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Abstract
Glioma incidence rates in the United States are near 
20000 new cases per year, with a median survival time 
of 14.6 mo for high-grade gliomas due to limited thera-
peutic options. The origins of these tumors and their 
many subtypes remain a matter of investigation. Evi-
dence from mouse models of glioma and human clinical 
data have provided clues about the cell types and initi-
ating oncogenic mutations that drive gliomagenesis, a 
topic we review here. There has been mixed evidence 
as to whether or not the cells of origin are neural stem 
cells, progenitor cells or differentiated progeny. Many of 
the existing murine models target cell populations de-

fined by lineage-specific promoters or employ lineage-
tracing methods to track the potential cells of origin. 
Our ability to target specific cell populations will likely 
increase concurrently with the knowledge gleaned from 
an understanding of neurogenesis in the adult brain. 
The cell of origin is one variable in tumorigenesis, as 
oncogenes or tumor suppressor genes may differential-
ly transform the neuroglial cell types. Knowledge of key 
driver mutations and susceptible cell types will allow 
us to understand cancer biology from a developmental 
standpoint and enable early interventional strategies 
and biomarker discovery.

© 2014 Baishideng Publishing Group Co., Limited. All rights 
reserved.
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Core tip: The origins of glioma are not well understood. 
We approach the topic by review of our knowledge con-
cerning the different cell types found in the mamma-
lian brain, we describe mouse models aiming to model 
gliomagenesis and highlight relevant clinical data. Our 
aim is to integrate these three areas to provide a com-
prehensive snapshot of progress made towards the 
discovery of the process driving glioma formation.
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INTRODUCTION
Gliomas can be classified as many different genetically-
driven diseases that manifest under the guise of  only a 
few histological variations[1-3]. Our understanding of  glio-
ma biology has grown immensely with the advent of  can-
cer genetics and molecular characterization. Large-scale 
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multi-platform characterization of  gliomas has revealed 
strong relationships that tie certain combinations of  
genetic changes with characteristic epigenetic modifica-
tions, transcriptome alterations and clinical presentations 
to define subtypes[4-7]. Ultimately these findings suggest 
that the cancer biology in each molecular subclass varies 
to an extent that remains to be seen. Among the different 
genetic subclasses of  gliomas there is reason to believe 
that the process of  gliomagenesis may also vary. There 
are many aspects of  gliomagenesis to consider: what cell 
type gives rise to the tumor? What genetic changes are 
compatible with initiating gliomagenesis? Are there non-
cell autonomous factors that play a role in gliomagenesis, 
such as microenvironment changes? Understanding these 
tumor-initiating events will allow insight into the spatio-
temporal progression of  gliomas, the identification of  
key driver mutations and discovery of  early biomarkers.

The cell of  origin is the cell type that initiates tumor 
formation. This differs from the cell of  mutation, which 
is the cell type that acquires oncogenic changes but may 
not necessarily proliferate until it moves to another point 
in its respective cellular hierarchy. It is thought that the 
cell of  mutation may either differentiate or de-differenti-
ate to a different cell type, which may then act as the cell 
of  origin via uncontrolled growth[8]. It is unclear if  more 
than one cell of  origin or cell of  mutation may exist for 
a single type of  tumor. Furthermore, the cells of  origin 
of  the different genetic subtypes of  glioma are still either 
a matter of  debate or left unexplored. Most of  what we 
know about the potential cells of  origin as a function of  
different combinations of  oncogenic mutations in glioma 
comes from a variety of  mouse models. This review will 
focus on the cell of  origin in gliomas by reviewing the 
different cell types of  the neuroglial lineage, exploring 
cell of  origin glioma models and discussing clinical data 
that suggest differing cells of  origin per glioma subtype.

