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a b s t r a c t

Reactive Oxygen Species (ROS) are known to cause oxidative damage to DNA, proteins and lipids. In
addition, recent evidence suggests that ROS can also initiate signaling cascades that respond to stress and
modify specific redox-sensitive moieties as a regulatory mechanism. This suggests that ROS are
physiologically-relevant signaling molecules. However, these sensor/effector molecules are not uniformly
distributed throughout the cell. Moreover, localized ROS damage may elicit site-specific compensatory
measures. Thus, the impact of ROS can be likened to that of calcium, a ubiquitous second messenger,
leading to the prediction that their effects are exquisitely dependent upon their location, quantity and
even the timing of generation. Despite this prediction, ROS signaling is most commonly intuited through
the global administration of chemicals that produce ROS or by ROS quenching through global application
of antioxidants. Optogenetics, which uses light to control the activity of genetically-encoded effector
proteins, provides a means of circumventing this limitation. Photo-inducible genetically-encoded ROS-
generating proteins (RGPs) were originally employed for their phototoxic effects and cell ablation.
However, reducing irradiance and/or fluence can achieve sub-lethal levels of ROS that may mediate
subtle signaling effects. Hence, transgenic expression of RGPs as fusions to native proteins gives
researchers a new tool to exert spatial and temporal control over ROS production. This review will
focus on the new frontier defined by the experimental use of RGPs to study ROS signaling.

& 2014 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-SA
license (http://creativecommons.org/licenses/by-nc-sa/3.0/).
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Introduction

Reactive Oxygen Species (ROS) play diverse roles in organism
physiology and pathophysiology. ROS can cause damage in the cell
through oxidative reactions, and excessive levels of ROS are associated
with numerous pathologies [1,2]. The destructive power of large-scale
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ROS production is highlighted by the fact that photodynamic therapy
(PDT) uses photo-activation of chemicals that produce ROS, primarily
but not exclusively singlet oxygen (1O2), to kill cancer cells and to treat
local infections [3]. Similarly, the importance of protecting against such
damage is highlighted by the significant resources that biology devotes
to ROS detoxification, including a plethora of complex antioxidant
enzymes (superoxide dismutase, catalase, glutathione peroxidase, thio-
redoxin, peroxiredoxin etc.).

In addition to their ability to cause damage, ROS can also
operate as signaling molecules and signal cell survival [4–6].
ROS can lead to changes in enzyme activity, gene transcription,
metabolism and signal transduction, and physiologic ROS produc-
tion may be necessary for adaptation to stress, normal develop-
ment and regulation of lifespan [2,7–9]. A thorough review of the
signaling roles of ROS is beyond the scope of this manuscript, and
readers are directed to several excellent reviews [10–14]. Notably
however, despite the well-known signaling properties of ROS,
studying them is limited by an inability to experimentally control
local ROS levels.

Though widely utilized as an experimental approach, it is unclear
that the global application of primary ROS or ROS-generating
reagents (e.g. potassium superoxide, H2O2, and xanthine/xanthine
oxidase) recapitulates endogenous ROS signaling. Furthermore,
extrapolating the relatively non-specific effects of antioxidants such
as N-acetylcysteine can be difficult. In fact, ROS may be conceptually
similar to other second messengers such as Ca2þ , whose signaling
properties are highly dependent upon timing, magnitude, and the
formation of signaling microdomains. With respect to Ca2þ signal-
ing, the advent of “caged” Ca2þ , where a light-sensitive protective
moiety is used to prevent calcium's biologic activity, drove the field
forward by allowing researchers to directly ask whether a localized,
constrained elevation in Ca2þ was sufficient to elicit a particular
outcome.

Optogenetics refers to an emerging field where light-sensitive
proteins are used to manipulate cell signaling (for review, see
[15]). Some of the more widely recognized optogenetic reagents
include such proteins as channel-rhodoposins (ChR2), halorho-
dopsins (HR) and OptoXRs, which allow cell membrane potential
(ChR2 and HR) or G protein-coupled second messenger signaling

(OptoXR) to be controlled through the application of light [15]. The
optogenetic toolbox is expanding rapidly, and one class of newly
developed proteins photo-generates ROS. Much like PDT, ROS
generating proteins (RGPs) were originally employed in cell abla-
tion experiments for their toxic effects [16–18]. However, these
RGPs have more recently been shown to generate sub-lethal
amounts of ROS with both spatial and temporal precision. The
use of RGPs to control ROS production is potentially transforma-
tive, and this review highlights their development and the initial
studies that underlie their potential. Despite the ability of these
RGPs to transform the field of free radical biology, there has to date
been little adoption of these new methods within the field.

