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Circadian organization of the mammalian transcriptome is achieved
by rhythmic recruitment of key modifiers of chromatin structure
and transcriptional and translational processes. These rhythmic
processes, together with posttranslational modification, constitute
circadian oscillators in the brain and peripheral tissues, which drive
rhythms in physiology and behavior, including the sleep–wake cycle.
In humans, sleep is normally timed to occur during the biological
night, when body temperature is low and melatonin is synthe-
sized. Desynchrony of sleep–wake timing and other circadian
rhythms, such as occurs in shift work and jet lag, is associated with
disruption of rhythmicity in physiology and endocrinology. How-
ever, to what extent mistimed sleep affects the molecular regula-
tors of circadian rhythmicity remains to be established. Here, we
show that mistimed sleep leads to a reduction of rhythmic tran-
scripts in the human blood transcriptome from 6.4% at baseline to
1.0% during forced desynchrony of sleep and centrally driven cir-
cadian rhythms. Transcripts affected are key regulators of gene
expression, including those associated with chromatin modifica-
tion (methylases and acetylases), transcription (RNA polymerase
II), translation (ribosomal proteins, initiation, and elongation fac-
tors), temperature-regulated transcription (cold inducible RNA-bind-
ing proteins), and core clock genes including CLOCK and ARNTL
(BMAL1). We also estimated the separate contribution of sleep and
circadian rhythmicity and found that the sleep–wake cycle coordi-
nates the timing of transcription and translation in particular. The
data show that mistimed sleep affects molecular processes at the
core of circadian rhythm generation and imply that appropriate
timing of sleep contributes significantly to the overall temporal
organization of the human transcriptome.

bloodomics | chronobiology | microarray | genomics | biological rhythms

Twenty-four-hour rhythms in physiology and behavior are gen-
erated through interaction between environmental cycles and

endogenous self-sustained circadian oscillators (1). In mammals,
circadian oscillators are present in the brain and most peripheral
tissues (2). Circadian rhythmicity within cells in these tissues is
generated by a molecular oscillator, which is composed of core
transcriptional–translational feedback loops that can also interact
with metabolic oscillators (3).
The circadian regulation of the mammalian transcriptome

includes circadian transcriptional and translational regulation by
proteins such as the positive transcription factors CLOCK and
ARNTL (BMAL1), and the repressors PERIOD (PER) and
CRYPTOCHROME (CRY) (4), chromatin modification by fac-
tors such as E1A binding protein P300 (EP300) and the methyl-
transferase MLL3 (4–6), RNA polymerase activity (4, 7), and
posttranscriptional events such as the regulation of ribosome bio-
genesis and translation (8, 9). Furthermore, physiological factors
such as body temperature (10) and endocrine rhythms such as
cortisol (11) can modify and reinforce these regulatory processes.
The mammalian circadian system is organized in a hierarchical

manner, with a central pacemaker located in the suprachiasmatic
nuclei (SCN) of the hypothalamus. Synchronization of central and
peripheral oscillators is achieved through direct neural con-
nections between the SCN and target tissues, endocrine rhythms

that are driven by the SCN, such as cortisol and melatonin, and
behaviors such as food intake and sleep and associated changes
in physiology (12–14).
The sleep–wake cycle, and associated cycles of darkness and

light and fasting and feeding, interacts with the circadian system
and is a major driving factor on rhythms in physiology and be-
havior, such that these rhythms are highly disrupted when the
sleep–wake cycle is desynchronized from the central circadian
clock (15). Here, we address the question of whether the mo-
lecular processes that regulate circadian gene expression are also
affected when the synchrony of the sleep–wake cycle and en-
dogenous circadian rhythmicity is disrupted, such as occurs
during jet lag and shift work (16) and laboratory protocols of
forced desynchrony (17, 18), which we have used in this study.

Results
Effect of the Protocol on the Melatonin Rhythm and Sleep. Twenty-
two healthy volunteers (Table S1) participated in a forced-
desynchrony protocol, in which the sleep–wake cycle and the
associated fasting–feeding and dark–dim light cycles are sched-
uled to a 28-h day (Fig. 1A). Under these conditions of low light
levels (<5 lux) during scheduled waking episodes, the rhythm
of plasma melatonin, which is driven by the central circadian
pacemaker in the SCN (19), oscillates at its intrinsic period
(∼24.2 h) (20). Thus, the phase of the melatonin rhythm oc-
curred at approximately the same clock time during the sleep
2/wake 3 and wake 5/sleep 5 periods, and there were no major
changes in either the amplitude or the waveform of this rhythm,
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even though sleep was scheduled 12 h out of phase on these 2 d
(Fig. 1 A and D). When sleep occurred during the biological night,
in phase with plasma melatonin, polysomnographically assessed
total sleep time was 450.6 ± 7.6 min (mean ± SEM). During the
subsequent three sleep episodes, which were scheduled pro-
gressively later, total sleep times were 446.5 ± 11.4, 401.7 ± 78.6,
and 388.3 ± 17.6 min, respectively, demonstrating the known
disruptive effects of forced desynchrony on sleep (17) and the
modest sleep loss. We assessed the impact of this desynchrony
between the sleep–wake cycle and the melatonin rhythm on the
blood transcriptome by analyzing two sets of seven RNA sam-
ples, collected both while sleeping in phase and out of phase with
the circadian melatonin rhythm (Fig. 1A).

