
pattern distinct from that of either white or brown fat 
cells. The current epidemic of obesity has increased the 
interest in studying adipocyte formation (adipogenesis), 
especially in beige/brite cells. This review summarizes 
the developmental process of adipose tissues that origi-
nate from the mesenchymal stem cells and the features 
of these three different types of adipocytes.
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Core tip: Here, we summarize the characteristic differ-
ences of the white, brown and beige adipocytes derived 
from mesenchymal stem cells, including their anatomical 
location. In particular, we focus on the newly discovered 
brown-like adipocytes called beige/brite adipocytes. A 
deeper understanding of the molecular mechanism of 
these adipocytes may provide clues for overcoming 
obesity and its associated metabolic diseases.
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INTRODUCTION
Obesity is a worldwide challenge and not unique to any 
one country. Furthermore, obesity is closely connected 
to many metabolic diseases. Essentially, obesity and over-
weight are caused by the energy imbalance between the 
calories consumed and calories expended. Adipose tissue, 
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Abstract 
Adipose tissue is a major metabolic organ, and it has 
been traditionally classified as either white adipose tis-
sue (WAT) or brown adipose tissue (BAT). WAT and 
BAT are characterized by different anatomical locations, 
morphological structures, functions, and regulations. 
WAT and BAT are both involved in energy balance. 
WAT is mainly involved in the storage and mobiliza-
tion of energy in the form of triglycerides, whereas 
BAT specializes in dissipating energy as heat during 
cold- or diet-induced thermogenesis. Recently, brown-
like adipocytes were discovered in WAT. These brown-
like adipocytes that appear in WAT are called beige or 
brite adipocytes. Interestingly, these beige/brite cells 
resemble white fat cells in the basal state, but they 
respond to thermogenic stimuli with increased levels 
of thermogenic genes and increased respiration rates. 
In addition, beige/brite cells have a gene expression 

Online Submissions: http://www.wjgnet.com/esps/
bpgoffice@wjgnet.com
doi:10.4252/wjsc.v6.i1.33

33 January 26, 2014|Volume 6|Issue 1|WJSC|www.wjgnet.com

World J Stem Cells  2014 January 26; 6(1): 33-42
ISSN 1948-0210 (online)

© 2014 Baishideng Publishing Group Co., Limited. All rights reserved.

TOPIC HIGHLIGHT

Distinction of white, beige and brown adipocytes derived 
from mesenchymal stem cells

WJSC 6th Anniversary Special Issues (2): Mesenchymal stem cells



which is composed mostly of  adipocytes, is a major en-
docrine organ and plays a key role in energy homeostasis. 
Two types of  adipose tissue, white adipose tissue (WAT) 
and brown adipose tissue (BAT), have been identified[1]. 
In practice, obesity does not depend on body weight but 
depends on either the number of  white adipocytes or the 
amount of  WAT. WAT functions primarily to store excess 
energy in the form of  triglycerides (TGs). In contrast, 
BAT oxidizes fuels and dissipates energy in the form of  
heat, which suggests that BAT plays a natural anti-obesity 

role. Therefore, a deeper understanding of  the regula-
tion mechanisms of  adipose tissues can potentially open 
the way to treating obesity-associated metabolic diseases. 
In this review, we describe the recent advances in study-
ing the characteristics of  white, brown, and beige/brite 
adipocytes (a third class of  adipocytes). Additionally, we 
review the molecular mechanisms involved in the devel-
opment of  adipocytes and suggest possible future thera-
peutic approaches.

