Skip to main content
Proceedings of the National Academy of Sciences of the United States of America logoLink to Proceedings of the National Academy of Sciences of the United States of America
. 1978 Jul;75(7):3042–3044. doi: 10.1073/pnas.75.7.3042

Adenosine kinase initiates the major route of ribavirin activation in a cultured human cell line.

R C Willis, D A Carson, J E Seegmiller
PMCID: PMC392709  PMID: 210448

Abstract

Inhibition of IMP dehydrogenase (EC 1.2.1.14) by ribavirin causes the normal human lymphoblast to excrete increased amounts of newly formed purine into the culture medium. In order for ribavirin to be active as an inhibitor of the dehydrogenase, this synthetic nucleoside must be phosphorylated. The effect of ribavirin on purine excretion has been determined with a normal lymphoblast line, and with lymphoblast lines deficient in hypoxanthine phosphoribosyltransferase (IMP:pyrophosphate phosphoribosyl-transferase, EC 2.4.2.8), in adenosine kinase (ATP:adenosine 5'-phosphotransferase, EC 2.7.1.20), and in both hypoxanthine phosphoribosyltransferase and adenosine kinase. Resistance to the effect of ribavirin on purine excretion was associated only with those cell lines deficient in adenosine kinase activity. These cell lines have normal deoxyadenosine kinase (ATP:deoxyadenosine 5'-phosphotransferase, EC 2.7.1.76) activity. Therefore, the nucleoside kinase activity responsible for ribavirin phosphorylation is adenosine kinase.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Hartwick R. A., Brown P. R. Evaluation of microparticle chemically bonded reversed-phase packings in the high-pressure liquid chromatographic analysis of nucleosides and their bases. J Chromatogr. 1976 Nov 3;126:679–691. doi: 10.1016/s0021-9673(01)84111-x. [DOI] [PubMed] [Google Scholar]
  2. Hershfield M. S., Seegmiller J. E. Regulation of de novo purine biosynthesis in human lymphoblasts. Coordinate control of proximal (rate-determining) steps and the inosinic acid branch point. J Biol Chem. 1976 Dec 10;251(23):7348–7354. [PubMed] [Google Scholar]
  3. Hershfield M. S., Seegmiller J. E. Regulation of de novo purine synthesis in human lymphoblasts. Similar rates of de novo synthesis during growth by normal cells and mutants deficient in hypoxanthine-guanine phosphoribosyltransferase activity. J Biol Chem. 1977 Sep 10;252(17):6002–6010. [PubMed] [Google Scholar]
  4. Ives D. H., Durham J. P., Tucker V. S. Rapid determination of nucleoside kinase and nucleotidase activities with tritium-labeled substrates. Anal Biochem. 1969 Apr 4;28(1):192–205. doi: 10.1016/0003-2697(69)90170-5. [DOI] [PubMed] [Google Scholar]
  5. Khym J. X. An analytical system for rapid separation of tissue nucleotides at low pressures on conventional anion exchangers. Clin Chem. 1975 Aug;21(9):1245–1252. [PubMed] [Google Scholar]
  6. Lever J. E., Nuki G., Seegmiller J. E. Expression of purine overproduction in a series of 8-azaguanine-resistant diploid human lymphoblast lines. Proc Natl Acad Sci U S A. 1974 Jul;71(7):2679–2683. doi: 10.1073/pnas.71.7.2679. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Levy J. A., Buell D. N., Creech C., Hirshaut Y., Silverberg H. Further characterization of the WI-L1 and WI-L2 lymphoblastoid lines. J Natl Cancer Inst. 1971 Mar;46(3):647–654. [PubMed] [Google Scholar]
  8. Levy J. A., Virolainen M., Defendi V. Human lymphoblastoid lines from lymph node and spleen. Cancer. 1968 Sep;22(3):517–524. doi: 10.1002/1097-0142(196809)22:3<517::aid-cncr2820220305>3.0.co;2-a. [DOI] [PubMed] [Google Scholar]
  9. Lowe J. K., Brox L., Henderson J. F. Consequences of inhibition of guanine nucleotide synthesis by mycophenolic acid and virazole. Cancer Res. 1977 Mar;37(3):736–743. [PubMed] [Google Scholar]
  10. Nelson J. A., Rose L. M., Bennett L. L., Jr Mechanism of action of 2-amino-1,3,4-thiadiazole (NSC 4728). Cancer Res. 1977 Jan;37(1):182–187. [PubMed] [Google Scholar]
  11. Sidwell R. W., Huffman J. H., Khare G. P., Allen L. B., Witkowski J. T., Robins R. K. Broad-spectrum antiviral activity of Virazole: 1-beta-D-ribofuranosyl-1,2,4-triazole-3-carboxamide. Science. 1972 Aug 25;177(4050):705–706. doi: 10.1126/science.177.4050.705. [DOI] [PubMed] [Google Scholar]
  12. Sly W. S., Sekhon G. S., Kennett R., Bodmer W. F., Bodmer J. Permanent lymphoid lines from genetically marked lymphocytes: success with lymphocytes recovered from frozen storage. Tissue Antigens. 1976 Mar;7(3):165–172. doi: 10.1111/j.1399-0039.1976.tb01047.x. [DOI] [PubMed] [Google Scholar]
  13. Stoop J. W., Zegers B. J., Hendrickx G. F., van Heukelom L. H., Staal G. E., de Bree P. K., Wadman S. K., Ballieux R. E. Purine nucleoside phosphorylase deficiency associated with selective cellular immunodeficiency. N Engl J Med. 1977 Mar 24;296(12):651–655. doi: 10.1056/NEJM197703242961203. [DOI] [PubMed] [Google Scholar]
  14. Streeter D. G., Simon L. N., Robins R. K., Miller J. P. The phosphorylation of ribavirin by deoxyadenosine kinase from rat liver. Differentiation between adenosine and deoxyadenosine kinase. Biochemistry. 1974 Oct 22;13(22):4543–4549. doi: 10.1021/bi00719a011. [DOI] [PubMed] [Google Scholar]
  15. Streeter D. G., Witkowski J. T., Khare G. P., Sidwell R. W., Bauer R. J., Robins R. K., Simon L. N. Mechanism of action of 1- -D-ribofuranosyl-1,2,4-triazole-3-carboxamide (Virazole), a new broad-spectrum antiviral agent. Proc Natl Acad Sci U S A. 1973 Apr;70(4):1174–1178. doi: 10.1073/pnas.70.4.1174. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Proceedings of the National Academy of Sciences of the United States of America are provided here courtesy of National Academy of Sciences

RESOURCES