Forced Desynchrony and the Transcriptome: Loss of Circadian
Rhythmicity. We first determined whether the time courses of
transcripts contained a significant near 24-h rhythmic (circadian)
component using algorithms and statistical techniques previously
described (21). The expression profiles of many transcripts
appeared clearly circadian when sleep occurred in phase with the
melatonin rhythm (Sleep 2) but developed a nonrhythmic profile
when sleep occurred out of phase with the melatonin rhythm
(Sleep 5) (e.g., RNA polymerase II subunit H, POLR2H; Fig. 1B),
whereas some transcripts remained rhythmic [e.g., NR1D2 (REV-
ERB-β); Fig. 1C]. On a genome-wide scale, 1,502 transcripts
(targeting 1,396 genes; 6.4% of all genes analyzed) were classified
as having a circadian expression profile while participants were
sleeping in phase with melatonin (Fig. 2A, Left). When these cir-
cadian transcripts were sorted according to the timing of their peak
levels, an overall bimodal distribution was observed, with peaks
during the day and night (Fig. 2 A and C). Cluster analysis
further subdivided these circadian transcripts into two night-
and three day-peaking clusters (Fig. 2 A and B, Left). Gene
ontology (GO) analysis revealed that biological processes and
molecular functions that were associated with day transcripts
included response to wounding, defense response, response to
stress, cytokine receptor activity, and hormone activity, whereas
those associated with night transcripts included protein locali-
zation to the endoplasmic reticulum (ER), translation initiation,
elongation and termination, structural constituent of the ribosome,

RNA binding, and methyltransferase activity (Table S2). One
small cluster of night-peaking transcripts included genes associ-
ated with lymphocyte differentiation and activation and T-cell
differentiation and activation (Fig. 2 A and B, red cluster).
Temporal profiles of many transcripts were markedly dis-
rupted when sleep was timed out of phase with melatonin
(Fig. 2A, Right). On a genome-wide scale, when sleeping out of
phase with melatonin, only 237 transcripts (targeting 228 genes;
1.0%) were classified as circadian (Fig. 1C, Fig. S1, and Dataset
S1), which represents a greater than sixfold reduction compared
with the sleeping in phase condition. Of the transcripts that
were classified as circadian while sleeping in phase, the majority
(97%) became arrhythmic when sleeping out of phase with the
melatonin rhythm (Fig. 2 A and B, Right). Known clock genes
classified as circadian while sleeping in phase included ARNTL,
NPAS2, PER2, PER3, CRY2, NR1D2, and the protein kinase
CSKN1E. The only clock genes that remained rhythmic when
sleeping out of phase were NR1D2 (Fig. 1C) and CSNK1E, whereas
NR1D1 (REV-ERB-α) became rhythmic.
Disruption of circadian rhythmicity during desynchrony was

observed for both day- and night-peaking transcripts (Fig. 2 B–
D) and also included a significant reduction in circadian ampli-
tude of expression of the prevalent probes in each condition (Fig.
2E). The top 10 GO processes, that were significantly associated
with transcripts that lost circadian rhythmicity when sleeping out
of phase, included translation elongation and termination, tar-
geting and localization of protein to the ER, as well as viral
transcription and viral genome expression. The latter processes
are likely identified by the GO analysis because these processes
also use the host gene expression machinery, which was affected
by desynchrony. The top 10 molecular functions included RNA
binding and ribosome constituents, although it should be noted
that not all of these categories remained significant after cor-
rection for multiple testing (Fig. 2F). The biological processes
and molecular functions associated with transcripts that were
circadian when sleeping in phase and out of phase separately are
presented in Fig. S2. It should be noted that because the majority
of the transcripts that were circadian while sleeping in phase
became arrhythmic when sleeping out of phase, the GO analysis
of transcripts that were circadian while sleeping in phase is
similar to that for the transcripts that became arrhythmic. Be-
cause of the small number of transcripts that were classified as
rhythmic when sleeping out of phase, the corrected P values for
GO terms associated with these transcripts are not significant.
However, the top-ten biological processes and molecular func-
tions included protein glycosylation, melanocyte differentiation,
B-cell receptor signaling pathway, and down-regulation of vas-
cular permeability (Fig. S2).

Forced Desynchrony and the Transcriptome: Alterations in Expression
Profiles. To further quantify the effects of desynchrony on the
transcriptome beyond a dichotomy of rhythmic vs. nonrhythmic
transcripts, we applied mixed-model ANOVA to the entire data-
set. We found that the interaction between the factors “condition”
(i.e., sleeping in phase vs. sleeping out of phase with melatonin)
and “time point” (i.e., RNA sample numbers 1–7) was significant
in 10,848 (34%) transcripts (Dataset S1). Transcripts whose
temporal expression profiles according to this analysis were af-
fected by forced desynchrony included circadian clock genes
(CLOCK, ARNTL, and PER3), genes involved in chromatin
modification [e.g., methyltransferases (MLL, MLL3, and MLL5),
EP300, CREB-binding protein (CREBBP), histone acetyltransfer-
ase 1 (HAT1), nuclear receptor corepressor 1 (NCOR1), and SET
domain-containing 2 (SETD2)], multiple transcripts for RNA
polymerase II (POLR2) and its complex formation (GTF2B,
AFF1), ribosome biogenesis (many transcripts for RPL and RPS
proteins), and regulators of transcription and translation (TCEA,
EIF, EEF, RPL, and RPS), as well as genes for heat shock proteins
(HSP90AA1, HSP90AB3P, HSPB11) and temperature-sensitive
RNA binding proteins (CIRBP and RBM3). Fig. 3 shows example
expression profiles of transcripts from these different categories

Fig. 1. Forced-desynchrony protocol. (A) After a baseline day (wake 1, sleep
1), the sleep–wake cycle was extended to 28 h such that sleep period 2 was in
phase with melatonin (blue area plot) but sleep period 5 commenced at
noon, 12 h out of phase with sleep period 2 and the melatonin rhythm (pink
area plot). Blood RNA was sampled during both in-phase (blue triangles) and
out-of-phase (red triangles) conditions. Relative RNA expression levels (log2,
mean ± SEM) of POLR2H (B) and NR1D2 (C) when sleeping in phase (blue
circles) with melatonin [blue area plot; mean dim light melatonin onset
(DLMO), 2159 hours ± 1 h and 13 min (±SD); n = 21)] (D) and when sleeping
out of phase (red circles) with melatonin [pink area plot; DLMO, 2303 hours ± 1 h
and 57 min (±SD); n = 21] (D).