ANATOMICAL LOCATIONS OF ADIPOSE 
TISSUES
Adipose tissue depots are distinguished by their differ-
ent anatomical locations. WAT is distributed throughout 
the body, and there are two representative types: visceral 
WAT (vWAT) and subcutaneous WAT (sWAT). vWAT 
is distributed around organs and provides protective 
padding. sWAT is located under the skin and provides 
insulation from heat or cold. vWAT, or abdominal fat, is 
located inside the peritoneum and is distributed around 
internal organs (e.g., stomach, liver, intestines, and kid-
neys). Depending on the location, vWAT is sub-classified 
roughly into mesenteric, retroperitoneal, perigonadal 
and omental adipose tissue. Mesenteric adipose tissue re-
sembles a web that supports the intestines, and the paired 
perigonadal adipose tissue is attached to the uterus and 
ovaries in females and the epididymis and testis in males. 
The paired retroperitoneal depots are found along the 
dorsal wall of  the abdomen. Lastly, omental depots are 
located around the stomach and spleen and extend into 
the ventral abdomen (Figure 1A). The locations of  sWAT 
differ from those of  vWAT; sWAT is located inside the 
abdominal cavity and can be found underneath the skin 
as well as in the intramuscular fat that is interspersed 
amongst skeletal muscles. A typical example of  sWAT is 
inguinal WAT, which is found anterior to the upper site 
of  the hind limbs and underneath the skin. In humans, 
sWAT is typically distributed around the hips, thighs, and 
buttocks (Figure 1B).

Because beige/brite adipocyte cells were recently 
defined[2], brown adipocytes are sometimes termed “clas-
sical”, “constitutive”, or “developmentally programmed” 
brown adipocytes to distinguish them from brown-like 
cells in WAT. Classical brown fat is primarily distributed 
around interscapular BAT (iBAT), axillary, paravertebral, 
and perirenal sites. The most classical brown fat depots 
are located in interscapular (in the upper back region) and 
perirenal (around the kidney) sites in rodents and large 
mammals. iBAT is distributed subcutaneously between 
the shoulders and can be easily removed. In contrast, 
it is difficult to selectively remove perirenal BAT from 
the whole pad without removing the kidney. In humans, 
small areas of  iBAT are found in the thorax region (su-
praclavicular), chest and abdomen[3]. In humans and other 
large mammalian species, BAT was traditionally thought 
to be restricted to the neonatal and early childhood peri-
ods[3,4]. However, positron emission tomography (PET) 
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Figure 1  Locations of adipose tissue depots in a mouse (A) and an adult 
human (B). A: Subcutaneous (inguinal and intramuscular), visceral (mesenteric, 
omental, perigonadal and retroperitoneal) and brown (interscapular and peri-
renal) adipose tissue depots are shown in a mouse model; B: Subcutaneous 
(abdominal, femoral and gluteal), visceral (epicardial, gonadal, mesenteric, 
omental and retroperitoneal) and brown (paravertebral, supraclavicular and 
suprarenal) adipose tissue depots are shown in a human model. WAT: White 
adipose tissue; BAT: Brown adipose tissue.



scanning technology was recently adapted for detecting 
metabolically active sites for oncology diagnosis; this ap-
plication is based on the uptake of  radiolabeled non-me-
tabolizable glucose derivatives. The results obtained from 
a scanning experiment using PET to analyze BAT clearly 
demonstrated that active BAT is present in adult humans 
at discrete anatomical sites, especially in the upper trunk, 
such as cervical, supraclavicular, paravertebral, pericardial, 
and to some extent, mediastinal and mesenteric areas[5-8] 
(Figure 1B).

Recently, a new type of  brown-like adipocyte was 
discovered that shows distinct gene expression patterns 
from those of  white or brown adipocytes. These novel 
brown-like cells that reside within WAT, especially ingui-
nal WAT, were termed beige/brite adipocytes or induc-
ible brown adipocytes[2]. Adult human neck fat depots are 
composed of  classical BAT, and these depots have the 
molecular features of  classical BAT. However, unexpect-
edly and interestingly, some studies analyzed the gene 
expressed in the BAT areas of  neonate and adult humans 
and found beige/brite cell-selective genes[9]. In contrast, 
Cypess et al[10] identified and more precisely analyzed the 
anatomical sites of  adult human BAT around neck fat de-
pots. The researchers isolated samples of  neck fat from 
superficial and deep depots and then compared the gene 
expression patterns. The results showed that human su-
perficial neck fat had an expression pattern similar to that 
of  mouse sWAT; however, the expression pattern from 
human deep neck fat was more similar to that of  mouse 
iBAT. Overall, these reports indicate that more exten-
sive analysis is necessary in human BAT studies. Finding 
beige/brite cells, which were once roughly classified as 
BAT, requires us to now further distinguish BAT as either 
classical BAT or beige/brite adipose tissue. It is highly 

probable that the tissue that was previously assumed to 
be BAT in some of  the above mentioned studies may in 
fact be beige/brite adipose tissue.

