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Abstract
The two-hit model of carcinogenesis provides a valuable framework for understanding the role of
DNA repair and tumor suppressor genes in cancer development and progression. Under this
model, tumor development can initiate from a single somatic mutation in individuals that inherit
an inactivating germline variant. Although the two-hit model can be an overgeneralization, the
tendency for the pattern of somatic mutations to differ in cancer patients that inherit predisposition
alleles is a signal that can be used to identify and validate germline susceptibility variants. Here,
we present the Somatic-Germline Interaction (SGI) tool, which is designed to identify statistical
interaction between germline variants and somatic mutational events from next-generation
sequence data. SGI interfaces with rare-variant association tests and variant classifiers to identify
candidate germline susceptibility variants from case-control sequencing data. SGI then analyzes
tumor-normal pair next-generation sequence data to evaluate evidence for somatic-germline
interaction in each gene or pathway using two tests: the Allelic Imbalance Rank Sum (AIRS) test
and the Somatic Mutation Interaction Test (SMIT). AIRS tests for preferential allelic imbalance to
evaluate whether somatic mutational events tend to amplify candidate germline variants. SMIT
evaluates whether somatic point mutations and small indels occur more or less frequently than
expected in the presence of candidate germline variants. Both AIRS and SMIT control for
heterogeneity in the mutational process resulting from regional variation in mutation rates and
inter-sample variation in background mutation rates. The SGI test combines AIRS and SMIT to
provide a single, unified measure of statistical interaction between somatic mutational events and
germline variation. We show that the tests implemented in SGI have high power with relatively
modest sample sizes in a wide variety of scenarios. We demonstrate the utility of SGI to increase
the power of rare variant association studies in cancer and to validate the potential role in cancer
causation of germline susceptibility variants.

1. Introduction
In 1971, Alfred Knudson proposed the two-hit hypothesis for retinoblastoma, demonstrating
that the distribution of age-of-onset for familial retinoblastoma cases was consistent with
inheritance of a germline variant followed by a somatic mutation, while age-of-onset for
sporadic cases was consistent with two independent somatic mutations1. The gene
responsible for this process was identified 15 years later as RB1, the first tumor suppressor
gene2,3. The two-hit hypothesis is now the classic model for DNA repair and tumor
suppressor genes, which follow a dominant mode of inheritance but are typically recessive
at the cellular level. This model provides a useful framework for understanding cancer
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predisposition, although DNA repair and tumor suppressor genes can be either dominant or
recessive at the cellular level, depending on the context. Germline mutations in the tumor
suppressor gene TP53 follow both one- and two-hit models in Li-Fraumeni syndrome, with
some inherited genetic causes resulting from cellular recessive loss-of-function nonsense
variants and others resulting from dominant gain-of-function missense variants4. The DNA
repair genes BRCA1 and BRCA2 variants are also either recessive or dominant at the cellular
level depending on the type of cancer, with complete loss of the wild type allele in ovarian
cancer but occasional haplo-insufficiency in breast cancer5. In general, inherited variants in
the tumor suppressor gene APC are recessive at the cellular level in colorectal cancer6, but
can exert dominant effects that can lead to chromosomal instability7. In contrast to DNA
repair and tumor suppressor genes, oncogenes are generally dominant at both the germline
and cellular levels, and thus tend to follow a one-hit model. Nonetheless, there are a number
of examples of oncogenes that follow a two-hit model8. Thus, although one- and two-hit
models are sometimes overgeneralizations, many genes display a pattern of somatic
mutational events in tumors that occur more or less frequently than expected among
individuals that carry particular germline susceptibility variants.

Next-generation sequencing now provides efficient, high-coverage interrogation of nearly
the entire genome and is revolutionizing our understanding of somatic mutational events that
drive tumorigenesis9-11. The use of next-generation sequencing to identify rare germline
variants that influence cancer risk also holds great promise but is fundamentally a more
difficult problem given that purifying selection ensures that intermediate-penetrance
germline variants are usually very rare. A number of rare variant association tests have been
developed recently to identify disease-susceptibility genes from case-control next-generation
sequence data. The primary advantage of these methods over traditional approaches is that
they aggregate rare variants to perform a single statistical test for each gene, which greatly
increases power while reducing the multiple testing burden. However, as we have previously
shown, although rare variant association tests greatly improve statistical power, studies
involving thousands of cases and controls will likely be needed to identify novel gene
associations for common cancers12-14. The tendency for somatic mutational events to occur
more or less frequently than expected given the presence of a germline susceptibility variant
is an additional piece of evidence that can aid in the search for novel gene-cancer
susceptibility associations or in the validation and characterization of candidate germline
susceptibility variants. The primary motivation of this work is to provide a framework for
identifying these statistical interactions between somatic and germline variation in a high-
throughput manner that takes advantage of available bioinformatic tools and existing next-
generation sequencing capacity. The methods we present are implemented in the Somatic
Germline Interaction (SGI) tool.

