thus have been sampled in our recordings
(49). In total, we recorded 100 neurons and 96 met the criteria listed above and
were used in our data analysis.

Analysis of Neuronal Data. The analysis of neuronal data used defined time
windows that included the major positive and negative response components
following fixation spot onset (100-400 ms), cue onset (80-340 ms and 150-
500 ms in animals A and B, respectively), juice delivery (200-550 ms), and
unexpected juice outside of the task (100-400 ms). Control time windows had
identical durations and preceded immediately each respective task event. For
normalization, in each neuron we divided the neuronal activity in each time
window by the ensemble average activity of the neuron in the control window.
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