FEATURES AND FUNCTIONS OF 
ADIPOCYTES
Traditionally, two different types of  adipose tissues, WAT 
and BAT, have been identified in human and other mam-
mals. These adipose tissues have different colors, mor-
phology, metabolic functions, biochemical features, and 
gene expression patterns. WAT is the main storage organ 
of  energy in the form of  lipids for the organism, whereas 
BAT plays a role in regulating body temperature by gen-
erating heat via the consumption of  stored energy.

WAT generally constitutes as much as 20% of  the 
body weight of  normal adult humans. The development 
of  WAT begins in utero but primarily occurs after birth 
when specialized fat storage cells are needed to provide 
fuel during fasting periods. WAT is normally character-
ized by an ivory or yellowish color as well as unilocular/
large lipid droplets. The primary function of  WAT is to 
store excess energy as TGs to regulate energy homeo-
stasis. Although the expression of  uncoupling protein 1 
(UCP1), which is known to be a unique selective marker 
of  BAT[11], is nearly undetectable, the isoform UCP2 
has been reported to be expressed in parts of  WAT[12]. 
Furthermore, some genes, such as those for Adiponec-
tin, Resistin[13], LPL, and G3PDH[14], are known selective 
markers of  WAT (Table 1).

Mitochondria play an essential role in adipose tissue 
because mature adipocytes require a large amount of  
ATP to maintain processes such as lipolysis, β-oxidation 
of  fatty acids, and fatty acid synthesis. Mature brown 
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Brown White Beige (Brown-like)

  Location Interscapular, 
perirenal, axillary, 

paravertebral

Inguinal (sWAT), mesenteric, retroperitoneal, 
perigonadal, omental (vWAT)

Within inguinal WAT, other sWAT?

  Morphology Multilocular/small 
lipid droplets

Unilocular/large lipid droplets Unilocular large/multiple small lipi droplets

  Function Heat production Storage of energy as triglycerides Adaptive thermogenesis
  Mitochondria (+++) (+) Upon stimulation (++)
  Iron content Abundant Low Upon stimulation (Abundant)
  Correlation with 
  insulin resistance

Negative Positive Negative

  UCP1 (+++) Nearly undetectable Upon stimulation (++)
  Vascularization/
  Capillaries

Abundant Low Cold stimulation led to increase 
of angiogenesis in sWAT[66]

  α-, β-Adrenergic receptors β3 (+++) β3 (++), α2 (+) β3/α2?
  Obesity Negative effect Positive effect Negative effect
  Enriched markers UCP1, Eva1, Pdk4, 

Ebf3, Hspb7[2,9]
Ang, Resistin[13] LPL, G3PDH[14] Tmem26, Tbx1[2], Cited1[9], Shox2[67]

  Activators Cold, thyroid hormone, 
thiazolidinediones, 

FGF21, Bmp7, Bmp8b, 
natriuretic peptide

HFD Cold, thiazolidinediones, 
natriuretic peptide, FGF21, 

irisin, catecholamines, 
β-adrenergic receptor agonists

Table 1  Differences amongst the three types of adipocytes

WAT: White adipose tissue; vWAT: Visceral WAT; sWAT: Subcutaneous WAT; UCP1: Uncoupling protein 1; FGF21: Fibroblast growth factor-21; HFD: 
High fat diet.
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cold stimulation, the former beige/brite adipocytes re-
converted into white adipocytes with decreased expres-
sion of  brown-selective marker genes approximately 6 
wk after the warm adaptation[23]. This result suggests that 
browning and whitening are reversible processes and de-
pend on environmental conditions.

