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Abstract

High grade glioma is a highly invasive brain tumor and recurrence is almost inevitable, even after radi-
cal resection of the tumor mass. Cytotoxic immune responses and immunological memory induced by  
immunotherapy might prevent tumor recurrence. Dendritic cells (DCs) are professional antigen-present-
ing cells of the innate immune system with the potential to generate robust antigen-specific T cell immune 
responses. DC-based immunotherapeutic strategies have been intensively studied in both preclinical and 
clinical settings. Although advances have been made in the experimental use of DCs, there are still con-
siderable challenges that need to be addressed for clinical translation. In this review, we describe the 
variability of regimens currently available for DC-based immunotherapy and then review strategies to 
optimize DC therapeutic efficacy against glioma.
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Introduction

High grade glioma (HGG) is one of the most lethal 
malignant tumors in humans.115) Despite aggressive 
treatment by radical surgical resection combined 
with temozolomide and bevacizumab chemotherapy 
and radiotherapy, the prognosis for patients with 
HGG remains unsatisfactory with a median survival 
of less than 2 years.65,108) The infiltrative nature of 
the tumor into the brain parenchyma hampers its 
complete surgical resection and relapse of the tumor 
is almost inevitable. Tumor antigen-specific immune 
cells can identify and attack infiltrating tumor cells 
to control tumor regrowth through immunological 
memory and immune surveillance.41,60) Dendritic cells 
(DCs), the most potent antigen-presenting cell (APC), 
and T cells are the dominant effector cells that inhibit 

tumor progression. In this context, the development 
of clinically effective DC-based immunotherapy is a 
major focus for specific immunotherapy in HGG.112) 
While there are a wide variety of regimens that 
generate tumor-specific effector immune responses 
in the context of DC-based immunotherapy, only a 
limited number have been tested in clinical trials to 
date.111) In this review, we summarize the regimens 
used for DC-based immunotherapy including (i) DC 
differentiation, (ii) selection of DC subpopulations, 
(iii) antigen loading of DCs, (iv) manipulation of 
costimulatory and coinhibitory signals via DCs, 
(v) conditioning of the tumor microenvironment, 
(vi) administration route of DCs as shown in  
Fig. 1. We also review the strategies for optimizing 
the therapeutic efficacy of DC-based immunotherapy.

Dendritic Cell Differentiation
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in the context of major histocompatibility class 
(MHC) II and MHC I molecules, respectively, and 
can prime both CD4+ T helper cells and CD8+ 
cytotoxic T cells.90,91) Cross-presentation of antigens 
to CD8+ T cells is primarily performed by DCs. 

Furthermore, DCs are not only sentinels in T cell 
immune responses, but can also function as strong 
activators of natural killer (NK) cells and NK T 
cells,44,100) thus linking innate and adaptive immu-
nity. The type 1 polarizing DC (DC1) subset plays 

Fig. 1  Dendritic cell (DC)-based immunotherapeutic strategies for glioma. DCs are the professional antigen-
presenting cells that generate robust antigen-specific T cell immune responses. There are a wide variety of regimens 
that generate anti-glioma immune responses in the context of DC-based immunotherapy. Bone-marrow derived 
precursors are differentiated into DCs by Flt3L or GM-CSF. DCs are heterogenous cell populations that include 
mDC, pDC, and moDC. These subpopulations act differently and have synergistic effects in anti-tumor immunity. 
DCs can also be subdivided according to CD8α or NK1.1 expression. DCs are to be loaded with tumor antigens 
derived from eitherwhole tumor cell lysate, peptide, DNA, RNA, or tumor-DC fusion. MHC-antigen complex are 
recognized by TCR on T cells (signal 1). Tumor-loaded DCs are then pulsed with maturation stimuli to increase 
the expression of costimulatory molecules such as CD80 (signal 2) and to increase the secretion of proinflam-
matory cytokines such as IL-12 (signal 3). These three signals are essential to generate robust anti-tumor T cell 
responses. IL-2 derived from CD4+ helper T cells stimulates CD8+ cytotoxic T cells, which then secrete IFN-γ 
and exhibit potent cytolytic activity against glioma cells. Inhibition of immune regulatory components such as 
Treg or MDSC enhances anti-tumor immunity. Administration route of DCs influences the therapeutic efficacy of 
DC-based immunotherapies. Optimization of a DC-based immunotherapeutic regimen is critical for the development 
of clinically relevant immunotherapy for glioma. Flt3L represents fms-like tyrosine kinase 3 ligand. Ag: antigen, 
CTLA-4: cytotoxic T-lymphocyte antigen 4, DC: dendtiric cell, GM-CSF: glanulocyte monocyte-colony stimulating 
factor, IFN: interferon, IL: interleukin, mDC: myeloid DC, MDSC: myeloid-derived suppressor cell, MHC: major 
histocompatibility class, moDC: monocyte-derived DC, pDC: plasmacytoid DC, siRNA: small interfering RNA, 
SOCS1: suppressor of cytokine signaling 1, TCR: T cell receptor, TLR: toll-like receptor, Treg: regulatory T cell.
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an important role in tumor immunity by directing 
effector T cell responses to a T helper type 1 (Th1) 
phenotype and the DC2 subset is associated with 
immunity against extracellular antigens and wound 
healing. DC1 polarization induces the abundant 
production of interleukin (IL)-12p70 heterodimer 
and IL-23, secretion of the chemokine MIP-1, and 
preferential expression of Delta-4 Notch ligand.77) 
Such DC1 products are highly associated with chemo-
attraction and the activation of Th1-type CD4+ and 
CD8+ T cells. Furthermore, IL-12p70 production is 
critical for the sensitization of high-avidity T cells 
that directly recognize and kill tumor targets.38,71,77)

