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Summary
We propose a nonparametric Bayesian approach to estimate the natural direct and indirect effects
through a mediator in the setting of a continuous mediator and a binary response. Several
conditional independence assumptions are introduced (with corresponding sensitivity parameters)
to make these effects identifiable from the observed data. We suggest strategies for eliciting
sensitivity parameters and conduct simulations to assess violations to the assumptions. This
approach is used to assess mediation in a recent weight management clinical trial.

1. Introduction
Behavioral scientists and other applied researchers are often interested in both the causal
effect of an intervention directly, and on the causal effect of the intervention on the outcome
through its effect on other processes, called mediators (Kraemer et al. 2002). For example,
interventions such as cognitive behavioral therapy (CBT) typically influence one or more
processes, such as self efficacy or motivation, which in turn leads to a change in behavior,
such as reduced consumption of alcohol or loss of weight. The graph below illustrates the
basic idea in the setting of a single mediator, M:

In this graph, the direct effect of exposure Z on outcome Y is the horizontal arrow at the top.
The indirect effect of Z on Y passing through mediator M is captured by the arrows that flow
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from Z to M to Y. The statistical challenge is quantifying the direct and indirect effects. This
is similar in structure to the surrogate endpoints problem (Joffe and Greene, 2009; Wolfson
and Gilbert, 2010; Li et al., 2011).

We formalize the above as follows. First, let Z ∈ {0, 1} denote randomized intervention.
Define the pair (M0, M1) as the potential values of a mediator variable under intervention z =
0, 1, with Mobs = ZM1 + (1 − Z)M0 observed. Each subject could be thought of as having a
potential outcome Yz,Mz for every combination of z and m. Two ways to characterize the
effect of Z that passes around M (direct effect) have been proposed (Robins and Greenland,
1992; Pearl, 2001). In each case, comparisons are made between potential outcomes with a
constant mediator but different treatments. The natural direct effect is defined by NDE =
E(Y1,M0 − Y0,M0). This quantifies the effect of the intervention Z obtained by setting M to its
‘natural’ value M0; i.e., its realization in the absence of the intervention. Note that here the
value of the mediator will not be constant across subjects, but rather set to each subject’s
value of M in the absence of treatment. Alternatively, one can define the controlled direct
effect of treatment by E(Y1m − Y0m), for all m. Here, the direct effect of treatment involves
setting M to a particular value for the whole population and varying the treatment.

In many trials of a behavioral intervention, the potential mediator is a behavior, symptom, or
perception of an individual. For example, in a trial designed to examine the effect of therapy
for depression on smoking cessation might trials, depressive symptoms could be viewed as a
mediator. Many behavioral trials also examine measures of motivation or expectation of
successful behavior change as potential mediators. Because these variables cannot be
directly manipulated by the experimenter, the use of controlled effects can be difficult to
justify.

The use of natural direct and indirect effects in behavioral intervention trials is conceptually
easier to justify, particularly when the intervention being administered has multiple
components designed to influence specific mediators (or paths toward change in the targeted
behavior behavior). The natural indirect effect is defined as NIE = E(Y1,M1 − Y1,M0), or the
effect of changing from M0 to M1, had everyone received the intervention. We can then
define the total causal effect of Z on Y as TE = NDE + NIE = E(Y1,M1) − E(Y0,M0). Referring
to the figure above, this captures the aggregate effect of Z that passes through and around M.

To interpret the meaning of natural direct and indirect effects, and particularly to interpret
the meaning of Y1,M0, we use the weight management trial (described at the end of this
section) as an example. Suppose the intervention has a component that is targeted to help
people track food intake. Then the direct effect is the effect of the intervention if the
component of treatment that is affecting food intake monitoring were somehow to be
removed. This implies that the path from the intervention to food intake monitoring will be
blocked, but all other components of the treatment will be implemented and can potentially
affect weight loss through paths that do not involve food intake monitoring.