Before proceeding, it is important to recognize the 
difference between the stem-like cells in a mature tumor 
and the cell of  origin. These stem-like cells are common-
ly referred to as cancer stem cells (CSCs), brain tumor 
stem cells (BTSCs), or tumor-initiating cells. For the pur-
poses of  this review, the term “tumor-initiating cells” will 
not be used, as it does not distinguish between the re-
initiation of  a mature tumor and the initiation of  a tumor 
from its cell of  origin. For clarity, we will refer to these 
cancer stem-like cells as BTSCs or CSCs in this text. In 
addition, it is also necessary to consider the different con-
text in which we discuss a “stem cell” and “differentiated 
cell”. When discussing normal human cellular biology, a 
stem cell is capable of  self-renewal and asymmetric dif-
ferentiation. Progenitors downstream of  stem cells may 
symmetrically differentiate following proliferation. When 
a fully differentiated stage is reached, the cell typically 
has limited proliferation potential. Within a tumor, CSCs 
carry over the same definitions as normal stem cells. It 
is still a matter of  debate as to whether or not the more 
differentiated cancer cells have limited or unlimited pro-
liferation potential.

There are two prevalent models for the propaga-

tion of  tumors: the clonal model and cancer stem cell 
model[9,10]. In the clonal model, single cells within a tumor 
progressively acquire competitively advantageous genetic 
changes, accounting for the cellular and genetic heteroge-
neity observed in tumors. In the cancer stem cell model, 
there are thought to be CSCs within the tumor that have 
the ability to self-renew and differentiate. By definition, 
CSCs can be seeded into another organism and give rise 
to the tumor it was isolated from, while the non-CSCs 
either cannot do so, or can do so only with much lower 
efficiency. In the CSC model, CSCs are thought to give 
rise to a cellular hierarchy via their differentiation and 
self-renewal abilities. Both CSCs and non-CSCs acquire 
genetic mutations, leading to the observed cellular and 
genetic heterogeneity. BTSCs identified in gliomas are 
thought to play a key role in the maintenance and viru-
lence of  the tumor. How and when the BTSCs arise in 
the tumor remains a mystery, although at least two pos-
sibilities exist. We can hypothesize that differentiated cells 
in the early tumor eventually de-differentiated to form 
BTSCs. Conversely, the other possibility is that BTSCs 
are derivatives of  a cell of  origin that was once a normal 
stem cell or progenitor cell. The missing links between 
cell types in the early tumor and mature tumor are yet 
to be uncovered. Cell of  origin models must be used to 
explore the developmental arc of  a mature tumor that 
contains a complex cellular hierarchy from a single clone. 
As was previously mentioned, two major variables are at 
play in these modeling efforts: the oncogenic mutations 
and the plethora of  cell types found in the brain. In this 
review we begin with an overview of  neurogenesis in the 
adult brain and follow with a discussion of  glioma genet-
ics, glioma cell of  origin models and clinical evidence for 
stem cells as the cells of  origin in glioma.

NEUROGENESIS IN THE ADULT BRAIN
Neural stem cells and their progeny have become candi-
dates for the cell of  origin of  glioma since the discovery 
of  neurogenesis in the adult brain. It is necessary to rec-
ognize the variety of  cell types in the brain, when they 
are present and how they arise when discussing the cell 
of  origin of  gliomas. Neurogenesis in adults is thought 
to be responsible for the replacement of  neurons and 
glia for the purposes of  cellular replenishment, remodel-
ing and response to injury[11]. We know that adult gliomas 
arise from the neuroglial lineage during post-natal life 
due primarily to strong evidence from the histological 
characteristics of  glioma, their molecular signature and 
mouse glioma models that target the neuroglial lineage. 
Accordingly, this introduction is mostly limited to adult 
neurogenesis (vs embryonic or pre-natal neurogenesis) 
and excludes extensive discussion of  other central ner-
vous system (CNS) and non-CNS cell types found in the 
brain (such as the meninges, endothelium, ependyma and 
microglia). 