It is unclear whether the beige/brite fat cells arise 
through the transdifferentiation of  pre-existing white 
adipocytes or by de novo adipogenesis from a subgroup 
of  precursor cells. Previously, several reports suggested 
that beige/brite adipocytes arise from pre-existing white 
adipocytes. Himms-Hagen et al[19] observed that mature 
adipocytes transform into beige/brite adipocytes with-
out dividing, and Cinti[24] showed that large unilocular 
white adipocytes convert into beige/brite adipocytes in 
response to cold or 3-adrenergic agonists. However, new 
research has recently shown conflicting results. During 
the writing of  this paper, Wang et al[25] suggested that 
most beige/brite adipocytes stem from a subgroup of  
precursors in WAT. In that study, the researchers de-
veloped a system for inducible, permanent labeling of  
mature adipocytes. Although cold induced the formation 
of  beige/brite adipocytes, the researchers observed large 
areas of  beige/brite fat cells with multiple small lipid 
droplets that were not labeled in the subcutaneous white 
fat.

DIFFERENTIATION OF ADIPOCYTES
BAT develops and differentiates before birth because its 
function is to protect a newborn against cold. In contrast, 
the formation of  WAT commences shortly after birth. 
Mesenchymal stem cells (MSCs), which are multipotent 
stem cells, become adipoblasts and subsequently differen-
tiate into preadipocytes. Under certain types of  stimula-
tion, preadipocytes are converted into mature adipocytes 
in the final phase of  differentiation[26].

The initial phase of  adipogenesis is characterized by 
the proliferation of  preadipocytes. Preadipocytes prog-
ress through multiple rounds of  mitosis until they reach 
growth arrest, the G1 phase of  the cell cycle. At this 
point, the preadipocytes must re-enter the cell cycle, un-
dergo mitotic clonal expansion until they eventually exit 
the cell cycle, acquire the metabolic features of  mature 
adipocytes, change their morphology, and accumulate 
cytoplasmic TGs[27]. Mature adipocytes are believed to 
have lost the ability to divide following the completion 
of  terminal differentiation[28]. Thus, inducing differentia-
tion in cells isolated from the stromal vascular fraction of  
adipose tissue depots requires the specific contents of  a 
“differentiation cocktail”. The differentiation induction 
cocktail contains fetal bovine serum, insulin, dexametha-
sone (a glucocorticoid), and 3-isobutyl-1-methylxanthine 
(IBMX). Insulin is an adipogenesis-inducing hormone 
that promotes cell cycle reentry and synchronous cell 
division (mitotic clonal expansion). This process is de-
pendent on the induction of  two members of  CCAAT/
enhancer-binding protein (C/EBP) family: C/EBP-β 

adipocytes have a relatively high mitochondrial content 
and contain a specialized mitochondrial protein called 
UCP1[15]. Lipolysis occurs during cold exposure, which 
activates sympathetic nervous system signaling in brown 
adipocytes; the resulting free fatty acids are used to gen-
erate heat using the UCP1 protein. Therefore, in com-
parison to white adipocytes, brown adipocytes have sig-
nificantly higher levels of  mitochondria that contain red-
brownish iron and consequently appear brown in color. 
They also contain many multilocular/small lipid droplets. 
As mentioned above, the main function of  BAT is to 
regulate the non-shivering thermogenesis that dissipates 
energy as heat in response to cold exposure[16-18]. The 
thermogenic process of  brown adipocytes is activated by 
UCP1, also known as thermogenin, in their mitochon-
dria. The UCP1 expressed in the inner membrane of  
mitochondria is mainly regulated by adrenergic signaling 
through sympathetic innervations, and this signaling is 
responsible for the production of  heat via the respiratory 
uncoupling reaction. UCP1 causes a proton leak across 
the inner membrane of  mitochondria, thereby converting 
chemical energy into the heat. UCP1 is responsible for 
the main function of  BAT and is a representative marker 
of  brown adipocytes[15,18]. Additionally, BAT is highly 
vascularized and innervated, which likely allows BAT to 
respond to sympathetic nerve activity and dissipate the 
generated heat throughout the body through blood ves-
sels. In addition to UCP1, Eva1, Pdk4, Ebf3, and Hspb7 
have also been reported to be BAT-specific markers[3,4] 
(Table 1).