SGI analyzes next-generation sequencing data from tumor-normal tissue pairs and normal
tissue in matched controls to determine whether germline variation in a gene or pathway
statistically interacts with the occurrence of somatic events. The two-hit model describes one
process that can result in statistical interaction, in which two damaged copies of a gene are
required to initiate tumorigenesis. If the two-hits model holds, then the tumors of cancer
patients with a deleterious germline variant in a driver gene are likely to have a second
somatic mutation event in the same gene. Another process that can result in statistical
interaction involves cis-acting germline variants that can greatly increase the somatic
mutation rate in the local genomic region15-18. SGI identifies candidate germline
susceptibility variants by interfacing with the Variant Annotation, Analysis and Search Tool
(VAAST)19. The rare variant association test in VAAST incorporates amino acid
substitution severities, phylogenetic conservation, and the distribution of allele frequencies
in cases and controls to variants and genes that are likely to influence disease
susceptibility12. After identifying individuals in the study with candidate germline variants,
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SGI then analyzes tumor-normal pair sequence data to evaluate whether somatic mutational
events occur more or less frequently than expected by testing the null hypothesis that the
occurrence of somatic events is independent of the presence or absence of germline
variation.

We divide somatic mutational events into two categories: somatic mutations and preferential
allelic imbalance. SGI implements the Allelic Imbalance Rank Sum (AIRS) test to evaluate
evidence for preferential allelic imbalance. Specifically, within each gene or pathway, AIRS
tests whether the chromosomes harboring putatively deleterious germline mutations are
preferentially amplified in tumor tissues. Allelic imbalance is an important signal of somatic
mutations resulting from copy number variants (CNVs) or loss-of-heterozygosity (LOH)
that has been used to identify and validate modest penetrance germline-cancer associations
in both humans15,20,21 and mice22-24. In addition to allelic imbalance, SGI also evaluates
whether somatic mutations occur more or less frequently than expected in the tumors of
individuals that harbor putatively deleterious germline mutations using the Somatic
Mutation Interaction Test (SMIT). SMIT only considers single nucleotide and small indel
somatic mutations that do not result in LOH or CNVs in a large genomic region, as these
larger somatic events are evaluated by allelic imbalance evidence. SGI also combines AIRS
and SMIT to provide a single unified framework to detect statistical interaction between
germline and somatic variation.

SGI has a number of potential applications. For known germline-susceptibility genes, SGI
can validate germline variants of unknown significance. For genes that are known to be
significantly mutated in tumors but not known to play a role in cancer predisposition, SGI
can search for novel germline variant associations. SGI can also identify novel cancer-
associated genes that would be much more difficult to detect than germline case-control
studies or somatic mutational analysis alone due to rarity and/or effect size. Here, we present
the methods implemented in SGI and evaluate the performance of the tool in a wide variety
of scenarios.

2. Methods
2.1. Identifying candidate germline variants

SGI processes VAAST output files to identify individuals with candidate germline
susceptibility variants. For each gene, any variant that has a VAAST score of greater than 0
is identified as a candidate. SGI then performs the AIRS and SMIT tests based on the binary
classification of individuals with and without candidate germline susceptibility variants. The
VAAST score threshold is a tunable parameter. Other association tests can be supported, but
require combining the association test results with a variant classifier – such as SIFT25,26,
PolyPhen-226, Align-GVGD27,28, or VAAST 2.012 – to identify candidate susceptibility
variants. For the AIRS and SMIT tests below, set A contains the affected individuals with
candidate germline susceptibility variants, and set B contains all other affected individuals.

