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Abstract
Inhibition of the nonmevalonate pathway (NMP) of isoprene biosynthesis has been examined as a
source of new antibiotics with novel mechanisms of action. Dxr is the best studied of the NMP
enzymes and several reports have described potent Dxr inhibitors. Many of these compounds are
structurally related to natural products fosmidomycin and FR900098, each bearing
retrohydroxamate and phosphonate groups. We synthesized a series of compounds with two to
five methylene units separating these groups to examine what linker length was optimal and tested
for inhibition against Mtb Dxr. We synthesized ethyl and pivaloyl esters of these compounds to
increase lipophilicity and improve inhibition of Mtb growth. Our results show that propyl or
propenyl linker chains are optimal. Propenyl analog 22 has an IC50 of 1.07 μM against Mtb Dxr.
The pivaloyl ester of 22, compound 26, has an MIC of 9.4 μg/mL, representing a significant
improvement in antitubercular potency in this class of compounds.
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Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb), remains one of the world's
deadliest infectious diseases.1 Emergence of multi-drug (MDR) and extensively-drug (XDR)
resistant strains, as well as co-infection with HIV, has made TB both difficult and expensive
to treat.2 New TB therapies are needed to shorten treatment, be effective against all strains
and metabolic states of the organism, and work well with HIV drugs. Thus, there remains a
significant need for new and improved strategies against Mtb. The nonmevalonate pathway
(NMP) of isoprene biosynthesis (Figure 1) is essential for Mtb survival and, as it is not
present in humans, is an attractive set of targets for novel drug development.3-5 The NMP
synthesizes 5-carbon building blocks from pyruvate and glyceraldehyde-3-phosphate. These
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building blocks are the starting materials for many complex cellular metabolites. 1-Deoxy-
D-xylulose-5-phosphate reductoisomerase (Dxr), is the first committed step in the NMP and
is responsible for conversion of 1-deoxy-D-xylulose-5-phosphate (DXP) to 2-C-methyl-D-
erythritol 4-phosphate (MEP).6 Dxr catalyzes both a reduction and isomerization using
NADPH as a cofactor.

Natural products fosmidomycin (1) and FR900098 (2) inhibit Mtb Dxr by mimicking DXP's
polar character and kill many non-mycobacterial organisms reliant on this enzyme (Figure
2).7-9 Our early work in this area showed that lipophilic analogs of 1 and 2 more effectively
kill a range of bacterial strains, including Mtb.10-12 Since that time, we and others have
reported Dxr inhibitors belonging to several structural families,11, 13-16 but very few of these
have displayed potent antitubercular activity. Many of these inhibitors retain key structural
features found in the parent compounds 1 and 2: a retrohydroxamic acid, a phosphonate, and
an n-propyl carbon chain linking the nitrogen and phosphorus atoms. In the 1980s, a series
of Streptomyces-derived and inspired products exchanging the n-propyl chain for ethylene
and propenyl chains were described.17, 18 Among these, the propenyl compound was found
to be comparable to the propyl analogs 1 and 2 and showed potent antibacterial activity
against B. subtilis and E. coli.18 As this work came before the discovery of Dxr as the
cellular target of these inhibitors, the inhibitory activity of these carbon chain-modified
analogs against the purified enzymer is largely unknown. To fill this gap and expand on the
set of analogs examined, we synthesized analogs of 1 and 2, varying the length of the carbon
linker from 2-5 methylene groups. We also prepared the propenyl analog to examine the
influence of unsaturation within the propyl chain. as our interest is the development of
antitubercular agents working through Dxr inhibition, we evaluated these analogs as
inhibitors of Mtb Dxr. To study the effects of these structural changes on antitubercular
activity, the ethyl and selected pivaloyl esters were prepared. The compounds synthesized
and evaluated are shown in Figure 2.

Scheme 1 shows the synthetic route used to prepare compounds 7-9, all with a carbon chain
of 2 methylene groups. Compound 319 was reacted with N-(diethoxyphosphoryl)-O-
benzylhydroxyl-amine20 in the presence of sodium hydride, sodium iodide and
tetrabutylammonium bromide to form 4 (25%). Further reaction with concentrated
hydrochloric acid gave 5 in quantitative yield.21 Compound 5 was then formylated using
acetic anhydride and formic acid to give 6a (71%) or acetylated in the presence of acetyl
chloride and triethylamine to give compound 6b (52%). Hydrogenation was used to remove
the benzyl group, forming 7 (58%) and 8 (38%). Treatment of 8 with bromotrimethylsilane,
water, and sodium hydroxide gave the mono-sodium salt 9 in quantitative yield.