Reactive Oxygen Species (ROS)

There are a variety of reactive oxygen (and nitrogen) species
within cells (for review see [11,14]). The focus of this review will
be on superoxide (O2

d�), and singlet oxygen (1O2), two species of
ROS that can be generated from photosensitizers. The following
section will provide a brief overview of these molecules and their
physical properties.

The main sources of O2
d� within the cell include NAPDH

oxidases (NOX family enzymes) xanthine/xanthine oxidase and
mitochondria. Cells have developed mechanisms to cope with
O2
d� production, such as conversion to hydrogen peroxide (H2O2)

by superoxide dismutase (SOD). H2O2 can then be removed
through enzymatic reactions (e.g. catalase) and thiol-systems
(e.g. glutathione) [19] to avoid the Fenton reaction formation of
hydroxyl radical (HOd) [20] (Fig. 1). The generation of O2

d� can
result in a cascade of different ROS, each with unique properties
and preferred biological targets. For example, O2

d� is charged and
has limited permeability while H2O2 is freely diffusible through
biomembranes. The protonated form of O2

d� (pKa�4.8) is the
hydroperoxyl radical (HO2

d), which has high reactivity and since it
is uncharged may cross membranes [21]. Furthermore, O2

d�

preferentially reacts with iron sulfur centers and with nitric oxide,
while H2O2 is mildly reactive with cysteine and methionine
residues in proteins [8].

Fig. 1. ROS and their biological impact. Each ROS has intrinsic chemical properties that will render it more likely to interact with a particular biological target. The exact
target of a particular ROS will depend in part on the local environment in which it was produced. The cell presents a diverse range of environments and subsequent
physiologic responses to ROS production. Abbreviations: SOD, superoxide dismutase; CAT, Catalase; Prx, Peroxiredoxin; and GPx, Glutathione peroxidase.
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1O2 is the lowest lying electronic excited state of molecular
oxygen produced in photosystem II of chloroplasts via photoexci-
tation of chlorophyll, and is commonly generated using light-
sensitive molecules called photosensitizers. 1O2 is highly reactive,
such that its reactions are diffusion limited and lack selectively.
Indeed, because of its high reactivity in biological systems, 1O2 is
believed to react in the immediate vicinity of its generation [22].
Furthermore, 1O2 differs from O2

d� in that it cannot directly
convert to other ROS endogenously generated by the mitochon-
drion. For example, 1O2 cannot directly dismutate to H2O2 like
O2
d� . However, 1O2 can generate intermediate products that are

able to initiate ROS reactions that overlap with other ROS. One
example is lipid peroxidation. Both 1O2 and HOd can generate lipid
hydroperoxides (LOOH) but via distinct mechanisms. In the pre-
sence of transition metal ions these can give rise to the generation
of free radicals, which can then re-initiate lipid peroxidation chain
reactions [23–25]. While the formation of LOOH will most likely
occur in the vicinity of ROS production due to the highly reactive
nature of 1O2 and HOd, LOOH can propagate ROS reactions at sites
distant from their formation [24,25]. Plants have evolved a highly
effective antioxidant system centered on plastoquinone (analo-
gous to ubiquinone in mammalian mitochondria) and efficient 1O2

quenchers such as carotenoids, to circumvent the toxic effects of
1O2 reaction with biomolecules.

The characteristics of an individual ROS will influence its capabil-
ities as an effective damaging and/or signaling molecule [26]. In
general, reactivity and signaling ability are mutually exclusive. For
example, HOd is highly reactive and displays no preference among
reactionwith different biological molecules, thus lacking the selectivity
needed for a signaling molecule. It is important to note that while
some ROS may possess signaling capabilities in a particular amount,
the large scale overproduction of ROS may also result in damage. For
the purposes of this review, the photogeneration of O2

d� and 1O2 will
be explored as they relate to ROS signaling and damage.

ROS are implicated in many signaling processes (Fig. 1), yet
understanding their biological role is hampered by their short lifetime
and indirect indicators. Many studies rely on the global application of
ROS or antioxidants and indirect measurements with fluorescent
indicators. Genetic approaches target antioxidant defenses by mod-
ulating expression of ROS scavenging enzymes [27–29]. Similarly in
the field of reactive nitrogen species, the effects of over-expressing
various isoforms of nitric oxide synthase (NOS) have beenwell studied,
although such overexpression studies have not been extensively
applied to ROS generating enzymes such as the NOXs.