DC differentiation from bone marrow precursors 
can be induced by granulocyte macrophage colony-
stimulating factor (GM-CSF) or fms-like tyrosine 
kinase-3 ligand (Flt3L). Flt3L expands both DC1 and 
DC2 subsets with a significantly higher percentage 
and number of DC1 than DC2 cells, while GM-CSF 
preferentially expands the DC2 subset.83,114) Isolated 
DC1 from Flt3L-injected mice had significantly 
higher levels of IL-12p40 than IL-10, while the 
converse occurred with DC2. Both Flt3L and GM-CSF 
increased the number of naïve and memory T cells 
in mice, but the number of memory CD4+ and 
CD8+ T cells was significantly increased by Flt3L 
compared to GM-CSF. While GM-CSF increased the 
frequency of both Th1 and Th2 cytokine-producing 
cells, Flt3L significantly augmented the frequency 
of Th1 cells.83,114)

To increase the proportion and function of the 
DC1 subset in GM-CSF treated progenitor cells, 
Mailliard et al. developed a novel protocol, in which 
bone marrow cells were cultured with GM-CSF 
followed by interferon (IFN)-γ, IFN-α, IL-4, and 
polyinosinic-polycytidylic acid (polyI:C) stabilized 
by lysine and carboxymethylcellulose (polyICLC).71) 
Such α-type-1 polarized DCs produced abundant 
IL-12 compared to the normal DC1 subset and were 
resistant to immunosuppressive environments created 
by regulatory T cells (Tregs). Okada et al. reported 
an α-type-1 polarized DC vaccine loaded with 
tumor antigens was useful for controlling relapse 
in a mouse model of HGG in a CXCL-10 dependent 
manner.38) Based on these results, Akiyama et al. 
performed a phase I clinical trial of DC vaccination 
using α-type 1 DCs, which showed some promise 
in HGG patients.2) Cohen et al. utilized IL-6 to 
improve the expansion and anti-tumor immune 
stimulation of Flt3L-generated DCs.28) Exposure of 
fresh mouse bone marrow to Flt3L + IL-6 triggered 
the massive expansion of CD34+ progenitor cells, 
and committed nearly all cells to subsequent DC 
differentiation. Such programming included traf-
ficking into the tumor, the subsequent spontaneous 

up-regulation of MHC/costimulatory molecules, as 
well as the secretion of Th1 polarizing cytokines 
such as IL-12. Moreover, proliferative conditioning 
with Flt3L + IL-6 conferred progressive resistance 
to many tumor-associated immunosuppressive 
factors such as IL-10, vascular endothelial growth 
factor, and prostaglandin E2. Furthermore, Flt3L +  
IL-6 induced signal transducer and activator 
of transcription (STAT)3-dependent global DC 
differentiation, whereas GM-CSF + IL-4 induced 
STAT5-dependent monocytic differentiation, which 
subsequently differentiated into granulocytes, 
macrophages or DCs.28) Despite the superiority of 
Flt3L to GM-CSF in terms of DC1 polarization, the 
clinical efficacy of Flt3L-conditioned DCs was not 
necessarily superior to GM-CSF conditioned DCs. 
Weigel et al. compared the therapeutic efficacy of 
DCs generated using GM-CSF + IL-4 supplemented 
with lipopolysaccharide (LPS) and DCs generated 
using Flt3L supplemented with LPS as a vaccina-
tion against acute myeloid leukemia (AML). The 
anti-AML effect was superior in GM-CSF + IL4 + 
LPS-treated groups compared with Flt3L + LPS 
groups.114) In contrast, Mineharu et al. compared 
the therapeutic efficacy of DC vaccination regimens 
and showed that Flt3L + IL-6 + CpG generated 
DCs were comparable or more effective compared 
to GM-CSF + IL-4 + CpG generated DCs.74) The 
combination of Flt3L and GM-CSF to mobilize DC 
precursors was also analyzed,9,11) but the potential 
of such precursors to achieve DC1 polarization is 
presently unclear. Flt3L + GM-CSF mobilization was 
recently reported to inhibit the infiltration of DCs 
into mouse tumors, and such DCs also activated 
Tregs and promoted tumor tolerance.28)

In most clinical trials for HGG, DCs were gener-
ated by GM-CSF + IL-4 and the efficacy of Flt3L-
generated DC subsets has not been tested thus far.112) 
A phase I clinical trial of adenoviral mediated 
immunogene therapy using Flt3L in combination 
with cytotoxic gene therapy using thymidine kinase 
(TK) followed by gancyclovir administration is 
now underway.8,32,88,117) The clinical efficacy of DC 
vaccination using Flt3L-generated DCs should also 
be investigated in future trials.