2.2. AIRS
AIRS evaluates candidate germline susceptibility variants to test for preferential allelic
imbalance. For each individual i at site j, we use the raw somatic read counts for the
reference and non-reference allele for each germline heterozygous to calculate the binomial
one-tail probability, pij, that the allele frequency of the non-reference allele is greater than
0.5. To control for inter-sample variation in the distribution of allelic imbalance throughout
the genome, we transform pij to the percentile rank, fij, using the empirical distribution
function of binomial p-values among all variant sites throughout the genome for each
individual. This transformation does not necessarily require whole-genome data and should
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effectively control for inter-sample variation in genome-wide levels of allelic imbalance in
targeted gene panels that include as few as 50 genes. To control for differences in the level
and distribution of allelic imbalance throughout the genome, we restrict the test to variants
in or around the gene of interest (by default, all variants between the beginning of the first
and the end of the last exon). Let G equal the set of variants around the gene, and let C equal
the subset of candidate germline susceptibility variants. Our test statistic is a Wilcoxon-
Mann-Whitney U that compares values of fij for candidate variants to all other variants in the
gene among individuals that do not carry a candidate germline variant:

(1)

where vA is the total number of candidate alleles. When the sample size of either group is
under 20, the exact one-tail null probability is calculated. Otherwise, a normal
approximation is assumed.

Although we include only candidate germline alleles from individuals in set A, we include
all heterozygous germline alleles from individuals in set B. Including multiple variants from
an individual is a violation of the independence assumption in the U test, given that the
observation of allelic imbalance in one variant would alter the expected distribution of read
counts for other variants in the region. However, in our tests, we observed a modest increase
in power and no inflation in Type I error by including all variants from B for sample sizes as
small as 40. The inclusion of all heterozygous germline alleles is designed to detect subtle
signals of allelic imbalance resulting from low levels of tumor purity or multiclonality. If the
allelic imbalance signals are infrequent yet unambiguous, a more powerful alternative is to
only include alleles in the rank sum test that are on the tails of the binomial distribution
(e.g., pij less than 0.05 or greater than 0.95). These thresholds can be set as optional
parameters.

We evaluated two allelic imbalance metrics other than the binomial, the proportion of non-
reference alleles and a one-sided Fisher's exact test comparing read counts between normal
and somatic tissue. The proportion of non-reference alleles suffered from an inability to
account for differences in coverage depth. The Fisher's exact test had the advantage of
controlling for allele-specific read count biases that are present in both the normal and
somatic data, but this was offset by a modest reduction in power. More sophisticated
methods that incorporate haplotype information to test for allelic imbalance, such as
Haplotype Amplification in Tumor Sequences (HATS)29 or Haplotype LOH (hapLOH)30,
may provide a replacement to the binomial in the future. In all cases, the raw allelic
imbalance metric should be transformed using the empirical distribution function for each
individual to control for inter-sample variation in the level of allelic imbalance throughout
the genome.

2.3. SMIT
SMIT is designed to evaluate whether somatic mutations occur more or less frequently than
expected for individuals with a candidate germline susceptibility variant in a gene or
pathway of interest. More generally, SMIT tests for statistical interaction between somatic
mutation frequencies and any binary classifier in a defined genomic feature. SMIT addresses
the same general question as the Clinical Correlation Test (CCT) in the Mutational
Significance of Cancer package (MuSiC)31, but provides the additional advantage of
controlling for inter-sample variation in the somatic background mutation rate. Because the
same genomic regions are evaluated in the two sample groups, the method is robust to
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heterogeneity in the mutational process between genomic regions, which is a major potential
source of false-positives when searching for cancer-associated genes10.

Let M equal the set of individuals with at least one somatic mutation observed in the
genomic feature (typically gene). Let ti equal the total number of somatic mutations
throughout the genome for sample i, and let l equal the proportional length of the gene in
base pairs relative to the total sequenced region of the genome. For each sample i, we
estimate the background mutation rate at the gene by the approximation ri = ti×l. Let sA and
sB equal the probability for sets A (affected individuals with candidate germline
susceptibility variants) and B (all other individuals), respectively, that a somatic mutation
occurs in the gene through a process that is unrelated to the background mutation rate, which
approximates the somatic driver mutation rate. SMIT tests the null hypothesis that sA = sB
against the alternative hypothesis that sA ≠ sB using a likelihood ratio test:

(2)

We estimate the maximum likelihood of s, sA, and sB using a grid search. Note that when ri
does not vary between samples and the maximum likelihood of s, sA, and sB are all greater
than 0, Eq. 2 collapses to a multinomial likelihood ratio test. We estimate the significance
level of the two-tailed test using a chi-square approximation (−2lnΛ ~ χ2

1). We also
implement one-sided tests by applying the appropriate transformations to the significance
levels of the two-sided test. The one-tailed test. sA > sB evaluates a cellular recessive (or
partially recessive) two-hit hypothesis and the one-tailed test. sB > sA evaluates a cellular
dominant (or partially dominant) one-hit hypothesis.