Archer et al. PNAS | Published online January 21, 2014 | E683

M
ED

IC
A
L
SC

IE
N
CE

S
PN

A
S
PL

U
S

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316335111/-/DCSupplemental/pnas.201316335SI.pdf?targetid=nameddest=ST2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316335111/-/DCSupplemental/pnas.201316335SI.pdf?targetid=nameddest=SF1
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316335111/-/DCSupplemental/sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316335111/-/DCSupplemental/sd01.xlsx
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316335111/-/DCSupplemental/pnas.201316335SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316335111/-/DCSupplemental/pnas.201316335SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1316335111/-/DCSupplemental/sd01.xlsx


that clearly demonstrate the disruption of the time course
during the forced-desynchrony protocol.
GO analysis demonstrated that transcripts whose expression

showed an interaction between condition and time were associ-
ated with biological processes and molecular functions that in-
cluded translation initiation, elongation and termination, protein
targeting and localization to the ER, structural constituent of
ribosome, RNA binding, and methyltransferase activity (Fig.
4A). In addition to large effects on ribosomal protein transcripts,
we also found significant temporal disruption to many mito-
chondrial ribosomal proteins, which are associated with mito-
nuclear protein imbalance and longevity (22).
ANOVA also identified a main effect (i.e., overall up or down-

regulation of expression) of sleep condition on the overall
expression of 1,119 transcripts, which were associated with
biological processes and molecular functions that included
chromatin modification, nucleic acid metabolic and cellular mac-
romolecule metabolic processes, histone binding, and nucleic acid
binding (Fig. 4B). Of these 1,119 transcripts, 913 transcripts
were significantly down-regulated and 206 were up-regulated.
Observed significant fold changes (log2) ranged from −0.453
(73% compared with sleeping in phase) to 0.410 (133% com-
pared with sleeping in phase; Dataset S2). Transcripts that were
down-regulated while sleeping out of phase were associated
with biological processes and molecular functions that in-
cluded macromolecular metabolism, gene expression, nucleic
acid metabolism, RNA metabolic process, and DNA and RNA

binding, whereas up-regulated transcripts were associated with
hemoglobin metabolic processes, oxygen transporter activity,
peroxiredoxin activity, myosin binding, and deoxyribonucleotide
catabolism, among others (Fig. S3). Taken together, these data
again suggest that mistimed sleep has a major suppressive effect
on transcription and translation.
To further investigate the potential functional interactivity

between transcripts that showed differential expression between
sleep conditions and across time, we performed a direct in-
teraction network analysis, which connects elements that are
known to interact (at levels ranging from gene to protein). For
the transcripts whose expression showed an interaction between
condition and sample time, the direct interaction network revealed
highly connected nodes at specificity protein 1 (SP1), EP300,
CREBBP, ARNTL, and MAPK1 (Fig. 5A). The node with the
most connections was SP1, which is a transcription factor that
regulates the expression of a wide range of genes and also
interacts with EP300 in gene expression regulation (23). EP300,
together with CREBBP, regulates the circadian transcription of
many genes via histone acetylation (4). Thus, SP1, together with
EP300 and CREBBP, likely contributes to the regulation of the
expression of thousands of genes and was itself negatively reg-
ulated by sleep (Fig. S4). Comparison with the Encyclopedia of
DNA Elements cell line data shows that up to 32% of the ANOVA
interaction genes contained biologically confirmed binding sites for
SP1 (Table S3; see SI Methods). For those transcripts that showed
a main effect of condition (i.e., were up or down-regulated), the

Fig. 2. Mistimed sleep disrupts the circadian transcriptome. (A) Median expression profiles of circadian transcripts when sleeping in phase with melatonin
(Left) and their profiles when sleeping out of phase (Right) (n = 19 paired participants). Colored bars on the left indicate clusters of day-peaking (B, Upper
Left) and night-peaking (B, Lower Left) transcripts. Profiles of these transcripts were disrupted when sleep occurred out of phase with melatonin (A and B,
Right). Average melatonin profiles are indicated by blue and pink area plots. (C) Peak expression phase distribution of prevalent circadian transcripts while
sleeping in phase (blue bars; n = 16,253 derived from 1,502 circadian transcripts in an average of 10.84 subjects; minimum number of subjects for an FDR < 5%, 10)
and out of phase (red bars; n = 2,503 derived from 237 circadian transcripts in an average of 10.56 subjects). (D) A total of 733 night and 661 day in-phase circadian
transcripts reduced to 95 and 134 out-of-phase transcripts, with 9 and 27 common to both (n = 19 paired participants); 108 rhythmic transcripts were not classified as
either day or night when sleeping in phase, and this category contained only eight transcripts during out of phase. (E) Out-of-phase prevalent circadian transcripts
(red plot) had a lower mean amplitude (0.4264, red dashed line) than in-phase prevalent transcripts (blue plot; 0.5169, blue dashed line) (95% confidence interval,
−0.1012 to −0.0797; P < 2.2 × 10−16). (F) Top 10 GO processes and functions associated with transcripts that became arrhythmic when sleeping out of phase.
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Fig. 3. Summary of the effects of desynchrony on the regulation of gene expression. Biological processes that contribute to the regulation of gene ex-
pression are shown on the left. For each process, the mean (log2 ± SEM) expression plots while sleeping in (blue) and out (red) of phase of exemplar transcripts
(identified as having a significant differential expression between conditions) associated with the process are depicted. Also provided are the number of
transcripts (N) in our study that have been associated with that process, together with the number and percentage of those transcripts that showed either
a main effect of sleep condition (M) or an interaction between sleep condition and sample time (I) in the ANOVA. It should be noted that the custom-designed
microarrays used in this study included the addition of many probes covering the length of identified transcripts for circadian clock-related genes. That is why
the circadian rhythm category in this figure includes 495 probes.
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interaction network was composed of many down-regulated nodes
that are associated with nucleic acid metabolic processes (Fig. 5B).
The network nodes with most direct interactions were ESR1, REL,
and EP300, but other significant nodes included MLL, NCOR1,
and CLOCK, genes that have also been implicated in the rhythmic
control of transcription.