There are two identified neurogenic niches in the 
adult mammalian brain: the subventricular zone (SVZ) 
and the subgranular zone (see review by Alvarez-Buyl-
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la[11]). Ciliated ependymal cells that encase the cerebro-
spinal fluid line the lateral ventricles and this monolayer 
of  cells is contained within the ventricular zone[12,13]. On 
the lateral surfaces of  the ventricles, the ependymal cells 
are laterally lined by neural stem cells (NSCs), or type B 
NSCs, in a second layer of  cellular stratification within 
the SVZ[13-15]. These type B NSCs arise from neuroep-
ithelium-derived radial glia that are responsible for the 
stratified organization of  the cortex[16-18]. During the 
transition to post-natal life, radial glia differentiate into 
type B NSCs that extend a small process to make contact 
with the cerebrospinal fluid in the ventricular zone. Their 
cell bodies are mostly confined in the SVZ, with an api-
cal process that extends laterally to contact blood vessels. 
The type B NSCs in the SVZ are capable of  asymmetric 
division leading to the production of  glia or neurons 
(Figure 1). To produce neurons, the type B cells give rise 
to transit amplifying cells, or type C cells, which prolifer-
ate and progress to type A cells, or neuroblasts. These 
neuronal precursors are known to migrate through the 
rostral migratory stream (RMS) in the frontal cortex to 
replenish interneurons in the olfactory bulb, becoming 
granule or periglomerular neurons[19-22]. Depending on the 
regulatory signals in the SVZ niche, type B cells may also 
generate cortical astrocytes or oligodendrocyte precursors 
cells (OPCs), which mature to oligodendrocytes[11,23,24]. 

In the hippocampal formation, radial astrocytes (type 
1 cells) serve as stem cells[25]. Type 1 NSCs differentiate 
into intermediate progenitor cells (type 2 cells), which 
form immature granule cells (type 3 cells). Subsequently, 
type 3 cells will mature into the granule neurons found in 
the hippocampus[26].

Because most of  what we know about post-natal 
neurogenesis and its cellular hierarchy in the brain comes 
from the study of  rodents, there has been intense specu-
lation as to whether human brains harbor active NSCs 
that generate progenitors and what their subsequent 
roles are during adult life. The implication of  active neu-
rogenesis in adult humans suggests that a decline or de-
fect in the process may play a role in neurodegenerative 
disorders or glioma formation, respectively. The quest 
for uncovering neurogenesis in higher organisms con-
sisted mostly of  labeling studies in post-mortem brains 
of  monkeys and human patients. Through these studies 
we have gained substantial evidence for the presence of  
post-natal human neurogenesis, although their roles in 
maintaining the human brain’s function remain matters 
of  ongoing study.

Mounting evidence for two neurogenic regions in 
the rodent brain led to the search for their human ho-
mologues. Explant culture and labeling experiments of  
human brain surgical specimens generated new neurons 
and glia[27,28]. This was the first direct observation and in 
vitro generation of  human neuronal cell types. Shortly 
thereafter, many others demonstrated that multipotent or 
neurosphere-forming cells could be isolated and cultured 
from the human SVZ and subgranular zone (SGZ). Such 
cultures were extremely heterogeneous, but they were 
shown to be capable of  directed differentiation in vitro 

to both glia and neurons, indicating that they contained 
either undifferentiated precursors or NSCs[29-34]. In a rare 
form of  scientific inquiry, human cancer patients were in-
jected with Bromodeoxyuridine (BrdU), a mitotic marker, 
as a part of  a diagnostic procedure. Post-mortem exami-
nation of  their hippocampi revealed BrdU-labeled neural 
and glial cell types, and a small population of  BrdU-posi-
tive cells that did not co-stain for differentiation markers. 
These unidentifiable cell types were presumed to be the 
undifferentiated stem cells or progenitors[35]. Interestingly, 
BrdU-positive cells in the SVZ were also noted in all five 
patients examined, who were between the ages of  58 and 
72 years old at time of  death, indicating that neurogenesis 
may continue late into adult life.