Selection of DC Subpopulations

DCs are a heterogeneous population classified into 
distinct subsets according to patterns of cell surface 
antigen expression. The most commonly used clas-
sification of DC subsets in blood and the lymphatic 
system include myeloid DCs (mDCs), plasmacytoid 
DCs (pDCs), and monocyte-derived DCs (moDCs).39) 
The E-twenty six (ETS) transcription factor, PU.1, 
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NKDCs.24) Thus, DCs can be subdivided into several 
subtypes according to their surface markers and 
characteristics, but the functions and interactions of 
each subtype remains to be clarified. Therefore, the 
individual properties and combinations of subsets 
that may best promote successful immunotherapy 
are poorly understood. As Flt3L-conditioned DCs 
and GM-CSF-conditioned DCs have distinct prop-
erties, the admixture of these cell populations 
might be a candidate for preparation of optimal 
DC preparations.

Antigen Loading on DCs:  
Autophagosomes and a Cocktail of 

Tumor-Associated Antigens

Effective uptake and loading of tumor-associated 
antigens (TAAs) onto MHC complexes of DCs and 
expansion of DC subgroups that can efficiently 
prime naïve T cells play a critical role in the thera-
peutic efficacy of DC vaccination. Therefore, it is of 
critical importance to optimize the preparation of 
tumor cell antigens. Tumor antigens can be loaded 
on DCs as different forms including DNA, RNA, 
peptides, proteins and lysates, or DCs fused with 
tumor cells. Owing to the heterogeneous properties 
of HGG cells and poor identification of HGG-specific 
tumor antigens, most clinical trials of DC vaccina-
tion in HGG utilized whole tumor lysates instead 
of artificially-synthesized peptides as a source of 
TAA.56,111,119)

Whole tumor lysates have been mostly generated 
by irradiation (apoptosis) or freeze-thawing (necrosis) 
of tumors. Apoptotic bodies can enhance antigen 
cross-presentation more effectively than necrotic 
tumor lysates.19,96) However, loading of DCs with 
apoptotic bodies of HGGs can also increase the risk 
of inducing tolerogenic DCs via the cyclooxygenase-2 
(COX2) pathway.1) Recently, autophagic tumor lysates 
and autophagosomes were introduced as a source of 
TAAs and DCs loaded with purified autophagosomes 
from autophagic tumor cells induced tumor-specific 
immune responses.67) Autophagy not only provides 
variable tumor antigens but regulates the selective 
release of high-mobility group B1 (HMGB1), an 
endogenous pattern recognition receptor (PRR) that 
induces DC maturation.109) A comparative analysis 
of autophagic, apoptotic, and necrotic tumor lysates 
in terms of anti-tumor immunity showed that trig-
gering autophagy and/or apoptosis to generate tumor 
cell lysates increased the immunogenicity of tumor 
cells and enhanced the delivery of TAAs to DCs 
when compared to necrotic tumor cell lysates.74) The 
therapeutic efficacy of vaccination with DCs loaded 
with autophagic tumor cell lysates or DCs with 

was reported to be a key regulator of DC develop-
ment in both Flt3L and GM-CSF conditioning,122) 
but these DC differentiation factors act differently. 
Mouse hematopoietic progenitor cells cultured with 
Flt3L generate mDC and pDC subsets,17,76) whereas 
GM-CSF-cultured bone marrow cells differentiate into 
moDCs.28,51) mDCs are key regulators in the induc-
tion of anti-tumor immune responses, whereas pDCs 
are recognized as major producers of type I IFN. 
Lou et al. reported that CpG-activated pDCs prime 
antigen-specific CD8+ T cell responses in vivo, and 
generate memory T cells that combat tumor rechal-
lenge. They also demonstrated that pDCs and mDCs 
synergistically enhanced antigen-specific anti-tumor 
immune responses. Synergy between pDCs and mDCs 
to activate T cells requires direct cell-to-cell contact 
between the two subsets and is dependent on MHC I  
expression by mDCs, but not pDCs, suggesting pDCs 
enhance the ability of mDCs to present antigens to 
T cells.69) However, interactions between moDCs 
and other DC subsets are not well studied and the 
optimal proportion of DC subsets for the induc-
tion of robust anti-tumor immunity remains to be 
investigated.