Scheme 2 was used to prepare analogs with four or five methylene groups between the
nitrogen and phosphorous atoms. Dibromoalkanes 10a and 10b were treated with
triethylphosphite in a microwave-assisted Michaelis-Arbuzov reaction to form 11a (61%)
and 11b (64%).22 Acetylated O-benzylhydroxylamine23, 24 was treated with sodium hydride
and compounds 11a and 11b to form intermediates 12a (79%) and 12b (37%). Compounds
12a and 12b underwent hydrogenation to form compounds 13 (34%) and 14 (49%).
Deprotection of the ethyl esters gave compounds 15 and 16 in quantitative yield.

Synthesis of unsaturated FR900098 analog 22 is shown in Scheme 3. Dibromo compound
1725 was treated with sodium hydride to effect elimination, yielding compound 18 (41%).
Boc-protected O-benzylhydroxylamine26 was reacted with sodium hydride and then
compound 18 to form substituted product 19 (84%). Alternately, compound 19 was prepared
directly from 17 in one step using a single treatment of NaH and the amine in 41% yield.
Removal of the BOC protecting group in situ and subsequent acetylation yielded compound
20 (70%).27 To preserve the double bond, BCl3 was used to remove the benzyl group of 20,
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affording compound 21 (52%).28 Deprotection with bromotrimethylsilane gave α/β-
unsaturated phosphonic acid 22 (quantitative).29

To assist penetration of compounds across the mycobacterial cell wall10, 30, pivaloyl esters
were prepared from two phosphonic acids (Scheme 4). Diethyl protected intermediates 12a
and 20 were treated with bromotrimethylsilane yielding compounds 23a (87%) and 23b31

(quantitative). Subsequent reaction with chloromethylpivalate gave esters compounds 24a
(6%) and 24b32 (40%). Catalytic hydrogenation removed the benzyl group in saturated
analog 24a, yielding compound 25 (85%). Treatment with BCl3 deprotected unsaturated
analog 24b to yield compound 26 (13%).33

The analogs were evaluated for inhibition of Mtb Dxr and growth of Mtb (Tables 1-3). All
of the saturated compounds, with chain lengths between two and five methylene groups,
inhibited Mtb Dxr to some extent (Table 1). Among these acids, compounds with three
methylene groups separating the nitrogen and phosphorus atoms (that is, compounds 1 and
2) were the most active. Not surprisingly, these compounds did not inhibit mycobacterial
growth in nutrient-rich media (>200 μg/mL in 7H9), although 9 had a very slight effect
when minimal media was used (150 μg/mL in GAST). The polarity of these compounds
diminishes penetration of the lipophilic mycobacterial cell wall.10, 30

Diethyl and dipivaloyl esterification of these compounds improved antimycobacterial
activity (Table 2). As previously shown, diethyl esters of 1 and 2 (27 and 28, respectively)
are weakly potent inhibitors of Mtb growth with MIC values of 200-400 μg/mL.10 Pivaloyl
ester 29 showed improved potency with an MIC of 50-100 μg/mL, and this compound was
the most potent in the saturated series. Taken together, these data show that linker chains of
two, four or five methylene units are not advantageous for Mtb Dxr inhibition or inhibition
of Mtb cell growth.

The compounds listed in Table 3 were synthesized to examine the effect of unsaturation on
Mtb Dxr inhibition and cell growth. Interestingly, α/β-unsaturated compound 22 is a potent
inhibitor of Mtb Dxr with an IC50 of 1.07 μM. Indeed, 22 is more active than parent
compound 2. While 21 and 22 do not inhibit Mtb, the more lipophilic pivaloyl ester of 22
(compound 26) is a potent inhibitor of mycobacterial growth with an MIC of 9.4 μg/mL in
rich media and 12.5 μg/mL in minimal media. To our knowledge, compound 26 displays the
most potent antitubercular activity of all compounds that work through a Dxr-mediated
mechanism.