Similar to other signaling molecules, the effects of ROS may be
largely determined by their concentration in the local environment.
The reactivity of many ROS and their rapid conversion by detoxify-
ing enzymes support the likelihood that their signaling capacity is
greatly limited by distance. Recent evidence has certainly suggested
that this is the case, and advances in mitochondrial targeting of ROS
probes (e.g. mitoB [30]) and antioxidants (e.g. mitoTEMPO [31] and
mitoQ [32]) confirm these ideas. The use of these agents has
allowed researchers to demonstrate the specific need for mitochon-
drial ROS in physiological responses ranging from hypertension to
aging [31,33,34]. However, just because ROS are necessary does not
indicate that they are also sufficient to exert a physiologic response.
A method to induce the localized de novo production of ROS would
pioneer experimental approaches that address the flip-side of the
“necessary and sufficient” coin – that is, sufficiency – as well as
allowing potential spatial and temporal constraints that may
influence signaling output to be tested.

Photodynamic therapy (PDT)

The idea that ROS can be generated on demand using light is
not novel. In fact, photodynamic therapy (PDT) is a clinical

technique where chemical photosensitizers are triggered to gen-
erate ROS in a target cell (e.g. tumor cell) by illuminating them.
This results in a killing field restricted by selective exposure to
light. PDT has been approved by health regulatory agencies around
the world for the treatment of a variety of cancers and pre-cancers
including those of the skin, esophagus, lung, and head and neck.
Clinical trials continue to expand the role of PDT in cancer and in
the treatment of localized microbial infections, as reviewed in
[3,35]. The predominant type of ROS generated by the photosen-
sitizer depends on the type of reaction and local oxygen concen-
trations, such that Type I reaction produces O2

d� while Type II
produces 1O2 [36]. Chemicals such as malachite, fluorescein, eosin,
Rose Bengal and methylene blue have all been used as photo-
sensitizers in PDT. Most of the photosensitizers approved for
clinical use to date have been porphyrins, chlorins, or chemically
related species [35,37]. While these chemicals have a high effi-
ciency to produce 1O2, improvement in the targeting and delivery
of exogenous photosensitizers may facilitate PDT treatments.

An initial approach to restrict targeting of a chemical photosensi-
tizer used malachite green conjugated to an antibody [38]. While this
method capitalized on the large scale ROS production of a chemical
sensitizer and specificity of immunological approaches it was limited
by the necessity to generate a target antibody, conjugate it to the
photosensitizer and apply it at selective concentrations. The develop-
ment of biarsenical fluorophore methods bypassed immunological
obstacles by utilizing a genetic –Cys–Cys–X–X–Cys–Cys– tag [39,40].
Biarsenical derivatives of fluorescent molecules (e.g. fluorescein,
FlAsH; resorufin, ReAsH) would bind with high affinity and specificity
to the motif and upon illumination, generate ROS [39,40]. These
techniques advanced the targeting specificity of photosensitizers;
however, they require the addition of exogenous chemicals, which
may result in untagged sensitizers yielding nonspecific side reactions.

Genetically encoded ROS generating proteins (RGPs)

More recently, genetically-encoded ROS generators have been
developed that circumvent the need for exogenous cofactors. The
ability to target these proteins to various cellular locations (e.g.
nucleus or lysosome) and cell types (e.g. intestine or neuronal)
using transgenic technologies allows for temporal and spatial
control of ROS production. Fluorescent proteins such as GFP have
been used in numerous applications as cell, organelle and protein
labels [41,42]. Such widespread use required these fluorescent
proteins to act as photochemically inert labels. Indeed, most GFP-
related proteins are inefficient at producing ROS (Fig. 2); however,
photochemically active versions have been discovered, and these
reagents have the potential to open new avenues of research. The
following sections will focus on genetically-encoded ROS generat-
ing proteins (RGPs), their application for cell ablation and protein
inactivation, and their potential to study ROS signaling.