DCs are also classified based on their CD8α expres-
sion.103) The lymph node resident CD8α+ DC subset 
is specialized for cross-presentation of exogenous 
antigens to naïve CD8α+ T cells,33,53,86) whereas 
migratory CD8α- DCs are required for presentation 
by MHC class II to CD4+ T cells. 86) Recently, both 
CD8α+ and CD8α- DC subsets, but not pDCs, were 
shown to be effective at cross-presenting tumor anti-
gens.73) It was speculated that migratory tumor DC 
subsets (CD8α-) with altered costimulatory receptor 
expression might contribute to the induction and 
regulation of tumor-specific responses. Moreover, 
Segura et al. reported that human BDCA1+ DCs, 
BDCA3+ DCs, and pDCs, which are homologous to 
mouse CD8α- DCs, CD8α+ DCs, and pDCs, respec-
tively, all cross-presented soluble antigen efficiently, 
compared to macrophages.97) When bone marrow 
cells were cultured with both Flt3L and GM-CSF, 
few CD8α+ DCs or pDCs developed compared with 
cultures supplemented with Flt3L alone,121) again 
demonstrating the different actions of Flt3L and 
GM-CSF on DC progenitors.

Natural killer DCs (NKDCs) are a unique class 
of rodent and human immune cells that possess 
the characteristics of both NK cells and DCs.13,24–27) 
Flt3L is a potent inducer of functionally mature 
NKDCs in lymphoid and non-lymphoid organs. 
Flt3L-expanded NKDCs retain the unique ability to 
lyse tumor cells by IFN-γ release and induce more 
potent anti-tumor immune responses by CD4+ and 
CD8+ T cells when compared with spleen resident 
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apoptotic tumor cell lysates were superior to DCs 
loaded with necrotic tumor cell lysates.74) Protective 
immunity against intracranial glioma growth was also 
observed following immunization with RNA-loaded 
DCs or DCs fused with tumor cells.52,111) Ashley et 
al. reported the induction of antitumor immunity 
by DCs pulsed with tumor extracts or tumor RNA, 
with no significant difference between the two 
strategies in eliciting antitumor T cell responses 
and prolonging the survival of glioma-bearing 
mice.6) Finally, Parajuli et al. systemically compared 
the efficacy of vaccination with DCs loaded with 
tumor antigens from different sources. They showed 
that DCs fused with tumor cells, DCs pulsed with 
apoptotic tumor cells, and DCs pulsed with tumor 
RNA induced superior tumor cytolytic activities in 
peripheral blood mononuclear cells compared to 
DCs pulsed with necrotic lysates. In addition, DCs 
pulsed with apoptotic lysates induced the greatest 
expansion of tumor-specific lymphocytes.82)

The identification of TAAs and a better under-
standing of human leukocyte antigen (HLA) restric-
tion in HGG have enhanced the production of 
DCs loaded with multiple glioma-related antigens, 
selected according to the HLA genotype of individual 
patients. Glioma-associated antigens identified to date 
include epidermal growth factor receptor isoform III 
(EGFRvIII), tenascin, survivin, the alpha-2 chain of 
IL-13 receptor (IL-13Ra2 chain), gp100, melanoma 
antigen (MAGE)-1 and MAGE-3, WT-1, HER2, EphA2 
and YKL-40. The characteristics of these antigens 
have been previously reviewed.36,45,119) In a clinical 
setting, Okada et al. treated HLA-A2 positive patients 
with DCs pulsed with HLA-A2 peptides including 
EphA2, IL-13R-a2, YKL-40, and gp100.78) Akiyama 
et al. developed a DC vaccination regime using a 
cocktail of five synthetic peptides (WT-1, HER2, 
MAGE-A3, and MAGE-A1 or gp100) restricted to 
HLA-A2 or A24 for recurrent HGG patients with 
HLA-A2 or A24 genotype.2) Another option for 
antigen loading is the genetic modification of DCs, 
which allows multi-epitope presentation of full-length 
TAAs without requiring knowledge of the patient’s 
HLA genotype.16) Dendreon’s Provenge (sipuleucel-T), 
the first US Food and Drug Administration (FDA)-
approved immunotherapy for hormone-refractory 
prostate cancer, consists of a DC-enriched product 
(B cells, monocytes, and NK cells are also included) 
cultured ex vivo with a recombinant fusion protein 
containing prostatic acid phosphatase (PSA) and 
GM-CSF,104) suggesting that antigen loading with 
TAAs is clinically relevant. Taken together, immu-
nization with DCs pulsed with a cocktail of glioma-
associated antigens or autophagosomes extracted 
from glioma cells might be a promising approach 

to treat HGG patients.