Previous evidences have supported the idea that white 
and brown adipocytes coexist within the same depot, 
which suggests that white adipocytes transdifferentiate 
into brown adipocytes via several factors that normally 
regulate BAT development or activity[19-21]. However, a 
new type of  brown-like adipocyte within WAT called 
beige/brite cells was recently discovered, and this trans-
differentiation process is referred to as the “browning” 
or “britening” of  WAT. Researchers have also reported 
the differential expression of  several genes that can be 
used to distinguish beige/brite adipocytes from brown 
adipocytes. These genes encode proteins with very dis-
tinct cellular functions, including transcription factors 
(e.g., Tbx15), metabolism-related proteins (e.g., Slc27a1), 
and proteins associated with inflammatory pathways (e.g., 
CD40 and CD137)[2,9,22]. Interestingly, beige/brite adipo-
cytes have the characteristics of  both white and brown 
adipocytes. They display unilocular/large lipid morphol-
ogy as well as gene expression patterns similar to those 
of  white adipocytes during basal states. However, upon 
cold stimulation, beige/brite adipocytes change into an 
“intermediate cell morphology” in which multilocular 
lipid droplets surround large ones; this change ultimately 
results in UCP1 expression and a transformation into 
the multilocular/small lipid morphology characteristic of  
brown adipocytes[2,9,22]. Moreover, the inducible brown-
ing processes are reversible reactions. In other words, 
when mice were rewarmed at room temperature after 
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and C/EBP-δ. Dexamethasone treatment is important 
for inducing differentiation because it activates the tran-
scription factor C/EBP-β. IBMX is a phosphodiesterase 
inhibitor that increases intracellular cyclic AMP (cAMP) 
levels, leading to the activation of  the transcription factor 
C/EBP-δ.

Both white and brown adipocytes originate from the 
mesoderm, but they are believed to be derived from dif-
ferent precursor cells (Figure 2). MSCs can be committed 
to either an adipogenic lineage of  Myf5-negative cells or 
a myogenic lineage of  Myf5-positive cells[29,30]. Myf5 is 
known to be a key myogenic regulatory factor. White adi-
pocytes are derived from the adipogenic lineage, whereas 
brown adipocytes are derived from the myogenic lineage. 
Although the adipocytes originate from different lineages, 
the subsequent adipogenic differentiation shares common 
transcriptional cascades that mainly involve peroxisome 
proliferator-activated receptor-γ (PPAR-γ), the dominant 
regulator of  fat cell development, and C/EBPs[26,28].

Differentiation into white adipocytes from progenitor 
cells
C/EBP family members are important for adipocyte dif-
ferentiation, whereby the early induction of  C/EBP-β 
and C/EBP-δ leads to the induction of  C/EBP-α and 
PPAR-γ. Immediately after the induction of  differentia-
tion, the cAMP response element binding protein be-
comes phosphorylated and then induces the expression 
of  C/EBP-β[31]. In a relatively early stage of  differentia-
tion, mitogen- activated protein kinase and GSK3β phos-
phorylate C/EBP-β, which induces the dimerization of  
two monomers of  C/EBP-β, thereby creating a DNA-
binding domain. The binding of  C/EBP-β to DNA 
allows preadipocytes to re-enter the cell cycle, that is, C/
EBP-β plays a role in mitotic clonal expansion. Further-
more, the functions of  C/EBP-β and C/EBP-δ may be 
redundant[32]. A knockout of  C/EBP-β in mice has little 
effect on adipose tissue accumulation, whereas C/EBP-β 
and C/EBP-δ double-knockout mice show considerably 