Variables that control the suitability of an RGP to exert a specific
biological effect will depend on (i) the type of ROS produced and (ii)
the location of ROS production. Discerning the dominant ROS
produced by an RGP is best achieved by combining a variety of
techniques. 1O2 can be detected by the time-dependent photo-
bleaching of anthracenedipropionic acid (ADPA), monitoring the
phosphorescence of 1O2, or by using chemiluminescent probes such
as trans-1-(2'-methoxyvinyl)pyrene [16,43,44]. O2

d� phototoxicity
can be followed using free radial probes (e.g. TEMPO) [45,46] and
fluorescent probes (e.g. DHE; reviewed in [47]), or alternatively in
genetic model systems by assessing the consequences of manipulat-
ing levels of O2

d� detoxifying enzymes [48]. Differentiating between
1O2 and O2

d� derived damage involves comparing the phototoxic
effect in H2O and deuterium oxide (D2O) based media. The lifetime
of 1O2 is greater in D2O (�68 ms) [49] than H2O (�3.5 ms) [50],
therefore 1O2 phototoxicity is suggested to increase in D2O based
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systems [45]. However, 1O2 is very reactive, such that the lifetime in
a fluid solution may not translate into a complex cellular milieu.
Thus, the lack of an effect in D2O may not necessarily exclude 1O2 in
the mechanism of phototoxicity.

A distinct advantage of RGPs is their ability to be targeted to
precise, defined locations in specific cells using transgenic tech-
nology, an advantage that is not shared with chemical photosen-
sitizers. For example, the expression can be targeted to specific
areas using commonly used signal sequences (e.g. mitochondrial
targeting using the TOMM-20 targeting sequence or nuclear
targeting using the SV40 nuclear localization signal). The initial
fluorescence of the RGP preceding photobleaching can be used
to confirm protein targeting. However, low copy RGP expression
coupled with rapid photobleaching may not yield sufficient
fluorescence to determine localization [16,51] and immunodetec-
tion may be necessary. These parameters can in theory be
optimized to regulate an RGP's impact. For example, the targeting
of RGPs has been shown to cause varied responses to illumination:
nuclear localization can prevent cell division [52] while plasma
membrane targeting leads to cell death [17], as discussed in more
detail below.

KillerRed
Although the yield of ROS from GFP is lower than that produced

by chemical sensitizers [53], the ROS generated is sufficient to
oxidize 3,3'-diaminobenzidine (DAB) into a precipitate thereby
allowing ultrastructural visualization using electron microscopy
[54]. The low phototoxic effect of GFP is attributed to the structure
of GFP, which shields the chromophore (Fig. 2). KillerRed, the first
phototoxic fluorescent protein, was derived from a homolog of

GFP, anm2CP, and produces ROS upon illumination with red light
(excitation maximum of 585-nm; (Table 1)) [16]. The structure of
KillerRed has a unique water-filled channel reaching the chromo-
phore (Fig. 2), which may be responsible for its phototoxic nature
[55,56]. KillerRed is generally acknowledged to produce O2

d� via a
type I reaction [18,55]. 1O2 is not detected or is negligible since
KillerRed is unable to degrade ADPA upon illumination [18,57,58].
Furthermore, D2O does not increase KillerRed phototoxicity [51].
Finally, a recent study using Caenorhabditis elegans observed that
manipulating expression of SOD-1, a O2

d� detoxifying enzyme,
affected phototoxicity [48]. Together, these observations support a
type I reaction for KillerRed.

Active KillerRed is a dimer of two monomers, and the tendency
to dimerize can affect localization, function and folding of fusion
proteins [59]. For example, when fused to fibrillarin, KillerRed can
cause improper localization resulting in fluorescence in the cytosol
as opposed to the nuclear fluorescence observed with a fibrillarin::
EGFP fusion protein [59]. Dimerization is particularly problematic
for membrane bound proteins. One approach that circumvents
dimerization is to use “tandem KillerRed” [52]. Tandem KillerRed
is a pseudo-monomeric genetic fusion of two KillerRed coding
sequences allowing for intramolecular dimerization and matura-
tion of the protein [48,52]. This approach has been successfully
exploited to block cell division using tandem KillerRed fused to
histone H2B [52]. Recently, SuperNova, a monomeric ROS generat-
ing protein (RGP), was generated using random mutagenesis of
KillerRed [59]. SuperNova fusion proteins to fibrillarin, keratin, and
connexin 43 demonstrated proper localization [59]. SuperNova has
been used successfully as a photosensitizer [59]. The predominant
ROS responsible for the phototoxic effects in SuperNova remains to
be elucidated, since SuperNova has been postulated to produce