Separating the Contribution of Circadian Rhythmicity and Sleep to
the Temporal Organization of the Transcriptome. While emphasiz-
ing the overall disruptive effect of the forced-desynchrony pro-
tocol on the temporal expression of transcripts, ANOVA did not
quantify the separate contribution of the sleep–wake cycle and
circadian rhythmicity to the expression profile of transcripts
when sleeping in or out of phase with melatonin. Some physio-
logical variables, such as growth hormone (24) or slow wave
sleep (17), are primarily driven by the sleep–wake cycle; others,
such as melatonin, are almost exclusively driven by circadian rhyth-
micity (25), whereas variables such as core body temperature are
driven by both circadian rhythmicity and the sleep–wake cycle
(26, 27). We applied a simple mathematical model to estimate
the contribution of circadian rhythmicity and the sleep–wake
cycle to the expression profiles. In this model, the circadian in-
fluence (as indexed by the melatonin rhythm) induces peak ex-
pression levels in either the night or the day, and sleep either
suppresses or enhances expression. The circadian and sleep
effects combine in a linear manner (Fig. 6). This model identi-
fied two groups of transcripts that only responded to circadian
rhythmicity: one group peaked during the biological night (Fig.
7A), whereas the other group had maximum expression levels
during the biological day (Fig. 7B). Two other groups of tran-
scripts only responded to sleep with an enhanced (Fig. 7C) or
suppressed (Fig. 7D) drive and were not affected by circadian
rhythmicity. Note that this exclusive contribution of the sleep–
wake cycle to gene expression may either reflect a direct en-
hancing/suppressive effect of sleep on gene expression or en-
trainment of rhythmicity to the 28-h imposed sleep–wake cycle.

Such entrainment of gene expression to temperature cycles
longer than 24 h has previously been demonstrated (28). Other
transcripts were enhanced by sleep and circadian rhythmicity
during the biological night (Fig. 7E) or enhanced by sleep and
circadian rhythmicity during the biological day (Fig. 7F), whereas
others were suppressed by sleep and had either a circadian night
(Fig. 7G) or day peak (Fig. 7H). The biological processes and
functions that were associated with these groups were different,
such that circadian-driven transcripts were associated with cel-
lular metabolic and homeostatic processes, whereas those that
were driven by sleep alone or by both circadian rhythmicity and
the sleep–wake cycle were linked with the regulation of tran-
scription and translation in particular. All GO terms for each
of these categories are listed in Fig. 7. Together with the GO
analyses for transcripts that lost rhythmicity (Fig. 2F) and those
whose expression profile showed an interaction between sleep
condition and time (Fig. 4A), the results from the modeling
analysis further underline that sleep drives the expression of
groups of transcripts that are specifically associated with the
regulation of gene expression and protein synthesis.

The Effects of Mistimed Sleep Compared with Sleep Restriction. In
a previous study, we compared the transcriptome (measured in
the absence of a sleep–wake cycle) after 1 wk of sufficient sleep
(mean sleep duration, 8.5 h) with the transcriptome after 1 wk of
sleep restriction (mean sleep duration, 5.7 h) (21). Thus, the
sleep loss that accumulated during that protocol was 19.6 h and
was associated with a reduction in circadian transcripts from
8.8% to 6.9%. From the mean sleep durations recorded for each
sleep–wake cycle in the current protocol, the estimated cumu-
lative sleep loss is only 1.9 h. Therefore, it seems reasonable to
conclude that the much larger reduction in the number of cir-
cadian transcripts from 6.4% when sleeping in phase to just 1%
when sleeping out of phase with melatonin that we observed in
the current protocol is attributable largely to the mistiming of
sleep and is not attributable to the modest amount of sleep loss
incurred. Sleep restriction and mistimed sleep also caused loss of
circadian rhythmicity in different sets of transcripts, with an
overlap of only 122 genes that became arrhythmic in both pro-
tocols (Dataset S3). After 1 wk of sleep restriction, transcripts
that became arrhythmic were associated with biological pro-
cesses that included inositol triphosphate kinase activity, phos-
pholipid transporter activity, transferase activity, nucleotide
binding, and catalytic activity (21), whereas during mistimed
sleep, transcripts that became arrhythmic were associated with
biological processes and molecular functions linked with the
regulation of transcription and translation (Fig. 2F) (for com-
parison, see Fig. S5). Mixed model ANOVA analyses showed
that similar numbers of transcripts showed a main effect of sleep
condition in the two studies; 711 and 1,119 transcripts were up-
or down-regulated in response to sleep restriction and sleeping
out of phase, respectively. Up- and down-regulated transcripts in
the two studies were also associated with overlapping biological
processes and molecular functions (up-regulated: catabolic pro-
cesses and peroxiredoxin activity; down-regulated: macromolec-
ular metabolism, gene expression, nucleic acid metabolism, and
nucleic acid binding) (Fig. S6). However, ANOVA analysis
showed that whereas only 252 transcripts (0.8%) showed an in-
teraction between sleep condition and sample time in the pre-
vious study, 10,848 transcripts (34%) showed an interaction
between sleep condition and sample time in the current study.
This means that the temporal expression profiles of many more
transcripts were affected by sleeping out of phase in the current
study compared with the effects of sleep restriction in the pre-
vious study. However, we cannot rule out the possibility that the
differential regulation of some processes that occurred in both
protocols (e.g., macromolecular processes) is attributable to the
sleep loss that occurs in both protocols. Taken together, we
therefore conclude that in the current protocol, mistimed sleep
disrupts the circadian organization of the transcriptome and
that the main effects of mistimed sleep are primarily related to