reduced adipose tissue accumulation. The binding of  
C/EBP-β to DNA leads to increased levels of  C/EBP-α 
and PPAR-γ, which act together as transcriptional activa-
tors[26,33]. C/EBP-α functions to maintain PPAR-γ expres-
sion. Upon expression, PPAR-γ and C/EBP-α exert pos-
itive feedback on each other, and this stage is regarded as 
a key step in acquiring the adipocyte phenotype in mature 
adipocytes. In addition, PPAR-γ is essential for regulating 
gene transcription to promote and maintain the differ-
entiated state of  adipocytes (i.e., lipid metabolism, glu-
cose metabolism, and insulin sensitivity). The dominant 
negative form of  PPAR-γ leads to de-differentiation and 
the loss of  lipid accumulation in differentiated 3T3-L1 
cells[34]. Furthermore, the absence of  C/EBP-α in mice 
impairs the development of  WAT, but interestingly, it has 
no effect on BAT. Thus, some researchers have specu-
lated that the lack of  C/EBP-α can be compensated for 
in brown fat development by C/EBP-β[35].

Differentiation of into brown adipocytes from progenitor 
cells
In contrast to white adipocytes, brown adipocytes origi-
nate from the myogenic lineage of  Myf5-positive pro-
genitor cells. The differentiation of  brown preadipocytes 
into brown adipocytes is controlled by transforming 
growth factor-β family proteins, such as bone morphoge-
netic protein (BMP)-7[36] and myostatin[37]. However, Wnt 
signaling is known to suppress the differentiation of  the 
preadipocytes into brown adipocytes[38]. C/EBP-β and 
PR domain containing 16 (PRDM16) have been shown to 
act as key transcriptional factors in the differentiation of  
brown adipocytes[32,39,40]. When PRDM16 was suppressed 
in brown precursor cells using an shRNA system, the 
cells differentiated into skeletal muscle cells. Additionally, 
the myoblasts that ectopically expressed PRDM16 were 
converted into brown fat cells[40]. PRDM16, together with 
C/EBP-β, operates as a critical switch factor in determin-
ing the fate of  BAT from the myogenic lineage[41]. In the 
Myf5-positive myogenic lineage, the PRDM16 and C/
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Figure 2  Differentiation into white, beige or brown 
adipocytes. Previously, white and brown adipocytes 
were thought to be derived from the same precur-
sor cell. However, recent studies demonstrated 
that brown fat shares a progenitor cell (Myf5+) with 
skeletal muscle and not with white adipocytes. The 
Myf5+ precursors are induced to transform into 
mature brown adipocytes by bone morphogenetic 
protein 7 (BMP7), peroxisome proliferator-activated 
receptor-γ (PPAR-γ) and CCAAT/enhancer-binding 
proteins (C/EBPs) in cooperation with the tran-
scriptional co-regulator PR domain-containing 16 
(PRDM16) and PGC-1α. White adipocytes can 
also be transformed to brown-like adipocytes, 
called beige/brite adipocytes, by cold exposure, 
a β-adrenergic agonist or a PPAR-γ agonist. AR: 
adrenergic receptor; FGF21: Fibroblast growth fac-
tor 21; PGC-1α: Peroxisome proliferator activated 
receptor gamma coactivator 1 alpha.

Park A et al . Distinguishing white, beige and brown adipocytes



38 January 26, 2014|Volume 6|Issue 1|WJSC|www.wjgnet.com

EBP-β transcriptional complex induces the expression of  
PPAR-γ and peroxisome proliferator activated receptor 
gamma coactivator 1 alpha (PGC-1α), which subsequent-
ly induces the differentiation of  brown adipocytes[42]. In 
particular, PGC-1α also cooperates with PPAR-γ and 
PPAR-α and regulates mitochondrial biogenesis and oxi-
dative metabolism[43,44]. In addition, C/EBP-β has been 
reported to be a key transcriptional activator of  UCP1 
expression and the thermogenesis process[32,41]. Interest-
ingly, overexpression of  C/EBP-β alone induces a brown 
fat cell-like phenotype in white adipocytes[45].