Fig. 2. Optogenetic approaches and ROS generating proteins (RGPs). (A) Unique properties of fluorescent proteins. In general, fluorescent proteins such as GFP (i) are
considered inert markers. Mutations in fluorescent proteins have yielded RGPs such as KillerRed (ii) and miniSOG (iii) capable of producing ROS via a type I or type II
mechanism resulting in superoxide (O2

d�) or singlet oxygen (1O2), respectively. 1O2 is a highly reactive ROS and its characteristics make it attractive use in cell ablation and
chromophore assisted light inactivation (CALI) approaches. The RGP KillerRed (KR) produces O2

d� upon illumination which can be decomposed through endogenous ROS
scavenging pathways. (B) Structural differences in the RGPs. Structural consideration must be taken in to account when targeting a protein, for example GFP can be a
monomer (i) while functional KillerRed is a dimer (ii). The size of the protein may also affect trafficking making the small size of miniSOG (iii) ideal. (C) Mechanism of
Phototoxicity. Although similar in structure to other relatively inert fluorescent proteins, the mechanism of ROS production by KillerRed is currently unknown. Recent
advances demonstrate a water (blue spheres) filled channel that reaches the chromophore (yellow) in KillerRed. In conjunction with other introduced mutations that may
help maintain the excited state of the chromophore, it is suggested to partake in KillerRed's phototoxicity. Images of PDB IDs 1EMA [92], 2WIQ [56], 4EEP [93] were
generated using PyMOL. The structure of miniSOG is currently not defined. Thus, the parent protein, LOV2 domain of Arabidopsis thaliana phototropin 2, was used in its
place. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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both O2
d� and 1O2, as measured using DHE and ADPA bleaching,

respectively [59].

miniSOG
Recently, a new RGP was introduced as mini Singlet Oxygen

Generator (miniSOG) [18]. miniSOG is a 106 amino acid green
fluorescent flavoprotein generated from Arabidopsis phototropin 2
(Fig. 2) with an excitation maximum of 448-nm (Table 1) [18]. The
small size of miniSOG facilitates protein tagging and is less likely
to influence protein targeting than larger tags. MiniSOG requires a
flavin mononucleuotide cofactor (Fig. 2), but unlike other types of
protein tags where the cofactor must be added exogenously, the
flavin mononucleotide is endogenously present in cells. Like
SuperNova, miniSOG monomers are capable of generating 1O2 as
determined by photobleaching of ADPA [18], but they have not
been shown to generate O2

d� . However, the ability to generate
localized, reactive 1O2 in high yield has made this RGP an effective
tool for both electron microscopy imaging and for inducing cell
death [18,60].

Applications

Photoablation

In a recent study, KillerRed was fused to an antibody to target
tumor cells [51]. The resulting photoinduction of ROS resulted in
specific tumor cell death [51]. This suggests that genetically-
encoded photosensitizers may be useful for PDT [51], but the
more obvious applicability is to basic research. This is especially
true in model organisms such as the nematode C. elegans and mice
where transgenesis, or the expression of recombinant transgenes,
is routine. For example, optogenetic reagents such as ChR2 and HR
are routinely used in these models as promoter-driven molecular
switches to turn specific neurons on and off and to define their
role in complex behaviors [15].

So what is the virtue of a genetic photosensitizer? One advantage
is throughput: laser ablation has classically been used in C. elegans to
define a cell's role in development or behavior. This approach is
labor intensive and can only be performed on one animal at a time.
However, more recent approaches have adopted RGPs for cell abla-
tion in C. elegans, in which transgenic populations of worms can be

exposed to light, and both KillerRed and miniSOG have been used for
this purpose [48,60].

With respect to cell specificity, some cell types may be predis-
posed to handle ROS and have an increased ROS scavenging
mechanism. A recent study expressed plasma membrane-targeted
tandem-KillerRed in different classes of C. elegans neurons and found
individual neurons, such as the AVM mechanosensory neuron or the
AWB amphid sensory neuron, that are more resistant to ROS than
other neurons [48]. One suggested mechanism is a higher expression
of ROS detoxifying enzymes such as SOD [48]. Similarly, the
intracellular targeting of an RGP such as miniSOG may impact the
efficiency of photoablation. For example, aconitase isoforms ACO-1
and ACO-2 are expressed in the cytoplasm and the mitochondrial
matrix, respectively. Cytosol targeting of miniSOG through fusion to
ACO-1 resulted in a weak phototoxic effect, while mitochondrial
targeting through fusion to ACO-2 yielded more cell death [60].
Similarly, while the mitochondrion plays a role in mediating cell
death, targeting different regions of the organelle with an RGP can
result in variations in photoablation efficiency. For instance, a fusion
between miniSOG and the N-terminus of a complex IV subunit
(COX8a), which is found in the mitochondrial matrix, was less potent
than outer membrane targeting using the N-terminus of TOMM-20
[60] (Fig. 3). Again, this may represent the localized ROS buffering
capacity. Mitochondrial-specific isoforms of SOD may play a role,
or perhaps the effect is related to the role of outer membrane
permeabilization in the formation of the apoptosome [61].