Fig. 4. GO analysis for transcripts whose expression profiles changed be-
tween sleep conditions. Top 10 GO processes and functions associated with
transcripts whose expression profile showed a significant interaction be-
tween sleep condition and sample time (A) or a main effect of sleep con-
dition (B) (ANOVA; P < 0.05; n = 22).
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the change in the timing of sleep and associated changes in
physiology, rather than the modest reduction in sleep time that is
associated with mistimed sleep.

Discussion
We provide evidence that although the central circadian clock
does remain rhythmic during the imposition of a noncircadian
(i.e., 28-h) sleep–wake cycle in dim light (18, 20, 29), the majority
of the blood peripheral transcriptome becomes arrhythmic,
with a minority of transcripts that remain rhythmic or become
rhythmic. Previously, it has been demonstrated in animal models
that altering the timing of the sleep–wake cycle may also affect
the transcriptome of other organs and tissues, including the brain
(30), liver (31), and adipocytes (32). These human and animal
transcriptome data can be interpreted within the framework of

a hierarchical organized multioscillator system in which rhythmicity
in local gene expression may be driven, to a varying extent, by local
molecular clocks, neural or hormonal input driven by a central
pacemaker, vigilance state itself, or cues and changes in endocrine
and physiological variables associated with behaviors such as sleep
or food intake. The varying extent of these influences on gene ex-
pression will be reflected in the extent to which their temporal
profile is disrupted during forced desynchrony of, for example, the
sleep–wake cycle and the centrally driven melatonin rhythm.

Circadian Transcripts That Are Robustly Rhythmic During Synchrony
and Desynchrony. The observation that 6.4% of the blood tran-
scriptome displayed a circadian expression profile when sleep
occurred in phase with the central circadian clock agrees well
with the proportions of rhythmic transcripts previously reported

Fig. 5. Direct interaction networks be-
tween genes for which at least one
transcript had a statistically significant
interaction between sleep condition
and sample time (A) or a main effect of
sleep condition (B). Up-regulated genes
(on average) in the out-of-phase condition
compared with in-phase are indicated as
square nodes and down-regulated ones by
circles. Node size reflects the number of
direct connections a gene has within the
network. Node color (see key) represents
the most enriched association with a top
10 GO biological process. Downloadable,
interactive versions of A and B are avail-
able at http://sleep-sysbio.fhms.surrey.ac.
uk/PNAS_14/.
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for other tissues (33) and is comparable with our previous
estimate of 8.8% in the human blood transcriptome (21). The
distinct bimodal distribution of phases, with night-peaking tran-
scripts associated with the regulation of gene expression regula-
tion and day-peaking transcripts associated with processes linked
with immunity and inflammation (Table S2), is also in accordance
with our previous analyses of the circadian human transcriptome in
the absence of a sleep–wake cycle (21). Although the time courses
of both night- and day-peaking genes were greatly disrupted in the
current study, more of the day-peaking transcripts remained ro-
bustly rhythmic. Indeed, of the 39 transcripts that were rhythmic in
both conditions, 27 peaked during the day when sleeping in phase.
In accordance with the identified GO terms for the day-peaking
transcripts, the robustly rhythmic transcripts are linked with
processes such as blood cell development and function (MAL,
B4GALT5, OTX1, NELL2, ST6GALNAC2), vascular function
(ADM, ANXA3), immunity (HCG27, NFAM1, TREM1), and
lipid metabolism [low-density lipoprotein receptor (LDLR)].
Thus, robustly rhythmic transcripts whose expression profiles
were not affected by forced desynchrony were largely those
related to intrinsic blood-specific functions.

Transcripts and Associated Molecular Processes Affected by Desynchrony.
Current understanding of the molecular mechanisms underlying
the circadian regulation of the mammalian transcriptome empha-
sizes the role of clock genes (1). Although the central circadian
clock, as indexed by melatonin, remained largely unaffected, the
temporal organization of expression of clock genes considered to
be central to circadian rhythm generation was affected in the
blood transcriptome, with only NR1D2 and CSNK1E remaining
rhythmic when sleeping out of phase. Histone modification, and
the control of transcription and translation (4–9), is also con-
sidered central to circadian organization of the transcriptome
and the time courses of transcripts associated with all of these
processes were affected in this study (Fig. 3). We also observed
disruption to the time course of expression of the transcription
factor SP1 (Fig. S4), which was the most connected gene node in
the direct interaction network of transcripts that showed an in-
teraction between sleep condition and time (Fig. 5A). In addition
to interacting with EP300 and CREBBP in the circadian regu-
lation of gene expression (4), SP1-binding motifs were over-
represented in the promoter regions of circadian gene sets from
multiple mammalian tissues (34, 35). It has been shown in mouse
liver that BMAL1 binds in a phase-specific way to several
thousand DNA sites that predominantly contain two tandem
E-box motifs and an adjacent SP1 site (36). The authors propose
that SP1 acts with BMAL1 to coregulate circadian gene ex-
pression. We have previously shown that the promoter region of
human PER3 contains two SP1 sites adjacent to two tandem
noncanonical E-box motifs and that a variable number tandem-
repeat polymorphism in the PER3 promoter removes one of
these SP1 sites and is associated with differences in the levels of
reporter gene expression (37). Thus, these data are consistent
with a role for SP1 in the regulation of circadian gene expression.