The evidence supporting neurogenic activity in the 
human brain raises other important questions: where 
do stem cells reside? How does the cellular hierarchy 
operate in the primate brain? The first identification of  
neurogenesis in monkeys was made in the hippocampus 
structure. Kornack et al[36] and Gould et al[37] observed 
that the rate of  formation of  new granule neurons in 
the SGZ could be modulated by stress and that the pri-
mate brain was also capable of  generating astrocytes 
and oligodendrocytes, a process that continued even as 
the monkeys increased in age. Neuroblast (type A cell) 
formation was also observed in the adult forebrain of  
monkeys, lending further evidence for adult SVZ neuro-
genesis in primates[38]. These neuroblasts were also found 
to travel along the RMS[39], as observed in their mam-
malian rodent counterparts[19,40]. The first evidence for 
the existence of  human neuroblasts (type A cells) in the 
olfactory bulb came from examination of  post-mortem 
brains, which showed immuno-positivity for neuroblast 
markers[21]. Following this study, three separate groups 
provided evidence, once again through immunostaining 
and ultrastructural studies of  post-mortem human tissue, 
for neuroblast chain migration through the RMS[22,41-43]. 
In addition, Alvarez-Buylla and colleagues claim to have 
identified the Medial Migratory Stream, an additional 
migratory pathway for neuroblasts that extends medially 
to the pre-frontal cortex[42]. They indicated, however, that 
chain migration through this region ends after approxi-
mately 18 mo of  age. The direct identification of  multi-
potent NSCs (type B cells) in the adult human SVZ has 
provided us with evidence that humans do harbor NSCs 
and that they are capable of  producing both glia and neu-
rons in a fashion similar to other mammals[12,44]. Given 
the hypothesis that tumorigenesis is more likely to oc-
cur in mitotically active cells rather than in quiescent cell 
types, it will be interesting to explore if  tumor incidence, 
and type, vary with neuronal developmental stages in a 
child or adolescent, or with stress, injury and increased 
age.

GLIOMA MODELS AND THE GLIOMA 
CELL OF ORIGIN
The discovery of  human NSCs and their progeny has 
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led to the question of  whether or not they act as the cell 
of  origin in glioma. A number of  mouse models have 
been developed to explore this topic. Mouse models re-
capitulate a small number of  genetic mutations found in 
human glioma by functionally expressing an oncogene or 
inactivating a tumor suppressor. Genetically engineered 
mice or targeted lentiviral transduction systems are used 
for the purposes of  modeling gliomagenesis. The genetic 
targets in these models, although found to be mutated 
in human gliomas, are not necessarily driver mutations 
in glioma development, but we are limited in our ability 
to identify driver mutations from human gliomas. This is 
also evident by the fact that some mutations, in the con-
text of  mouse models, do not produce tumors or fail to 
produce appropriate phenotypes when mutated alone[45]. 
There are very limited mechanisms by which we can infer 
or identify driver mutations from human cancers. One 
way is to see which types of  mutations occur at highest 
frequencies within a subclass of  tumor; another method 
is to determine what percentage of  the cell popula-
tion carries the mutation. When a mutation is found in 
nearly every tumor cell, it implies that a disproportionate 
growth advantage is conferred or that a particular muta-
tion occurred very early in tumor development. Regard-
less of  what we can infer from clinical data, we do have a 
good understanding of  the most common genetic lesions 
found in gliomas and modeling efforts have focused on 
dissecting the role of  these common culprits.

There are a number of  ways to model gliomagenesis. 
Some model systems aim to create a “mature” glioma, 
while others aim to identify how limited and defined 
oncogenic mutations drive initial glioma formation, or 
gliomagenesis (see review[45]). The most genetically faith-
ful models of  glioma are xenografts of  human brain tu-
mors in the mouse brain. Xenografts of  primary tumors 
have been used successfully to study glioma biology and 
genetics because they are very close representations of  
the mature tumor that is removed during surgery[46]. The 
drawbacks of  such systems are the selection process 
during cell line derivation, the need to culture these cells 
ex vivo (which over time leads to epigenetic and genetic 
alteration), and the need to grow tumors in immune 
deficient mice. Although human glioma xenografts repli-
cate human pathology, they do not represent the earliest 
stages of  glioma formation. For example, glioma xeno-
grafts do not recapitulate the transformation of  a normal 
endogenous neuroglial cell type to neoplastic stages and 
beyond. Furthermore, glioma xenografts cannot be used 
to identify the cell of  origin or cell of  mutation. Explants 
of  glioma have also been used to study glioma biology, 
although such systems are technically challenging and are 
limited to the tissue obtained after surgery[47]. Since hu-
man tumors cannot be used to understand the beginning 
stages of  gliomagenesis, approaches that involve selec-
tive mutation of  tumor suppressor genes or induction of  
oncogenes in model organisms are used to dissect onco-
genic transformation. 