The illumination parameters are also important (Fig. 3). As one
would predict, phototoxic effects can be graded by modulating the
duration and intensity of light [48,60]. However, changing the light
exposure from continuous to pulsed has also been shown to
increase the effectiveness of cell ablation in C. elegans expressing
outer membrane targeted miniSOG in motor neurons [60]. Pulsed
light may allow for oxygen to diffuse into the RGP active site and
thus produce more ROS. In applications for treating tumors in vivo,
the transparency of the tissue and size of the tumor will become
important aspects of the treatment protocol since light will need
to penetrate deeper into the tissue to elicit ROS generation [62].
The penetration of light through the tissue will depend on the
wavelength, such that 600–1200 nm is the most effective [3]. As
such, the development of far-red-shifted variants of RGPs would
greatly facilitate their clinical use. These and other observations
suggest that the frequency, timing, duration, and intensity all
contribute to the cytotoxicity of ROS, and this theme becomes
even more important when considering ROS as a signaling
molecule, as discussed below.

Chromophore-assisted light inactivation (CALI)

Chromophore-assisted light inactivation (CALI) uses ROS to
selectively inactivate a protein of interest. Ideally, the type of
ROS produced would be highly reactive and have a short diffusion
distance (e.g. HOd or 1O2). In this regard, malachite green and
FlAsH are effective agents [38–40]. However, RGPs increase the
specificity of CALI by keeping protein of interest in close proximity
to the photosensitizer in the form of a fusion protein [16,17,63].
Upon illumination, ROS sensitive residues in the target protein will
be impacted by ROS, potentially resulting in altered protein
function. CALI is a particularly powerful approach to investigate
the acute loss- or gain-of-function of a protein in a living organism
when knockout or over-expression of the protein is lethal. CALI
requires exposing a chromophore to light with an optimized light
dose and increased spatial precision to result in the acute
inactivation of a target protein [64]. The specificity of CALI is
paramount: ROS generated must react with the protein to which
the photosensitizer is attached and titered to avoid collateral

Table 1
Light-induced ROS production can be through a variety of chemical and genetic
photosensitizers. Each photosensitizer has unique properties and abilities to
generate ROS. Quantum yield of 1O2 is defined as the number of photosensitized
1O2 molecules per absorbed photon.

ROS
producer

Monomer
or dimer

Size
(kDa)

Excitation
(max)

Emission Quantum
yield of 1O2

Malachite
green

628 o0.003
[79]

GFP Monomer 27 395 475 b

HBDI 0.004 [80]
FMN 450 535 0.051 [18]

KillerRed [16] Dimer 27a 585 610 0.000 [18]
SuperNova [45] Monomer 29 579 610
miniSOG Monomer 15.3 448 500/528 0.47 [18]
ReAsH [36] 593 608 0.024 [18]
FlAsH [35] 508 528
Rose Bengal 540 550–600 0.75 [18]

Abbreviations as follows: HBDI, 4-hydroxybenzylidene-1,2-dimethylimidazoline
(EGFP fluorophore); FMN, flavin mononucleotide.

a Indicates the size of monomer.
b Unquantifiable.
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damage. Both KillerRed and miniSOG fusion proteins have been
used successfully for CALI [16,17,63]. Published approaches for
miniSOG fusion proteins utilize pulses on the order of minutes and
light intensities in the 5–20 mW/mm2 range [63,65]. Interestingly,
protocols for photoablation incorporate reduced power (57 mW/
cm2, or roughly �25� less) for extended periods [60] which
may reflect the intracellular targeting of RGP fusion proteins or,
potentially, activation of cell death pathways by ROS. For example,
RGP targeting to the outer mitochondrial membrane, which is a
critical to apoptosis, was most efficient at inactivating neuronal
cell function in C. elegans [60]. CALI requires selectivity, and recent
advances demonstrate that miniSOG fusions to synaptic proteins
(VAMP2 and SYP1) can inhibit neurotransmitter release while
maintaining spatial specificity [63].