Transcripts and Associated Processes Driven by the Sleep–Wake Cycle.
In our model of the separate contribution of circadian rhyth-
micity and the sleep–wake cycle, many of the transcripts whose
expression profiles were enhanced or suppressed by sleep were
associated with the regulation of transcription and translation
(Fig. 7 C–H). For those transcripts that were exclusively driven
by the sleep–wake cycle, a high-amplitude rhythm was observed
during both synchrony and desynchrony, but the timing of the
peak was very different (Fig. 7 C and D). Within these categories,
234 transcripts were categorized as being enhanced by sleep with
no circadian input and included POLR2K (Fig. 7C). A further
286 transcripts were only suppressed by sleep and included
thyroid hormone receptor-associated protein 3 (THRAP3, also
known as TRAP150) (Fig. 7D). THRAP3 has recently been identi-
fied as a coactivator of the CLOCK-BMAL1 complex and promotes
its binding to target genes, linking it with the transcriptional ma-
chinery (38). This category also included the methyltransferase
transcript MLL3, and the expression profiles of several transcripts
associated with methylation are affected by mistimed sleep (Fig. 3),
including METTL3, which methylates mRNA and regulates the
processing of transcripts, including clock genes, thereby determining
circadian period (39). The effects of desynchrony on the amplitude
of expression for those transcripts that receive both a positive or
negative drive from sleep, as well as a melatonin phase-linked cir-
cadian drive, obviously depends on the combination of the timing of
the circadian peak and whether they are enhanced or suppressed by
sleep. In the category circadian night peak and sleep enhanced, we
observed a high-amplitude rhythm when sleeping in phase and
a bimodal time course when sleeping out of phase (Fig. 7E). In
this category, we saw a large number of transcripts for ribo-
somal subunits affected by sleeping out of phase (e.g., RPL21;
Fig. 7E). In the category sleep-enhanced and circadian day
peak, we found processes associated with hormone activity and
response to corticosteroid stimulus. Note that in this category
and the category circadian night peak sleep suppressed, the
amplitude of expression increases during desynchrony, a phe-
nomenon reminiscent of the effects of sleep displacement on
thyroid stimulating hormone (29). The variety in combinations

Fig. 6. Modeling the contribution of circadian and sleep–wake drive on
transcript expression profiles. A model that describes the temporal profile of
transcripts as a linear combination of the 28-h sleep–wake cycle and 24-h
circadian rhythmicity was fitted to the median expression profile of each
transcript (median of z-scored data across 19 paired participants per sample
time point). In the 3D plot, the horizontal plane maps the estimated co-
efficient of the contribution of the sleep–wake cycle against the contribu-
tion of the circadian rhythmicity, whereas the corresponding model fit R2

value is indicated by the vertical axis (n = 41,119 transcripts). Transcripts with
a model fit R2 > 0.6 (1,792 transcripts) were further classified into eight distinct
categories (indicated with different colors in the vertical plane) based on the
contribution of the sleep–wake cycle and the contribution of the circadian
rhythmicity as follows: transcripts with no significant sleep contribution, which
were primarily determined by circadian rhythmicity with a peak at night
(green) or day (orange); transcripts with a significant circadian contribution
with a peak at night and an enhancing effect of sleep (red) or a suppressive
effect of sleep (blue); transcripts with a significant circadian contribution with
a peak during the day and an enhancing effect of sleep (purple) or a sup-
pressive effect of sleep (pink); and transcripts with no significant circadian
component, which were enhanced by sleep (yellow) or suppressed (gray).
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of sleep enhancing or suppressive effects and circadian day or
night drives is consistent with the small overlap between con-
ditions for the circadian night and day genes (Fig. 2D).
Overall, the annotation analysis suggests that when we sleep in

phase, the circadian process and the sleep process combine to
facilitate transcription and translation. Future analyses of the
current and previously published human (21, 40) and animal data
(30, 31, 41, 42) may shed further light on the role of sleep and
circadian rhythmicity on the regulation of the transcriptome. A
first comparison of the current study of the effects of mistimed
sleep and our previous study of the effects of insufficient sleep
(21) indicates that several of the observed phenomena are ro-
bust. Thus, the bimodal distribution of peak activity and the
processes associated with day or night peaks were very similar in
the two studies. Furthermore, both studies indicated that disrup-
tion of the sleep–wake circadian system suppresses genes associ-
ated with the regulation of gene expression and translation and
enhances activity of genes associated with catabolic processes, the
regulation of ATPase activity, and peroxiredoxin activity.