The most commonly used model system to study 
gliomagenesis has been genetically engineered mice that 

form tumors either spontaneously or after induction. 
One of  the main advantages in using mice is the scale 
and reproducibility in which genetic alterations can be 
studied, which has proved to be a powerful tool in under-
standing cancer genetics. The disadvantage of  using mice 
is their species difference from humans, which obviously 
translates to differing genetics, physiology and anatomy, as 
well as the failure of  some of  these models to capture the 
molecular diversity and heterogeneity of  human tumors.

Virally mediated oncogenic transduction is also used 
to target specific areas and cell types in the mouse brain 
for gliomagenesis. Such an approach allows the localiza-
tion of  genetic alterations to specific areas within the 
brain and selective targeting of  cell types within that re-
gion depending on the type of  model used. The drawback 
of  this system is the need for invasive injection of  viruses 
or virus producing cells. Nevertheless, functional muta-
tions in these model systems have provided the platform 
to study the cell of  origin in cancers (see reviews[8,48,49]).

The genetic targets used for these studies are primar-
ily those that are mutated in Glioblastoma Multiforme 
(GBM), or World Health Organization (WHO) grade Ⅳ 
gliomas. Gliomas are graded based on histological char-
acteristics on a WHO grading scale of  Ⅰ-Ⅳ[3]. In GBM, 
the most common and deadly of  the glioma subtypes, a 
number of  high frequency alterations have been found 
most commonly in the tumor suppressors p53, PTEN, 
CDK2A/p16INK4A/p14ARF, CDK4, RB and in proto-
oncogenes EGFR, PDGFR, PIK3CA, PIKR1, Kras and 
IDH1[4-7]. The models discussed here have dually aimed 
to recreate functional recapitulations of  genetic altera-
tions to these genes and to understand in what cell type 
they initiate gliomagenesis.

One of  the landmark papers in modeling the cell of  
origin in glioma came from Holland et al[50]. This unique 
mouse model employed a genetically engineered strain 
that expressed a receptor for a retrovirus that harbored 
either a mutant form of  Kras or Akt. Retroviruses were 
produced by xenografts of  chicken cell lines harboring 
Replication-Competent ALV Splice-acceptor (RCAS) 
viral vectors[51]. The receptor for these retroviruses is ex-
pressed under the control of  tissue-specific promoters, 
such as glial fibrillary acidic protein (GFAP) (expressed 
primarily in glia, but also NSCs) or nestin (expressed in 
NSCs and early progenitors). The novelty of  this ap-
proach lied in targeting of  two different cell populations 
in the neural lineage that were either neural progenitors 
(using the nestin promoter), or differentiated astrocytes 
(using the GFAP promoter). When Kras and Akt were 
targeted to nestin-expressing cells, high-grade glioma 
formation was observed. Conversely, targeting GFAP-ex-
pressing cell types did not yield tumors. This was the first 
example of  a glioma model that differentiated between 
the oncogenic potential of  two different populations of  
cells along the same neuroglial axis. One weakness of  this 
model was that, by virtue of  the nestin promoter being 
active in both NSCs and lineage-restricted progenitor 
cells, the exact cell of  origin could not be pinpointed still.