Overall, the results collectively indicate that a carbon propyl or propenyl chain between the
nitrogen and phosphorus atoms of fosmidomycin/FR900098 analogs yields the highest
potency. Lipophilic esters of these compounds improve their antitubercular activity. α/β-
Unsaturated compound 22 and its lipophilic pivaloyl ester 26 show higher potency than the
parent compound FR900098 (2) on Mtb Dxr inhibition and antitubercular activity. These
data improve our understanding of the Mtb Dxr active site and its tolerance to length
variation between the phosphonate and retrohydroxamate groups. These results are
significant for aiding the rational design of Mtb Dxr inhibitors using the phosphonate/
retrohydroxamate scaffold and guide the development of Dxr inhibitors as antitubercular
agents.
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Figure 1.
Nonmevalonate Pathway of Isoprenoid Biosynthesis. Dxr (IspC) mediates the conversion of
DXP to MEP in the second step.

Jackson et al. Page 6

Bioorg Med Chem Lett. Author manuscript; available in PMC 2015 January 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Fosmidomycin (1), FR900098 (2) and the analogs prepared in this work.
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Scheme 1.
Reagents and conditions: (a) (EtO)2P(O)NHOBn, NaH, Nal, TBABr, THF, reflux, 18 h; (b)
HCI, EtOH, reflux, 5 min; (c) AcCI, TEA, CH2CI2, rt, 18 h or Ac2O CH2O2, THF, rt, 2 h;
(d) H2, 10% Pd/C, MeOH, 18 h; (e) (i) TMSBr, BSTFA, CH2CI2, 0 °C to rt, 18 h; (ii) H20,
rt, 18 h, (iii) NaOH aq., rt, 18 h.
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Scheme 2.
Reagents and conditions: (a) P(OEt)3, microwave 20%, 10-15 min; (b) BnONHAc, NaH,
Nal, THF, reflux, 18 h; (c) H2, 10% Pd/C, MeOH, rt, 18 h; (d) (i) TMSBr, CH2CI2, 0 °C to
rt, 18 h; (ii) H20, rt, 18 h; (iii) NaOH aq., rt, 18 h.
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Scheme 3.
Reagents and conditions: (a) NaH, THF, 60 °C, 18 h; (b) BocNHOBn, NaH, THF, rt, 18 h;
(c) BocNHOBn, NaH, Nal, THF, rt, 18 h; (d) (i) AcCI, MeOH, CH2CI2, rt, 30 min; (ii)
AcCI, Na2CO3, CH2CI2, rt, 3 h; (e) BCI3, CH2CI2, -50 °C, 2h; (f) (i) TMSBr, BSTFA,
CH2CI2, 0 °C to rt, 18 h; (ii) H2O, rt, 18h, (iii) NaOHaq., rt, 18 h.
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Scheme 4.
Reagents and conditions: (a) (i) TMSBr, CH2CI2, 0 °C to rt, 3-18 h; (ii) H2O, rt, 18 h for
23a or H2O, NaOH, rt, 18 h for 23b; (b) chloromethylpivalate, 60 °C, TEA/DMF/6-16 h; (c)
H2, 10% Pd/C, THF, rt, 18 h for 25 or BCI3, CH2CI2, -70 °C, 10 h for 26.
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Table 1
Effect of chain length on Mtb Dxr inhibition and Mtb MIC

Compound R n Mtb Dxr IC50, μM (% inh at 100 μM) MIC, μg/mL 7H9 (GAST)

Fosmidomycin (1) H 3 0.44 >500

FR900098 (2) CH3 3 2.39 >500

9 CH3 2 (74%) >200 (t50)

15 CH3 4 (80%) >200 (>200)

16 CH3 5 (86%) >200 (>200)

Mtb = Mycobacterium tuberculosis; IC50 = inhibitory concentration at 50%; inh = inhibition; MIC = minimum inhibitory concentration; 7H9 =

rich media; GAST = minimal media
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Table 2
Effect of esterification on Mtb MIC

Compound R R1 n MIC, μg/mL 7H9 (GAST)

27 H CH2CH3 3 400

7 H CH2CH3 2 >500

8 CH3 CH2CH3 2 >500

28 CH3 CH2CH3 3 200-400

29 CH3 CH2OCOtBu 3 50-100

13 CH3 CH2CH3 4 >200 (75)

25 CH3 CH2OCOtBu 4 ≥200 (150)

14 CH3 CH2CH3 5 >200 (200)
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Table 3
Effect of unsaturation on Mtb Dxr inhibition and Mtb MIC

Compound R Mtb Dxr IC50, μM MIC, μg/mL 7H9 (GAST)

22 H/Na 1.07 >200 (150)

21 CH2CH3 ND* >200 (150)

26 CH2OCOtBu ND 9.4 (12.5)

*
ND = not determined
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