2.4. Somatic-Germline Interaction (SGI) Tool
SGI implements both AIRS and SMIT, and also combines the two tests to evaluate two- and
three-hit hypotheses using a Fishers Combined Probability Test (FCPT). We refer to the
combined AIRS-SMIT test as the SGI test. We also use the FCPT to perform the VAAST-
AIRS, VAASTSMIT, and VAAST-SGI tests in Figure 4.

2.5. Datasets
The breast cancer samples used in Figures 1 and 3 are from Complete Genomics (CG)
whole-genome sequence data of a tumor-normal pair32. This sample exhibited high levels of
allelic imbalance throughout the genome, with 77% of heterozygous germline SNPs having
a somatic allele frequency significantly different from 0.5 at the 0.05 level. In Figures 1 and
4, we used the breast cancer sequence data to establish a distribution of read counts to
represent next-generation sequence data in tumors. For individuals without candidate
germline susceptibility alleles (group B), we sampled 50 Kb segments with replacement
from the breast cancer whole-genome data. To represent the marker density of whole-exome
data (approximately 2% of the genome), we performed rejection sampling on each
heterozygous germline variant, rejecting each variant with probability 0.98. The top half of
Figure 1 was based on the tumor tissue data and represents loci with relatively high levels of
allelic imbalance in group B. The bottom half of Figure 1 was based on the normal tissue
data and represents loci with very low levels of allelic imbalance in group B. For candidate
germline susceptibility alleles in Figure 1 (group A), we simulated the distribution of read
counts using the following procedure: For each candidate germline variant in each
individual, we first designated it as preferentially amplified with probability q (between 0.1
and 1). Note that the proportion of samples with higher frequency of the preferred allele is
approximately q+(1-q)b, where b is the proportion of variants with a higher frequency for
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the preferred allele in group B (Figure 1). The read counts of alleles not designated as
preferentially amplified were randomly sampled from breast cancer whole-genome data. For
the remaining variants, we set the total number of reads to a Poisson random variate, t, with
mean equal to 52 to match the mean read count in the normal tissue whole-genome data. We
then set the expected proportion of the preferred allele, w, to between 0.6 and 1 and the
number of non-reference to a binomial random variate with parameters t and w. In Figure 4,
the breast cancer ATM case-control sequence data in Figure 4 is from a meta-analysis
described in13. The genomic variants in group B were simulated by sampling 50 Kb
segments from the breast cancer whole-genome data, and the variants in group A were
simulated using the same protocol as Figure 1, with w equal to 1.

3. Results
We evaluated the performance of AIRS, SMIT, and SGI across a range of parameter values
using a combination of simulated data and bootstrapped next-generation sequencing datasets
(see Methods). In each comparison, we divide the cases into two groups, the normal group
and the candidate germline group, representing individuals with and without candidate
germline susceptibility variants, respectively.

To benchmark AIRS, we simulated the distribution of read counts according to the
parameters in Figure 1 for the candidate germline group. For the normal group, we sampled
whole-genome sequence data from the breast cancer tumor-normal pair. We evaluated two
scenarios for the normal group, one with very low rates of allelic imbalance and one with
relatively high levels of imbalance (see Figure 1). When the level of allelic imbalance in the
normal group is low, preferential allelic imbalance in the candidate germline group is easier
to detect, but AIRS performs well in both scenarios when 40 or more individuals are
included in the candidate germline group or when the proportion imbalanced reads for the
preferred allele is high. For example, with complete amplification of the preferred allele,
AIRS has approximately 99% power at the significance level (α) of 0.05 with a sample size
of only two individuals in the candidate germline group for both scenarios. Because AIRS is
designed to detect preferential allelic imbalance, it cannot be used to search for genes that
tend to follow a one-hit model.

The performance of SMIT depends heavily on the frequency of somatic mutations in the
gene. When the mutation frequency is high in the normal group (e.g. 0.5 for APC and
colorectal cancer)11, SMIT can detect both relative increases and decreases in the candidate
germline group (Figure 2). In contrast, when the mutation frequency is very low in the
normal group, SMIT can only detect mutation frequency increases in the candidate germline
group. Thus, genes that follow a one-hit model can only be detected if somatic mutations are
common or if the sample sizes are large. In contrast, genes that strictly follow a 2-hit model
can be detected with nearly 100% power at α = 0.05 with sample sizes of just 10 individuals
in the candidate germline group, although the detection of subtle increases in mutation
frequency require substantially larger sample sizes.