Mechanisms Underlying the Temporal Disruption of Gene Expression
by Forced Desynchrony. What are the mechanisms underlying
persistent rhythmicity and loss of rhythmicity? The circadian
rhythms of both melatonin and cortisol are known to regulate
gene expression (11, 43) and are driven by the SCN. The fact that
the vast majority of circadian transcripts become arrhythmic
when sleeping out of phase with melatonin would indicate that
the SCN neural outputs and hormones driven by the SCN (i.e.,
melatonin and cortisol only has a limited influence on the pe-
ripheral blood). We nevertheless found some evidence for their
influence on the transcriptome. For example, BCL2 is regulated
by melatonin (44) and fell within the category of genes with

a circadian night peak both when sleeping in and out of phase.
Thus, it was unaffected by sleep, and its time course remained
linked to melatonin (Fig. 7A). In our study, NR1D1 was a tran-
script that became rhythmic when sleeping out of phase with
melatonin, and it was classified within the category of transcripts
whose expression profiles remained largely unchanged between
the in-phase and out-of-phase conditions and were driven by
a circadian day peak and enhanced by sleep (Fig. 7F). Tran-
scripts within that category were associated with GO terms that
include response to corticosteroid stimulus and hormone activity,
and it is possible that the expression of these transcripts could be
driven by cortisol (45). It is important to emphasize that effects
of these endocrine signals on the transcriptome can also interact
with the effects of the sleep–wake cycle. Ldlr responds to sleep
deprivation in the mouse but only in the presence of a gluco-
corticoid signal (41). In our study, LDLR is one of the transcripts
that were robustly rhythmic in both sleep conditions. However,
although desynchronization did not affect the rhythmicity of this
transcript, its peak of expression shifted significantly between
sleep conditions (Fig. 7G). To further investigate the contribu-
tion of melatonin and cortisol on the human transcriptome, these
hormones would have to be manipulated directly.
The loss of rhythmicity in many transcripts suggests that ex-

pression profiles in the periphery may depend on both local cues
related to for example the sleep–wake cycle and central rhythms.
When sleep occurs in phase and there is “resonance” between
central and peripheral cues, rhythmicity is strong, but peripheral
rhythmicity is weakened when this resonance is disrupted, whereas,
at the same time, central rhythms remain robust. Robustness of
SCN-driven rhythms vs. fragility of peripheral rhythms has pre-
viously been observed in mouse tissues exposed to oscillating
temperature cycles; the SCN does not entrain to temperature

Fig. 7. Estimating the separate contribution of circadian rhythmicity and sleep to the temporal organization of the transcriptome. A model describing the
temporal profile of transcripts as a linear combination of the 28-h sleep–wake cycle and 24-h circadian rhythmicity was fitted to the median expression
profiles (z-scored data across all participants per sample point) of all transcripts (Fig. 6). The model identified transcripts that were only driven by circadian
rhythmicity with a positive drive during the night (A) or a positive drive during the day (B). Two groups of transcripts were only driven by sleep, which
enhanced (C) or suppressed (D) the levels of these transcripts. Other transcripts were affected positively by sleep and also by circadian rhythmicity at night (E)
or circadian rhythmicity during the day (F), whereas others were suppressed by sleep and had either a circadian night (G) or day peak (H). Also shown are the
group time course, number of transcripts per category, example mean expression profile (log2 ± SEM) while sleeping in (blue line) and out of phase (red line),
together with top 10 GO processes and functions associated with the set of transcripts (*P < 0.05; #P < 0.01; $P < 0.001).
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rhythms whereas peripheral tissues do (46). It is well established
that sleep and forced desynchrony affect body temperature
rhythms in humans and animals (26, 47). Thus, the amplitude of
the temperature rhythm is high when the temperature lowering
effect of sleep coincides with the circadian phase during which
melatonin is synthesized (i.e., the biological night), and the overt
core body temperature amplitude is lower when sleep occurs
during the biological day (48). Therefore, a potential mechanism
for the observed effects of desynchrony would be that the lowered
amplitude of core body temperature caused by sleeping out of
phase affects the amplitude of rhythmicity in temperature-sensitive
RNA-binding proteins, such as cold-inducible RNA-binding pro-
tein (CIRBP) and RNA-binding motif protein 3 (RBM3), which
control the expression of key circadian regulators of transcription
and translation (10, 49). CIRBP and RBM3 are both induced by
lower temperature, and the observed change in the time course of
expression in these transcripts when sleeping in and out of phase
with melatonin (Fig. 3) is consistent with the reduced amplitude of
the core body temperature rhythm when sleeping out of phase.
CIRBP and RBM3 potentially regulate the circadian expression of
several thousands of genes, which include core circadian clock
genes and genes involved in the regulation of gene expression, such
as genes for RNA polymerase II and ribosomal protein subunits
(10, 49). In fact, comparison between the list of transcripts whose
expression showed an interaction between sleep condition and
time with published lists of gene targets for CIRBP and RBM3
(49) showed an ∼30% overlap (Fig. S7; see SI Methods). In addi-
tion, Cirbp is one of a small number of transcripts that remained
rhythmic in the mouse clock-deficient liver with its expression
profile entrained to temperature (50). Therefore, changes in core
body temperature may be one cause of the widespread disruption
of circadian rhythmicity. In addition to changes in temperature
cycles, the feeding schedule and associated changes in endocrine
and metabolic variables or the dim light–dark schedule, which are
timed in synchrony with the imposed 28-h sleep–wake cycle (15,
18), may also contribute to the changes in the rhythmic organiza-
tion of the transcriptome (14).
The classical term in circadian rhythm research for the effects

of the light–dark cycle or sleep–wake would be “masking” the
endogenous circadian rhythmicity, implying that these effects are
separate from circadian rhythm generation (51, 52). Our current
data highlight the interrelatedness of these masking effects and
the genes involved in circadian rhythm generation and their
combined contribution to overall temporal organization. Sys-
temic cues are known to be important for circadian organization
in other peripheral tissues. The timing of feeding, for example, is
known to combine with the intrinsic clock to drive rhythms in the
mouse liver, whereas restricted feeding can restore liver rhyth-
micity in clock-deficient mice (53). Similarly, the expression of
the majority of liver transcripts became arrhythmic in mice where
only the liver clock was deficient, although a small number of
transcripts remained entrained by systemic cues that included
temperature (50). Furthermore in the vole, which has a dis-
tinctive ultradian feeding pattern, clock gene expression has
a high-amplitude circadian rhythm in the SCN but is flat in the
liver (54).