Formation of beige/brite adipocytes (Browning)
After the completion of  adipocyte differentiation, some 
differential processes are sometimes still observed. Inter-
estingly, white adipose depots have the ability to switch 
between energy storage and expenditure. Thus, these 
depots can shift from a WAT phenotype to a BAT-like 
phenotype in terms of  features such as morphology, gene 
expression pattern, and mitochondrial respiratory activ-
ity under some specific stimuli[46]. As mentioned above, 
this induction of  the brown adipocyte-like phenotype in 
WAT is called “browning” and the beige/brite cells of  
WAT are capable of  this transformation. The beige/brite 
cells in WAT are derived from precursor cells that are dif-
ferent from classical brown adipocytes and are closer to 
the white adipocyte cell lineage[47]. These beige/brite cells 
show a white adipocyte-like phenotype, including large 
lipid droplets and the lack of  UCP1 expression, under 
basal conditions. However, in response to certain stimuli 
(cold exposure[21] or β3-adrenergic activators[19]), beige/
brite cells transform into cells having BAT-like character-
istics, such as multilocular/small lipid droplets and UCP1 
expression.

Recently, in an in vivo lineage-tracing study using 
transgenic mice[23], brown and beige adipocytes were ei-
ther transiently or permanently labeled, thereby allowing 
the tracing of  current and past UCP1-expressing cells. 
After the first cold stimulation, the beige/brite adipo-
cytes expressed both the permanent and transient labels 
in inguinal WAT. Additionally, when returned to warm 
conditions, the former beige/brite adipocytes were per-
manently retained but lost the transient label. The second 
round of  cold stimulation resulted in the re-browning of  
the whitened former beige/brite adipocytes, as well as the 
formation of  new beige/brite adipocytes within inguinal 
white fat depots. This experiment strongly suggests that 
inter-conversion between white and beige/brite adipo-
cytes is possible. Considering these results, we speculate 
that beige/brite cells can regulate the adaptive thermo-
genesis against cold in sWAT because the primary func-
tion of  BAT is non-shivering thermogenesis. In general, 
classical BAT protects an organism from decreasing tem-
peratures during the neonatal period when the organism 
is not yet sufficiently capable of  adapting to a change in 
environment; in adults, classical BAT is still present and 
increases energy expenditure in response to cold or an 
excess energy state. We think that the classical BAT has 

already been set up to control energy homeostasis and 
is thus a fixed mechanism. Meanwhile, beige/brite cells 
provide a more flexible means to regulate body tempera-
ture and energy balance.

Several factors that can lead to WAT browning have 
been reported. One of  strong inducer of  beige/brite 
cells is cold exposure. Chronic cold exposure induces 
remarkable changes in metabolism as well as gene ex-
pression. In addition, it stimulates the differentiation of  
precursors into beige/brite adipocytes within one week 
of  exposure[23]. Although recent report assumed that a 
cool temperature (27-33 ℃, in vitro cells) can directly acti-
vate the thermogenic gene process in a cell-autonomous 
manner in sWAT but not in classical BAT, the detailed 
mechanism is not yet clear. Traditionally, it has been ac-
cepted that thermogenic activity is regulated by a canoni-
cal β-adrenergic receptor pathway via the sympathetic 
nervous system. Catecholamines, such as norepinephrine, 
activate β-adrenergic receptor (there are three subtypes, 1, 
2, and 3, in humans, but mainly 3 and 1 are involved) that 
are coupled to a G-protein and increase the intracellular 
cAMP level. In a subsequent process, this signal leads to 
fatty acid mobilization and induces the UCP1 expression 
in mitochondria related to non-shivering thermogenesis. 
Thus, catecholamines or β-adrenergic receptor agonists 
mimic the majority of  thermogenic effects, as demon-
strated using CL316243[48-51]. Other agents, such as the 
PPAR-γ activator thiazolidinediones, can also promote 
WAT browning[52]. In addition, multiple novel nonad-
renergic soluble molecules that are capable of  inducing 
BAT activity and WAT browning have been identified[53]. 
Although some of  these molecules act indirectly by mod-
ulating sympathetic activation and the subsequent norad-
renergic pathways, several agents [e.g., fibroblast growth 
factor-21 (FGF21) and the cardiac peptides (ANP/BNP)] 
appear to have direct effects on brown adipocytes and 
the browning process[54-56]. Recently, the Spiegelman group 
identified irisin[57], a novel hormonal factor that converts 
white fat into the more thermogenic beige fat. Irisin is 
secreted and released from muscle during exercise and 
appears to affect the browning process in WAT but not 
classical BAT activation (Figure 3). Other stimuli are able 
to enhance the recruitment of  beige cells; these stimuli in-
clude prostaglandins, which are locally generated by cyclo-
oxygenase-2-mediated production, Bmp8b, the transcrip-
tion factor FOXC2, and cyclic guanosine monophosphate 