SMIT is designed to control for inter-sample variation in background mutation rates
between samples, which can vary by three orders of magnitude10. Systematic differences in
background mutation rates between the candidate germline group and control group can
result from random sampling or differences in sample collection strategies. To investigate
this problem, we performed simulations with identical somatic driver mutation rates but
highly differentiated background somatic mutation rates between the candidate germline
group and the control group. We found SMIT properly controlled for Type I error (Figure
3A). In comparison, a Fisher exact test (e.g. CCT in MuSiC31) exhibited a highly inflated
Type I error rate (Figure 3B).
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SGI is designed to interface with VAAST to increase the power of a rare variant association
study by combining case-control and tumor-normal pair sequence data. To demonstrate the
utility of this approach, we analyzed a breast cancer case-control sequencing dataset of the
gene ATM in VAAST, and then applied SGI to evaluate the potential change in
performance. We set the number of individuals in the candidate germline group equal to the
number of individual variants that had a positive VAAST score from the ATM results. We
set the frequency of somatic mutations in the normal group to 5%, which is the reported
frequency of ATM mutations in basal-like breast cancer9. For the candidate germline group,
we varied the frequency of somatic mutations in the candidate germline group from 0 to 0.5
and set the frequency of preferential allelic imbalance equal to the somatic mutation
frequency. For each individual, preferential allelic imbalance and somatic mutation were
mutually exclusive events. Figure 4 reports the sample size needed to achieve 80% power
using SGI alone (4A-4B) and in combined VAAST-SGI analyses (4C). When somatic
mutational events are common, combining VAAST with SGI can result in dramatic
reductions in required sample sizes.

4. Discussion
SGI incorporates several measures to avoid artifactual findings that can result from studies
of somatic mutational events due to heterogeneity in the mutational process10. Because all
comparisons are restricted to the same genomic regions, we avoid issues resulting from
regional variation in mutation rates across the genome, which is the most critical source of
mutational heterogeneity10. The transformation of binomial probabilities to empirical
probabilities for each individual in the AIRS test allows subtle signals from low purity
tumor samples to be combined with stronger signals from pure tumor samples while
preserving power and controlling for inter-sample variation in genome-wide levels of allelic
imbalance. AIRS is comparable to the Amplification Distortion Test (ADT) in that both tests
are designed to detect preferential allelic imbalance, with AIRS designed for next-generation
sequence data and ADT designed for high-density SNP microarray data33. SMIT tests for
differences in the frequency of somatic mutational events between two groups at the same
locus. SMIT performs the same role as the CCT test in MuSiC31, but additionally controls
for inter-sample variation by incorporating sample-specific background mutation rates.

The tests we present here are well powered for a broad range of realistic scenarios. Studies
of preferential allelic imbalance have reported the proportion of samples with higher
frequency of the preferred allele of over 60% in colorectal cancer for a common
susceptibility SNP at 8q24.2121, 70% in colorectal cancer tumors for a familial susceptibility
variant in AURKA20, over 80% in glioblastoma for common susceptibility SNPs in the
LHFPL3 gene15, and 80%, 90%, and 100%, respectively, for skin tumor susceptibility
haplotypes in Skts6, Skts1, and Skts2 in mice22-24. Figure 1 demonstrates that the sample
sizes needed for AIRS to detect such signals are generally modest. For example, when 70%
of samples have a higher frequency of the preferred allele, AIRS can detect preferential
allelic imbalance with over 85% power from a sample of 20 individuals with germline
susceptibility variants and a comparison group of 200 individuals. Unlike allelic imbalance,
which can be detected from SNP microarray data, most somatic mutations can only be
detected with sequence data, and thus, fewer studies of somatic mutation-germline
interaction have been conducted. However, promising examples include a 10-fold increase
in somatic mutations (from approximately 5% to approximately 50%) in a specific region of
APC among carriers of a particular germline susceptibility variant in human colorectal
cancer34, and an 88% somatic mutation rate in carriers of the Skts2 susceptibility haplotype
in mice23. Both scenarios could be detected by SMIT with greater than 80% power with a
sample of only 10 individuals with candidate germline variants an a comparison group of
200 individuals (Figure 2).
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The example of ATM and breast cancer in Figure 4 provides an illustration of how SGI can
be combined with VAAST to identify novel cancer-gene associations and to yield new
insights for known associations. ATM is not a classic two-hit tumor suppressor gene. Some
rare missense germline variants have a dominant gain-of-function effect, and nonsense
germline variants are reported to primarily increase the risk of breast cancer via haplo-
insufficiency13,35. However, reports of rare ATM germline mutations and loss of the wild-
type allele in tumors35 is suggestive of potential germline-somatic interaction with ATM and
breast cancer36. Figure 4 illustrates the sample size needed to conclusively detect a somatic-
germline interaction effect using AIRS, SMIT, or SGI given a range of possible effect sizes.
Figure 4 also demonstrates how SGI can be combined with VAAST to reduce the sample
size needed to identify novel cancer-gene associations from next-generation sequence data
for genes that have patterns of variation similar to ATM in breast cancer.