Summary and Implications. Previously, we showed that 1 wk of
insufficient sleep reduced the circadian organization of the hu-
man transcriptome (from 8.8% to 6.9%), even when assessed in
the absence of a sleep–wake cycle (21). Here, we show that
mistimed sleep desynchronized from the central circadian clock
has a much larger effect on the circadian regulation of the hu-
man transcriptome (i.e., a reduction in the number of circadian
transcripts from 6.4% to 1% and changes in the overall time
course of expression of 34% of transcripts). Also, although the
number of genes for which the overall level of expression was up-
or down-regulated was similar to the number affected by sleep
restriction (21), in the present study, forced desynchrony resulted
in fold changes that were greater. Overall, these data imply that
outputs of the circadian timing system, such as the sleep–wake

cycle and associated changes, feedback onto and reinforce processes
that are at the core of the generation of circadian rhythmicity.
There are two main implications of these phenomena. Firstly,
the negative health outcomes of disruption of this reinforcement
and resonance of the sleep–wake cycle and central circadian
rhythmicity, as occurs in jet lag and shift work, may be mediated
by this profound disruption of the temporal organization at the
level of the transcriptome. Secondly, the powerful reinforcement
of peripheral rhythmicity by the sleep–wake cycle and associated
variables may be used to enhance temporal organization in those
conditions in which it is weakened, such as aging. With a growing
number of shift workers and insufficient sleep becoming an ever-
increasing problem globally, these two implications will become
increasingly relevant.

Methods
Ethics and Participants. The protocol received a favorable opinion from the
University of Surrey Ethics Committee and was conducted in accordance with
the principles of the Declaration of Helsinki. Participants were recruited as
reported in ref. 20. Transcriptome data were obtained from 22 participants
(mean ± SD of age, 26.3 ± 3.4 y; 11 males and 11 females) and are presented
in this report (Table S1). Participants were all white and homozygous for the
PER3 VNTR polymorphism (rs57875989), with 11 participants carrying the
shorter allele. Participants were in good health, as assessed by medical his-
tory, physical examination, and standard biochemistry and hematology.
None suffered from sleep disorders, as assessed by self-report questionnaires
[Pittsburgh Sleep Quality Index ≤5 (55)] and a clinical polysomnographic
recording. Habitual sleep duration was 7 h and 57 min ± 52 min (SD).

Study Protocol. The forced-desynchrony protocol, during which partic-
ipants were resident in a clinical research center, was modified from previous
protocols (17, 56), and this version has been described previously (20, 57).
Briefly, following a baseline 8-h sleep episode at habitual bedtime (as-
sessed from 1 wk of field actigraphy and sleep diaries) and a 16-h wake
period, the sleep–wake cycle, the dark–dim light cycle, and meals were
all scheduled to a 28-h period such that the sleep episode began 4 h later
in each cycle.

Melatonin Assay and Assessment of Circadian Phase. Plasma melatonin levels
were measured and analyzed as previously described (20).

Polysomnography. Polysomnography was performed as previously described
(21, 57).

RNA Extraction, Labeling, and Hybridization. Extracted and labeled cRNA was
hybridized to Whole Human Genome 4 × 44K custom oligonucleotide
microarrays, as previously described (21). Microarray data were deposited in
the Gene Expression Omnibus database (accession no. GSE48113).

Microarray Statistical Analysis. Quality-control preprocessing of the micro-
array data were performed as described previously (21).
Time series analysis. Log2 values were quantile-normalized using the R Bio-
conductor package limma (58). Non–control-replicated probes, along with
their corresponding flags, were averaged. We assumed that transcripts
whose expression levels have a circadian component will show one full os-
cillation every ∼24 h. To identify the set of transcripts with circadian profiles,
we followed a time–domain analysis described previously (21). Transcripts
targeted by probes identified as overt circadian in a minimum number of
subjects (ns) were defined as having a prevalent circadian expression in the
associated test condition. We used ns to keep the false-discovery rate (FDR)
to a maximum of 5%, as previously described (21).
ANOVA. For the analyses aimed at identifying effects of forced desynchrony on
the transcriptome, independent of classifications of rhythmic vs. nonrhythmic
patterns, we used a mixed-model ANOVA approach (Procedure Mixed in SAS
version 9.2). In this model, class variables were participant, sleep condition (in
phase, out of phase), time point (sample numbers 1–7), and genotype (PER35/5

vs. PER34/4). The analysis investigated whether the expression level was af-
fected by sleep condition, time point, genotype, and their simple inter-
actions, taking into account the repeated measurement design. Few effects
of genotype were found and these results are not discussed. P values were
corrected for multiple testing using the Benjamini and Hochberg approach
(59). The significant effects (corrected P value, <0.05) were investigated
using differences in least-square means.
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Clustering analysis of prevalent circadian transcripts. Transcript median profiles
(median across all paired participants, per sampling time point, of z-scored
time series) were entered in the clustering analysis. The coexpression
coefficient-based circular self-organizing map (60) was used to partition the
data into distinct groups, and the number of clusters was established using
the Bayesian index criterion (61).

Gene Enrichment and Functional Annotation Analyses. Gene enrichment
and functional annotation analyses were performed as described pre-
viously (21).

Direct Interaction Networks. For details of how the direct interaction networks
were constructed and visualized, see SI Methods.

Contribution of the Sleep–Wake Cycle and Circadian Rhythmicity to the Time
Course of Transcripts. For details of the model used to define the contribution
of the sleep-wake cycle and circadian rhythmicity to the expression profiles of
transcripts, see SI Methods.
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