Many mouse models followed in dissecting the rela-
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tionships between genetic lesions, cell types targeted and 
tumor phenotype produced. Tumor suppressor models 
produced by Alcantara Llaguno et al[52] aimed to recre-
ate some of  the most common genetic lesions in GBM 
using combinations of  p53, phosphatase and tensin 
homolog (PTEN) and neurofibromin 1 (NF1) knockout 
in mice. With their models, they concluded that nestin-
positive NSCs or their progenitor cells found in the SVZ 
harbored the ability to initiate high-grade glioma[52]. Using 
a mutated p53 model that allowed the tracking of  p53 
mutant cells, Wang et al[53] observed that type B, C and A 
cells were capable of  accumulating mutant p53. However, 
it was a nestin/olig2-positive population that resembled 
type C cells, which was thought to initiate the high-grade 
glioma. Interestingly, they noted that some SVZ type 
A neuroblasts that harbored the p53 mutation traveled 
to the olfactory bulb, but no glioma formation was ob-
served[53]. Additionally, two separate groups generated 
p53 and NF1 knockout mouse models of  glioma and 
also claimed that it was the OPCs that served as the cell 
of  origin in the production of  high-grade tumors[54,55]. 
Koso et al[56] used a transposon-mediated mutagenesis 
approach in isolated mouse NSCs. Their model revealed 
dozens of  mutations in combination that could sensitize 
NSCs to immortalization and tumor formation. Inter-
estingly their mutagenized NSCs were most sensitive to 
oncogenic transformation after differentiation to the 
astrogial lineage. Other models, such as PDGFR activa-
tion via RCAS-tVA[57], lentiviral delivery of  Kras/Akt 
oncogenes[58], and PTEN/p53 inactivation[59,60] suggested 
multipotent progenitors found in the SVZ as potential 
cells of  origin for glioblastoma (Figure 1).

Cell types found outside of  the neurogenic niches 
were also found to harbor tumor-initiating potential in 
mouse models. The demarcation between cell of  muta-
tion and cell of  origin is less commonly explored due to 
lack of  lineage tracing in many of  these models however. 
In cases where lineage tracing has been used, differenti-
ated progeny were found to de-differentiate to a stem 
cell state preceding tumor growth. These mouse models 
include Ink4a-ARF knockout[61], Bmi knockout[62], com-
bined Ink4a-ARF knockout and Kras activation[63,64] and 
aberrant platelet-derived growth factor signaling[57,65], all 
of  which initiated tumors in areas and cell types both 
outside and inside the neurogenic regions.

Interestingly, there is also evidence that neurons can 
act as the cell of  mutation in a mouse GBM model when 
they acquire p53/NF1 mutations after undergoing de-
differentiation[66]. The implication for this is that non-
neurogenic regions of  the brain containing quiescent 
neurons may be capable of  gliomagenesis as well. As 
mouse modeling continues, emphasis will likely be placed 
on lineage tracing of  defined cell types to understand the 
plasticity of  the cell of  mutation and the relationship, if  
any, between genetic lesions and cell of  origin. In addi-
tion, the field is faced with the challenge of  correlating 
the mouse glioma cells of  origin to the likely cell of  ori-
gin in human glioma. By drawing parallels between the 
cell of  origin and the restricted number of  genetic events 

that must occur in early tumorigenesis we may one day 
be able to discover early tumor biomarkers, target tumors 
when they are exponentially more sensitive to therapy 
and develop therapies that target the unique stem cell bi-
ology of  tumor formation and propagation.

CLINICAL EVIDENCE FOR STEM CELLS 
AS THE CELL OF ORIGIN
The presence of  CSCs in human glioma specimens and 
other tumors from the clinic raises the question of  why 
they are present in the tumors to begin with. The interest-
ing aspect of  the presence of  CSCs in glioma, as it relates 
to the cell of  origin, is that CSCs are thought to be mul-
tipotent and capable of  self-renewal, as well as express 
markers of  NSCs. CSCs were identified in human GBM 
and have been shown to re-initiate mature tumors when 
seeded into the mouse brain at a much higher efficiency 
then their non-stem counterparts in the tumor. Did CSCs 
come from a stem cell of  origin? Did CSCs de-differen-
tiate from differentiated cell types in the tumor? At what 
point during gliomagenesis do CSCs appear? These ques-
tions remain entirely unanswered as the continuum be-
tween the origination of  a tumor and its mature form has 
not been explored. Here, we will present epidemiological 
and radiographic evidence that cell types with stem cell 
properties in the tumor may have originated from NSCs 
or lineage-restricted progenitors.