In a number of reported scenarios, preferential amplification tends to occur in conjunction
with somatic mutations in a three-hit model, involving a germline susceptibility variant, a
somatic point mutation on the same haplotype, and a subsequent CNV or LOH event that
amplifies both the germline and somatic variants16-18,23. JAK2 and myeloproliferative
neoplasms provides one such example. Somatic mutations preferentially occur on
haplotypes with germline risk variants in JAK2 80% of the time, and frequent third-hit
somatic events result in homozygosity for both the germline risk allele and the somatic
mutation16-18. One potential explanation for this three-hit model is that cis-acting germline
variants create a hypermutable region of the gene and that the subsequent somatic mutations
are then amplified by the second somatic event, after which the somatic mutation (driver)
and germline variant (passenger) increase in frequency together by selection15-18. This
mechanism has been demonstrated experimentally in mice23, and the T->A germline variant
at APC nucleotide position 3920 has been reported as an example of a cis-acting
hypermutable phenotype that leads to colorectal cancer in humans34. A second explanation
for this three-hit model is that somatic mutations functionally interact in cis with specific
germline variants and require the presence of a germline variant to promote
tumorigenesis15-18. By combining evidence for preferential allelic imbalance and the
occurrence of somatic mutations, SGI is well suited for detecting genes that follow a three-
hit model.

SGI is designed to detect statistical interaction between somatic mutational events and
germline variation from next-generation sequence data. SGI is compatible with existing
variant call formats (vcf and CG tsv) and interfaces with VAAST and other variant
classifiers to identify candidate germline susceptibility variants in a high-throughput
manner. The AIRS test evaluates evidence for preferential allelic imbalance from next-
generation sequence data and allows for combined testing of multiple variants in a gene
while controlling for inter-sample variation in tumor purity and genome-wide levels of
allelic imbalance. SMIT evaluates evidence for statistical interaction between candidate
germline susceptibility variants and somatic SNVs and small indels while controlling for
inter-sample variation in background mutation rates. SGI combines AIRS and SMIT to
provide a unified measure of statistical interaction between candidate germline susceptibility
variants and the occurrence of somatic mutational events. SGI can be used to help
demonstrate a causal role for candidate germline susceptibility variants or can be combined
with rare-variant association tests to increase the power to identify cancer-gene associations.

5. Software
SGI can be found at www.hufflab.org/software/#sgi and is freely available for academic use.
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Figure 1.
Power of AIRS to detect preferential allelic imbalance with α of 0.05. Sample size for group
A ranged from 2 to 50. Sample size for group B was 200. The expected proportion of
preferential amplification summarizes information about both the proportion of true positive
germline susceptibility variants and the proportion of true positives that are preferentially
amplified.
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Figure 2.
Power of SMIT to detect statistical interaction between germline variation and somatic small
indel and point mutations at α = 0.05. A) Sample size of group A is 10 individuals, and B)
sample size of group A is 100 individuals. Sample size for group B was 200.
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Figure 3.
Observed versus expected p-values of two tests of germline-somatic interaction: A) SMIT
and B) Fisher exact test (e.g. CCT31). Expected background mutation rate was 0.01 in the
control group and 0.1 in the candidate germline group. Somatic driver mutation rate was 0.1
in both groups. Results generated from 100,000 simulations.
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Figure 4.
Sample size needed to achieve 80% power to detect A) cancer-germline association at α =
1×10−4 and B) somatic-germline interaction at α = 0.05. Sample size indicates the number
of controls, normal tissue samples from cases, and paired tumor tissue samples from cases.
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