Manipulation of Costimulatory  
and Coinhibitory Signals via DCs

In addition to the first signal provided through T 
cell receptors that recognize antigenic peptide-MHC 
molecules on DCs, a second signal induced by inter-
actions between costimulatory ligands on T cells 
and their receptors on DCs are required for robust 
T cell responses22,64). In the absence of costimula-
tory molecule interactions, antigen-specific T-cells 
become hyporesponsive, a state characterized as 
anergy.54) The upregulation of costimulatory molecules 
is, therefore, an attractive approach for generating 
therapeutic immunity to combat malignancies.35) 
Costimulatory molecules belong to two major families: 
B7/CD28 family and tumor necrosis factor (TNF)/
TNF receptor family. B7/CD28 family molecules are 
involved in the initiation of cell-mediated immune 
responses, and TNF/TNF receptor family members 
are involved in the later phases of T-cell activation. 
B7 molecules expressed on DCs include CD80 (B7-1), 
CD86 (B7-2), inducible costimulator (ICOS) ligand (B7h), 
programmed death 1 ligand (PD-L1 or B7-H1), PD-L2 
(B7-DC), B7-H3, and B7-H4. TNF/TNF receptor family 
includes 4-1BB ligand, OX-40, glucocorticoid-induced 
tumor necrosis factor receptor (GITR), LIGHT, and 
CD27. These molecules have been well characterized 
in previous review articles.22,35,43,120)

It is well known that a variety of single agents, 
including Toll-like receptor (TLR) agonists, CD40 
ligand, CD70, GITR ligand, OX-40 ligandDi, and 
calcium ionophores, can increase the expression of 
costimulatory molecules on DCs.12,77,118) There are a 
wide variety of TLR agonists including Pam3Cys 
(TLR1/2 agonist), FSL-1 and MALP2 (TLR2/6 agonist), 
polyI:C (TLR3 agonist), LPS and monophosphoryl 
lipid A (TLR4 agonists), imiquimod and R848 (TLR7 
agonists), and class B CpG oligodeoxynucleotide 
(CpG; TLR9 agonist). It should be noted that these 
TLR agonists do not uniformly stimulate anti-tumor 
immune responses. For example, cDCs respond to 
most TLR agonists, whereas pDCs are more sensi-
tive to agonist CpG stimulation compared with all 
other agonists used. Simultaneous ligation of TLR1/2 
and TLR3 was the most optimal at inducing a DC1 
phenotypic maturation for Flt3L-generated DCs, 
whereas TLR3/4 + TLR7/9 ligations were optimal 
for GM-CSF + IL-4-generated DCs.68) The therapeutic 
effect of TLR agonists depends partly on the expres-
sion of TLRs on tumor cells or immune cells in the 
tumor microenvironment. Intratumoral injection of 
CpG showed the best therapeutic effect for GL261 
glioma cells and Pam3Cys or R848 also produced 
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a significant survival benefit, whereas polyI:C or 
purified LPS stimulation alone was not effective.42) 
Recent evidence suggests that combination of different 
classes of immunostimulants act synergistically to 
increase anti-tumor immune responses. For example, 
CD40 and TLR ligands are synergistic and this 
combination of immunostimulants can significantly 
suppress tumor growth in mice.107) Optimal regimens 
for the upregulation of costimulatory molecules 
require further investigation.

CD80 and CD86 are among the most well char-
acterized costimulatory molecules. They bind two 
surface molecules expressed on T cells, CD28, and 
CTLA-4. Notably, in contrast to the costimulatory 
signal derived from CD28, the engagement of CTLA-4 
by CD80 or CD86 induces a negative regulation of 
the immune response, leading to immune toler-
ance.43) Thus, the balance between activating and 
inhibitory signals derived from the engagement of 
CD28 and CTLA-4, respectively, is crucial to assure 
protective immunity against cancer. Therefore, in 
addition to the upregulation of CD80 and CD86 
by immunostimulants, blockade of signaling trans-
duced through CTLA-4 is necessary to maximize 
anti-tumor immune reactions. Indeed, a phase III 
study showed that the CTLA-4 antibody, ipilimumab, 
either alone or in combination with gp100 vaccine, 
improved overall survival compared with gp100 
alone in patients with metastatic melanoma who had 
undergone previous treatment 47) and the drug was 
subsequently approved by the FDA. PD-L1, PD-L2, 
and B7-H4 also function as negative regulators of 
T cell immune responses. Aberrant expression of 
PD-L1 has been reported in many human cancers 
including glioblastoma and melanoma,22,120) and the 
expression of PD-L1 correlates with a poor prog-
nosis for patients.22) Antibody blockade of PD-L1 
and PD-L2 on DCs improved the proliferation and 
cytokine production of CD4+ T cells18) and a phase 
II clinical trial using anti-PD-L1 antibodies for non-
small cell lung carcinoma is currently underway.110) 
Thus, suppression of negative costimulatory molecules 
(also called coinhibitory molecules) seems to be 
a promising approach to increase the therapeutic 
efficacy of DC-based immunotherapy. However, as 
indicated by the low response rate and the risks of 
severe side-effects of ipilimumab, further research 
is necessary to determine the optimal regimen to 
manipulate costimulatory/coinhibitory molecules.