ROS signaling – a new frontier

An unexploited aspect of RGPs is their unique suitability to
study ROS signaling. The following section speculates on future
approaches enabled by this application. Global redox status is an
important component of cell homeostasis, but transient, localized
ROS production is increasingly being recognized as physiologically
significant in its own right. Mechanistically, ROS can interact with
redox-sensitive residues (e.g. thiols) and change shape or charge
of the target protein resulting in modified activity. For example,
ROS modification of thiols can activate matrix metalloproteinases
[66,67], and there are a variety of postulated redox sensors involved
in metabolic plasticity [68–71]. ROS can also activate or stabilize
transcription factors such as Nrf2 or hypoxia-inducible factor-1α
resulting in adaptation to stress conditions or increasing antiox-
idant defenses (for review, see [72–75]). Depending on the type of
reaction, these modifications may be reversible, as well [76].

There are various sources of ROS within the cell and an
important point source for ROS is the mitochondrion. In addition
to being the powerhouse of the cell, mitochondria also feature

prominently in ROS signaling. Mitochondria can couple metabo-
lism to ROS through modifications in enzymes [77,78] and Krebs
cycle intermediates [79,80]. Different types of ROS have different
diffusion capabilities and reactivity towards targets. O2

d� and H2O2

are produced in a number of cellular reactions; however, the initial
ROS generated by the mitochondrion is O2

d� which is rapidly
converted by superoxide dismutase (SOD) to freely diffusible H2O2

(Fig. 1). ROS generated in the mitochondrion can impact the
cytosol and act as a second messenger though the process of
“ROS-induced ROS release” [81]. During this process, ROS gener-
ated within a mitochondrion can surpass a threshold resulting in a
transient increase in electron transport chain generated ROS
which is ultimately released in the cytosol [81]. This process can
foster ROS production and contribute to pathologies such as
ischemia-reperfusion injury [81,82].

The reactive nature of ROS makes studying their role in cellular
responses difficult. The ability to target KillerRed to highly-
localized domains makes it an attractive approach to mimic
biological ROS production. More importantly, the site of genera-
tion or cellular compartment will also determine the physiological
output of the ROS signal (Fig. 3). For example, the mitochondrial
matrix contains unique ROS scavenging capabilities that are
unique to the cellular cytosol [12]. Furthermore, the formation
and scavenging of ROS in a local environment can contribute to
levels of ROS that are dynamic (Fig. 4). The ability of generate ROS
with RGPs could help understand ROS dynamics.

As an example, there are several sites of ROS production in the
mitochondrial respiratory chain. A reasonable question to ask is
whether ROS produced at each of these sites is equal in its impact
on mitochondrial physiology or signaling capacity (Fig. 3). Simi-
larly, mitochondria contain a matrix and an intermembrane space,
and the concentration/expression of antioxidants and ROS scaven-
gers may not be uniform between them [83]. Does it matter to the
mitochondrion on which side of a membrane ROS is produced?
The effect of mitochondrial ROS can extend beyond the mitochon-
drion. Recently, ROS were shown to modify DNA sequences in the

Fig. 3. Spatial and temporal control of ROS production using Optogenetics. (A) Genetically encoded RGPs allow for spatial control. An RGP can be targeted to specific sites
throughout the cell such as the nucleus or mitochondrion. The spatial control can induce ROS-mediated DNA modifications, subsequently, resulting in altered transcription.
The characteristics of an individual ROS can restrict their distribution. For example, O2

d� is a charged ROS that has limited permeability. Targeting a RGP to each side of a
membrane can determine the relevant signaling environment. (B) Temporal control of ROS production. In addition to the site of formation, the temporal control of ROS
production can affect the physiologic output. Illumination protocols which alter the frequency (i), timing (ii), duration (iii) or intensity (iv) can affect the propagation of ROS
levels through particular environments, each with a particular ROS detoxifying mechanism. Abbreviation: IMS, intermembrane space.
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hypoxia response element resulting in altered transcription [9].
What is the origin of these ROS and how does the nucleus handle
them? Presumably, as our ability to reduce the sphere of ROS's
influence through photoactivation of transgenic RGPs, our ability
to answer these types of questions will increase.