A number of  radiographic studies have shown that 
there is a tendency for glioma formation to occur near 
the periventricular area of  the brain[67-69], although not 
all gliomas are necessarily in contact with the ventricles. 
GBM (WHO grade Ⅳ) appears to occur mostly supra-
tentorialy, with tumor epicenters around the ventricles 
and frontal lobe propensity before the age of  65 and 
temporal lobe propensity after the age of  65[67,70-72]. Once 
again, this discrepancy can be accounted by two possibili-
ties: gliomas may initiate from many different cell types 
found in all areas of  the cortex, or gliomagenesis may be 
preceded by migration of  the cell of  mutation/cell of  
origin. Correlating radiographic evidence to molecular 
subtypes of  GBM has yielded interesting patterns in ana-
tomical distribution, but most of  these imaging studies 
are conducted after the tumor has had months or even 
years to grow. In such cases, the large size of  tumors pre-
cludes the exact localization of  its epicenter.

WHO grade Ⅱ and Ⅲ gliomas have a very different 
anatomical distribution then their grade Ⅳ counterparts 
and a much more “compact” set of  associated genetic 
lesions. The exact reason for this is unknown, but one 
logical possibility is that these lower grade gliomas have 
different cells of  origin. Up to 80% of  the low-grade 
gliomas are mutated in Isocitrate Dehydrogenase (IDH) 
with an accompanying p53 mutation or 1p19q deletion[73]. 
IDHs normally convert isocitrate to α-ketoglutarate and 
produce a nicotinamide adenine dinucleotide phosphate 
(or NADH) molecule, an essential metabolic process 
that occurs in the mitochondrial Krebs (tricarboxylic acid 

Modrek AS et al . The cell of origin in glioma



49 January 26, 2014|Volume 6|Issue 1|WJSC|www.wjgnet.com

cycle) cycle, cytosol and peroxisomes[74,75]. The mutated 
form found in glioma and leukemia is a gain-of-function 
mutation that causes the conversion of  α-ketoglutarate 
to 2-Hydroxyglutarate, a so called “oncometabolite” due 
to its ability to cause epigenetic reprogramming that is 
thought to drive tumorigenesis[76-79]. The low-grade IDH 
mutated gliomas are often found supratentorially in the 
frontal lobe in young adults[67,80]. Interestingly, this area 
overlaps with the SVZ in the frontal lobe that generates 
neuroblasts destined for the olfactory bulb and possibly 
the medial pre-frontal cortex. However the significance 
of  this finding remains to be understood as the only 
known mouse models of  IDH have failed to produce 
appropriate human tumor phenotypes in both brain and 
myeloid neoplasm contexts[81-83].

CONCLUSION
How glial tumors form and develop into their lethal va-
riety remains a standing question in glioma biology. Our 
understanding of  the molecular events, niche changes 
and cell types involved has brought us closer to this goal. 
Since the discovery of  neurogenesis in the adult brain and 
the growing body of  work on cancer genetics, we have 
both cellular and genetic candidates to pursue to this end. 
Many have employed murine models that target the neu-
roglial cell population with genetic changes akin to those 
found in human glioma in search of  the cell of  origin 
and to understand key initiating genetic changes. These 
advances have produced mixed results, with the majority 
of  models pointing to the neuronal progenitors or NSCs 
as the most likely cell of  origin. However, other models 
have found that differentiated cell types may be capable 
of  tumor initiation as well. The models described varied 
significantly in the type of  genetic mutation made, cell 
population targeted and lineage tracing technique, if  any. 
Furthermore, it is difficult to infer which of  the many 
genetic mutations identified in glioma act as the initiat-
ing event. It is quite possible that more than one cell of  
origin may exist for the various subtypes of  glioma and 
that more than one genetic change is capable of  sending 
a cell down the path to carcinogenesis. As we dissect the 
roles of  these oncogenes and tumor suppressor genes 
in glioma initiation, we will gain a broader understand-
ing of  gliomagenesis as a process rather than a random 
event. Through these ongoing efforts it is possible that 
we will identify very early biomarkers and develop an un-
derstanding of  what type of  restricted changes a young 
tumor must make to progress to a more malignant state, 
presumably at a stage where these pre-malignant cells are 
most susceptible to therapies.
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