In addition to negative costimulatory molecules 
(or coinhibitory molecules) such as PD-L1, DCs 
express a variety of molecules that may suppress 
antigen presentation or T cell activation and func-
tions. Silencing of these molecules by siRNA is a 
powerful strategy to augment DC-mediated anti-

tumor immunity. A20, a negative regulator of TLR 
and TNF receptor signaling pathway involved in 
the stimulation of T cell-mediated responses15,66) 
and suppressor of cytokine signaling 1 (SOCS1), a 
negative regulator of signaling through IFN-γ, IL-2, 
IL-6, or IL-12, stimulators of T cell expansion,98) have 
been studied for this purpose.16,72) Antigen-loaded 
DCs, silenced for either A20 or SOCS1 by siRNA, 
activated large numbers of effector T cells, which 
correlated with the inhibition of tumor growth in 
mice.48,98,105) Surface molecules with direct suppressive 
effects on T cells are also attractive targets.16) Notch 
ligands and DC-derived immunoglobulin receptor 2 
(DIgR2) are two main targets. Silencing of Delta1, a 
Notch ligand, by siRNA enhanced cytokine produc-
tion by CD4+ T-cells in response to polyclonal T 
cell receptor activation.106) Immunization of mice 
with antigen-pulsed, DIgR2-silenced DCs elicited 
more potent antigen-specific CD4+ and CD8+ T cell 
responses, thus showing an improved therapeutic 
efficacy.99)

Conditioning of the Tumor  
Microenvironment

In addition to cognate antigen recognition (signal 1)  
and costimulation (signal 2), DC-derived soluble 
factors create a third signal (signal 3) to condition the 
immune microenvironment. Cytokines and chemokines 
secreted from DCs are critical for immune polarization 
and recruitment of accessory leukocyte populations. 
Priming and activity of anti-tumor T-cell responses 
ideally occur in Th1-polarized microenvironments, 
achieved by the presence of cytokines such as type I 
IFN (IFN-α and IFN-β), IFN-γ, and IL-12p70 as well 
as the presence of leukocytes such as CD8+ T cells, 
Th1-polarized CD4+ helper T cells, and NK cells.57) 
DC-derived IL-12p70 stimulates IFN-γ production in 
naïve T cells, thereby promoting Th1 responses that 
overcome immune tolerance against tumor cells. 
Insug et al. reported protective immunity against 
intracranial glioma model induced by lysate- or 
RNA- loaded DCs was strengthened by adding 
recombinant IL-12,52) although IL-12 boosting may 
not have an additive effect when using Th1 polar-
ized DCs that secrete abundant IL-12.75) A survival 
benefit of combining lysate-pulsed DC vaccina-
tion and IFN-β gene therapy was demonstrated by 
Saito et al.93) Similarly, Okada et al. revealed that 
the sequential intratumoral delivery of an IFN-α 
encoding adenoviral vector and bone-marrow derived 
ex vivo cultured syngeneic DCs induced long-term 
survival and specific cytotoxic T lymphocyte activity 
in a mouse glioma model.78) Supplementation of 
Th1 cytokines such as IL-2 and IFN-γ also has an 
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impact on cytotoxic T lymphocyte responses and 
CD8+ T cell-mediated immunological memory, as 
these cytokines augmented the therapeutic efficacy 
of Flt3L-mediated gene therapy in a refractory rat 
glioma model.75) Thus, cytokine treatment is a 
powerful tool to induce robust anti-tumor cytotoxic 
and memory T cell responses.

For the robust expansion of immunogenic DCs, 
signals 1, 2, and 3 are all necessary. Insufficiency 
of any of these three signals and/or the presence 
of immunosuppressive conditioning such as IL-10 
or IL-27 leads to the induction of tolerogenic DCs, 
which express coinhibitory molecules and secrete 
immunosuppressive cytokines, thus inducing toler-
ance conditions.55) Care should also be taken for the 
sequential order of signal input in DCs. Cytokine-
mediated maturation of DCs before pulsation by 
PRR such as TLR could lead to the expansion of 
undifferentiated T-cell populations and the induction 
of antigen-specific tolerance.10,55) Matured DCs have 
a decreased capacity for antigen uptake. Soluble 
factors secreted by tolerogenic DCs attract Tregs to 
the tumor microenvironment. These factors include 
the chemokines CCL17 and CCL22, which bind to 
CCR4 and CCR8 receptors on Treg cells, respec-
tively.50) Therefore, blockade of CCL17 and CCL22 
could be an option to reduce Treg cell migration 
to the tumor microenvironment, thus sustaining 
sufficient anti-tumor immunity.