Having a repertoire of RGPs that produce different types of
ROS also diversifies the types of questions that we can ask. The
different ROS have different signaling and damaging capabilities.
For example, the type II mechanism of miniSOG is well-suited for
CALI approaches and light-inducible loss-of-function models.
Since 1O2 is highly reactive and cannot interconvert with endo-
genous ROS species, it is more likely to cause damage than to elicit
signal transduction. However, the type I mechanism of Killer-
Red leads to the production of O2

d� and should be amenable to
endogenous detoxification mechanisms, resulting in diffusible ROS
signaling molecules such as H2O2. Hence, the use of KillerRed will
facilitate determining how a cell responds to “normal” local ROS
production. In this respect, KillerRed fusions have been used to
elicit photo-inducible changes in mitochondrial morphology [48].
Localized to the mitochondrial outer membrane via the TOMM-20
targeting, KillerRed was able to fragment the reticulated network
of mitochondria in body wall muscle of C. elegans [48]. The fact
that normal morphology was restored over time without signifi-
cant organism deficits [48] suggests, like CALI approaches, that the
amount of ROS is titratable on a sub-lethal scale. Interestingly,
TOMM-20 targeting of miniSOG to the mitochondrial outer mem-
brane caused efficient 1O2-mediated cell ablation [60]. Although
these two experiments are not directly comparable due to differ-
ences in cell-specific RGP expression and illumination protocols, it

would be intriguing to assess whether this difference in outcome
is related to the specific type of ROS generated.

Other uses of KillerRed that may be related to ROS signaling
include cell-specific membrane targeting in zebrafish, which
revealed a dose-dependent relationship between damage and
illumination [84]. When KillerRed expressed at the plasma mem-
brane in the heart was illuminated for 5 min the larvae developed
pericardial edema. When illumination time was increased to 8 min
signs of apoptosis appeared in addition to edema [84]. Although
ROS signaling was not directly assessed, it demonstrates that
illumination of RGPs can be titrated to produce levels of ROS that
can elicit a physiological output rather than overt cell death.
Recent reports have used KillerRed-generated ROS to study mito-
phagy, which is the autophagic removal of mitochondria [85,86].
Impaired mitochondria can induce Parkin translocation to the
mitochondrion and initiate recruitment of autophagy machinery
[87]. The optogenetic approach allows for the induction of ROS at
specific mitochondria rather than widespread activation and may
further our understanding of mitophagy in vivo [85,86].

RGPs may also allow us to address existing controversies regarding
ROS generation and handling. As a specific example, in vivo measure-
ments using a permutated yellow fluorescent protein targeted to the
mitochondrial matrix (mt-cpYFP) have been suggested to reflect
spontaneous bursts of O2

d� at the single mitochondrion level [88].
This phenomenon was termed “superoxide flashes” and is postulated
to reflect specific aspects of mitochondrial metabolism. Changes in
mt-cpYFP fluorescence responded as predicted to ROS scavengers and
O2
d� mimetics [88]. However, the nature of the mt-cpYFP flashes has

been hotly debated [89,90]. In particular, the high degree specificity of
mt-cpYFP for O2

d� has been questioned. One alternative proposes that
the mt-cpYFP flashes are instead reflecting oscillations in mitochon-
drial pH [90]. An opportunity to challenge the controversy would be
to use an RGP (e.g. KillerRed) and determine its effect on mt-cpYFP
fluorescence. Modulating the frequency of light (e.g. continuous or
pulsatile) would alter O2

d� production, which, if the current theory is
correct, would allow cause and effect to be assigned to mt-cpYFP
flashes.

Conclusion

ROS play an important role in normal organism physiology and
disease states [1]. ROS have two capabilities: (1) to cause damage
through oxidative modifications and (2) to initiate signaling
through modification of specific redox-sensitive moieties. Cur-
rently, it is difficult to distinguish between these capabilities
independently. Most studies use the global administration of
antioxidants or genetic ablation of ROS scavengers (e.g. SOD) to
determine a role for ROS in a pathway or response. The advent of
genetically encoded RGPs allows for the temporal and spatial
control of ROS production. RGPs can be used to tag proteins of
interest and expressed at physiologic levels [91]. Improvement in
light titrations and delivery may allow for the use of RGPs to
studying ROS with unmatched precision in live organisms, such as
the genetically-amenable and optically transparent C. elegans
model. Ultimately these probes may help define redox signaling
pathways and help determine how their dysfunction relates to
disease.
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