[24,58-60]. A recent study suggested that the overexpression 
of  BMP-4 promotes the browning of  WAT[61].

THERAPEUTIC POTENTIAL
sWAT and BAT have intrinsic beneficial metabolic prop-
erties, whereas vWAT is the main cause of  insulin resis-
tance and type Ⅱ diabetes mellitus. Obesity and its re-
lated metabolic diseases are worldwide challenges. Many 
strategies to address the problems have been attempted, 
but there are still no clear solutions. Recently, however, 
the rediscovery of  BAT in human adults led to many 
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investigations of  BAT for anti-obesity treatments. Some 
of  the experimental evidence suggests that BAT could 
be a new therapeutic tool as well as a precise regulator 
of  energy homeostasis. People who have adapted to cold 
environments show some resistance to the development 
of  diabetes, possibly due to the maintenance of  a larger 
amounts of  BAT[62]. In addition, the extent of  human 
BAT activity in patients is inversely associated with obesi-
ty, age and type Ⅱ diabetes[63]. In mouse experiments, the 
mouse strains with higher thermogenic gene expression 
in WAT depots tended to be more resistant to obesity and 
insulin resistance than those with lower levels[64]. Based on 
these results, many molecules (such as irisin[57], FGF21[55], 
and natriuretic peptides[56]) that induce BAT activation or 
WAT browning have been studied as potential drugs. Of  
course, these molecules also create side effects; neverthe-
less, these molecules may be an important key to address 
many challenges if  the side effects can be mitigated.

CONCLUSION
WAT is an important endocrine organ that maintains 
body homeostasis by storing excess energy and secreting 
hormones. However, the excessive accumulation of  fat 
in the organ causes obesity and obesity-associated meta-
bolic disorders. Thus, developing treatments for obesity 
is important for maintaining public health. Interestingly, 
a potential solution to the problem of  obesity-associated 
diseases has been found in brown fat, a type of  adipose 
tissue that dissipates energy through a thermogenesis 
process. Previous studies showed that activated BAT is 
inversely correlated with BMI[65], adipose tissue mass and 
insulin resistance. Thus, BAT is one of  the best targets 
for creating strategies to treat obesity and obesity-associ-
ated diseases. However, the transdifferentiation of  white 
adipocytes into brown adipocytes is difficult because each 
type of  adipose tissue is derived from a different pro-
genitor lineage. The recent discovery of  beige/brite adi-
pocytes within WAT that are derived from the same lin-
eage provides the possibility to overcome this challenge. 
Moreover, beige/brite cells are distributed throughout 
the human body, and they are highly activated in response 
to a variety of  factors, including endogenous hormones. 
Therefore, WAT browning as well as BAT activation may 
contribute to an important strategy for treating obesity. 
A deeper understanding of  the biological mechanisms 
that regulate the conversion within adipocytes will help in 
developing browning-inducing strategies for suppressing 
obesity.
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