Accordingly, one active mechanism whereby DCs 
induce tolerance is through the induction of Tregs. 
Therefore, inhibition of Treg induction and function 
is a fascinating strategy to boost anti-tumor immunity 
and consequently Treg biology has been extensively 
studied. Maes et al. reported that depletion of CD25+ 
Tregs by anti-CD25 treatment strongly enhanced the 
efficacy of DC vaccination.70) In contrast, depletion 
of Tregs using a CD25-targetting strategy inter-
fered with the clonal expansion of tumor antigen 
specific T lymphocytes and decreased the efficacy 
of DC-based in situ immunogene therapy in a large 
glioma model.30) Because CD25 is not a specific 
marker for Tregs, Foxp3, a more specific marker 
exclusively expressed by Tregs, could be a target for 
Treg depletion. However, Foxp3 is intranuclear and 
therefore cannot be easily depleted using immuno-
globulins. Anti-CTLA4 antibody is another option 
to eliminate Treg cells, as discussed in the previous 
section. Recently, the local delivery of inhibitors to 
NF-κB combined with immunogene therapy using 
Flt3L and TK was reported to induce Foxp3+ Treg 
suppression and Th1 cytokine production in the 
tumor microenvironment, resulting in potent anti-
tumor T cell responses and prolonged survival.75) 

Importantly, although Foxp3+ T cells are the most 
understood subtype of Treg, other subtypes have 
been identified including Foxp3- IL-10+ T cells 
(named Tr1 or T regulatory type-1), IL-35+ T, and 
transforming growth factor-β-producing Th3 cells. 
The role of DCs in the induction of these regulatory 
cells has been reviewed elsewhere.63,85)

Myeloid-derived suppressor cells (MDSCs) are 
another negative regulator of anti-tumor immu-
nity.79) Raychaudhuri et al. reported in 2011 that 
glioblastoma patients have increased MDSC counts 
(CD33+ HLA-DR−) in the peripheral blood when 
compared to normal donors.89) Normal human 
monocytes acquire MDSC-like properties when 
cocultured with glioma cells in vitro.92) MDSCs 
from PBMCs isolated with anti-CD33/CD15-coated 
beads significantly restored T-cell function.89) These 
findings indicate a significant role for MDSCs in 
immune tolerance in patients with glioblastoma. 
Fujita et al. reported that COX-2 inhibition or anti-
Gr1 antibody blocked the development of MDSCs 
(CD11b+ Gr1+) and the CCL2-mediated accumula-
tion in the tumor microenvironment, which delayed 
tumor development in a mouse glioma model.37) Of 
note, accumulating evidence suggest that several 
chemotherapeutic agents such as 5-fluorouracil,113) 
docetaxel,61) gemcitabine,40) and sunitinib malate, a 
receptor tyrosine kinase inhibitor,81) could reverse 
MDSC-mediated immune suppression in murine 
tumor models. However, caution is necessary 
since some chemotherapeutic agents increase the 
number of MDSCs; i.e., standard doxorubicin and 
cyclophosphamide chemotherapy was associated 
with increased numbers of MDSCs in breast cancer 
patients.34) Other compounds such as polyphenol E95) 
or all-trans-retinoic acid49) decrease the number of 
MDSCs in mice and humans, respectively.

Prevention or reversal of immune tolerance in 
the tumor microenvironment is one of the most 
powerful approaches to combat HGG. However, 
the molecular mechanisms that balance immuno-
genicity/immunosuppression are more complex 
than expected and remain to be fully elucidated. 
A further understanding of the mechanisms and 
development of novel modalities to control immune 
tolerance is mandatory to improve the therapeutic 
efficacy of DC-based immunotherapies.

Administration Route

Tumor cell immunogenicity depends upon the 
microenvironment in which the cells grow. There-
fore, the vaccine administration route is of critical 
importance. In conventional vaccination paradigms, 
tumor cells are manipulated ex vivo before being 
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reintroduced to the patient. Vaccination is given to 
patients by intradermal (i.d.), subcutaneous (s.c.), 
intramuscular (i.m.), or intratumoral (i.t.) injections. 
An alternative approach is the direct introduction  
of immunostimulatory molecules such as Flt3L 
into the tumor microenvironment (in situ), with 
or without combination with cytotoxic treatments 
to expose variable tumor antigens, known and 
unknown, to induce potent tumor-specific immune  
responses.3,4,7,21,23,29,31,41,58–60,117) Bonnotte et al. compared 
s.c and i.d. injection in the flank in a colon carcinoma 
model and showed that most i.d. injections prevented 
tumor growth against primary and secondary tumor 
challenges, whereas s.c. injection was associated 
with progressive tumor growth.14) Kudo-Saito et al. 
compared s.c and i.t injection in a mouse colon 
adenocarcinoma model implanted with MC38 cells 
expressing human carcinoembryonic antigen (CEA). 
Mice were treated by s.c. priming with replication-
competent recombinant vaccinia virus that contained 
the CEA transgene and transgenes for a triad of 
T-cell costimulatory molecules (B7–1, ICAM-1, and 
LFA-3; designated TRICOM) followed by i.t. boosting 
with replication-defective recombinant fowlpox that 
contained CEA and TRICOM or each treatment alone. 
The anti-tumor activity induced by i.t. vaccination 
was superior to that induced by s.c. vaccination. 
In addition they demonstrated that an s.c. priming 
vaccination, followed by i.t. boosting vaccinations 
was superior to either s.c. or i.t. vaccination alone.62) 
Mineharu et al. also showed a synergistic effect 
between s.c. and i.t. injection in rat glioma models. 
They administered subcutaneous vaccination with 
Flt3L + IL-6 generated DCs pulsed with tumor cells 
killed by adenovirus-expressing thymidine kinase 
(Ad-TK) and gave an intratumoral injection of Ad-TK/
Flt3L as in situ immunogene therapy. Combination 
of in situ immunogene therapy and subcutaneously 
injected vaccination induced more potent anti-tumor 
immune responses and better therapeutic efficacy 
than either treatment alone.74) They speculated 
that intratumoral injection of immunostimulatory 
cytokines such as Flt3L prolonged the survival of 
subcutaneously administered DCs.

The brain is an immune privileged site that lacks 
resident DCs. Therefore, it is important to determine 
which lymph nodes is the optimal destination of 
injected-DCs. Evidence suggested that priming of 
T cells by DCs within the cervical lymph nodes 
induced an integrin homing pattern towards intrac-
erebral locations.20)

The advantage of ex vivo cultures of DCs is that 
a specific subtype of DC can be amplified and 
tolerogenic DCs can possibly be excluded. Genetic 
engineering of DCs is also a fascinating option to 

improve the quality of DC vaccination. Alternatively, 
the advantage of in situ immunotherapy is that a 
cocktail of cytokines secreted from DCs in the tumor 
microenvironment can be fully utilized. Although 
no clinical trial testing the combination treatment 
of intratumoral and extratumoral administration of 
DC-based immunotherapy has been reported, such 
an approach may have beneficial effects.

Clinical Translation

Clinical trials of DC-based immunotherapy for HGG 
have been extensively reviewed previously46,111,112,119) 
and some trials are currently underway.5,8) Although 
only phase I/II trial results have been reported, 
substantial progress has been made. Wheeler et al. 
reported that responders to autologous DC vaccina-
tion, who exhibited at least two standard deviations 
above mean prevaccine IFN-γ production after the 
third vaccination, had longer survival compared to 
non-responders. This indicates the importance of 
genetic or other biomarkers to identify responders 
prior to the initiation of treatment.116) In this context, 
Prins et al. stratified the study population in their 
clinical trial according to the genetic expression 
signature of tumor cells (mesenchymal, proneural, 
and proliferative signatures as proposed by Heidi 
et al.84)). Results from their phase I clinical trial 
suggested that glioblastoma cells with a mesenchymal 
gene expression signature, the worst prognostic 
phenotype,101,102) might be a good candidate for 
autologous DC vaccination, as these cells induced 
higher numbers of CD3+ and CD8+ tumor-infiltrating 
lymphocytes compared with tumor cells with other 
gene expression signatures. Furthermore, patients 
with mesenchymal signatures had significantly 
extended survival compared to a historical control 
cohort with the same signature, whereas no survival 
difference was observed in those with a proneural 
gene expression signature.87) Thus, identification of 
proper prognostic and predictive biomarkers will 
help determine which patients are the best candi-
dates for DC-based immunotherapies.

Although still in phase I trial, autologous DC vacci-
nation combined with s.c. injection of imiquimod 
or polyICLC, respective agonists of TLR7 and TLR3, 
showed a median overall survival of 35.9 months 
with three long time survivors > 6 years among 
15 newly diagnosed glioblastoma patients.87) This 
result gives us hope that the optimization of a 
DC-based immunotherapeutic regimen could improve 
the prognosis of patients with HGG. Additionally, 
there are several emerging therapeutic strategies 
against glioma including virotherapy, gene therapy, 
stem cell-based therapies, and nanotechnology94) as 
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reviewed by Auffinger et al.8) Integration of these 
multiple therapeutic modalities including conventional 
chemotherapy80) into DC-based therapy along with 
the stratification of patients according to molecular 
and genetic diagnosis will be necessary to gain a 
significant clinical benefit in new HGG treatments.

In summary, DCs are a heterogeneous cell popula-
tion that displays a wide range of characteristics and 
immune regulatory systems that balance a highly 
complex system of inflammatory and inhibitory 
immune reactions in the tumor microenvironment. 
There are a wide variety of regimens to be tested to 
optimize DC preparations, adjuvant immune stimulation, 
and immune tolerance inhibition. Preclinical and 
clinical studies to identify optimal combinations of 
DC-based immunotherapies with various therapeutic 
strategies including chemotherapy, gene therapy, and 
other types of cellular therapies are also warranted. 
Continual upgrading of treatment regimens as well 
as increased understanding of the molecular and 
genetic characteristics of gliomas will help boost 
the development of clinically relevant DC-based 
immunotherapies.
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