In practice, mediation analysis is often based on solving linear systems of equations
(MacKinnon 2008). For example, Baron and Kenny (1986) used the following three
regression models:

although, given the second two regressions, the first is redundant (Imai et al. 2010). Here,
the proposed TE is β3 + β2γ, the NDE effect is β3 and the NIE is β2γ. The controlled direct
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effect of treatment is also β3. However, causal interpretations of these parameters depend on
sequential ignorability and no interaction assumptions (Imai et al. 2010); more detail on the
former can be found in Section 2.3. The no interaction assumption is particularly strong for
controlled effects, as it requires that, for example, E(Y1m − Y0m) does not depend on m. In
addition to the randomization and no interaction assumptions, the model also requires
correct specification of the linear system. A Bayesian version of the regression approach can
be found in Yuan and MacKinnon (2009).

New semiparametric methods have recently been proposed for estimating mediation effects.
Ten Have et al. (2007) proposed estimating mediation effects using models that make
assumptions about structural interactions, rather than sequential ignorability. VanderWeele
(2009) proposed using two marginal structural models (Robins 1999) to estimate natural
direct and indirect effects. However, these methods can be problematic for continuous
mediators due to unstable weights (Vansteelandt, 2009).

Parametric likelihood-based or Bayesian methods for mediation have primarily been
proposed in a principal stratification (PS) framework (Frangakis and Rubin 2002), in which
causal effects are defined within strata determined by post-randomization outcomes. See
Gallop et al. (2009) and Elliott, Raghunathan, and Li (2010) for examples. In the mediation
context, the PS approach has been used to define treatment effects conditional on M0 and
M1, and hence focuses on latent subpopulations defined by pairs {M0, M1}. For a binary
mediator, the direct effect of Z is defined as E(Y1 − Y0|M1 = M0), or the causal effect of Z
among people whose value of M would not be affected by Z. When M is continuous rather
than binary, the PS approach will generally require additional, untestable modeling
assumptions because strata defined by M0 = M1 will be sparse or even empty in finite
samples.

Because PS-based inferences apply to latent subpopulations, direct comparisons between PS
and other methods is not straightforward; however, VanderWeele (2008) and Joffe and
Greene (2009) provide detailed discussion and describe linkages between PS-based
inferences and both controlled and natural direct and indirect effects.

Our approach is distinct from other mediation approaches in the literature in several ways.
We take a fully Bayesian approach to inferring natural direct and indirect effects. Because
we will focus on natural effects, we can focus on a subset of the potential outcomes Yz,Mz:
{Y1,M1, Y1,M0, Y0,M0}, with Yobs = ZY1,M1+ (1 − Z )Y0,M0 observed. For example, Y1,M1 is
the outcome that would be observed if we set Z = 1 and M = M1. In this framework, we do
not require that Yzm be defined for all values of m; it is only necessary to define Yzm for the
realizations of M0 and M1. We model the marginal distributions of M0 and M1 non-
parametrically, and then specify a copula model to obtain their joint distribution. We avoid
making some of the strong assumptions that are required for some of the alternative methods
described above. Instead, our model is identified if three sensitivity parameters are specified.
Although our application has a binary outcome and continuous mediator, our general
approach could be used for other types of outcomes and mediators.

We illustrate the methodology using data from a weight management trial, TOURS (Perri et
al, 2008). Subjects were randomized to either extended care or to an education control
group. Adherence to behavioral weight-management strategies, as measured by the number
of days with self-monitoring records for food intake, is the proposed mediator of weight
change. The outcome was a (binary) measure of weight change (described in Section 6). We
estimate both the direct effect of the weight management programs on the weight change
outcome, as well as the indirect effect of the programs on the outcome through the effect on
adherence to food intake self-monitoring.
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In Section 2, we discuss inference on the causal effect of mediation by first introducing
some notation, then stating our assumptions, and finally showing that our assumptions are
sufficient to identify the natural direct and indirect effects. We provide details on posterior
computations in Section 3. Section 4 outlines our approach to elicitation for the sensitivity
parameters and subsequent sensitivity analysis. Simulations to assess sensitivity to violations
of assumptions can be found in Section 5. Section 6 contains our analysis of the TOURS
trial. Finally, we wrap up and discuss extensions in Section 7.

2. Inference on causal effects
2.1 Notation

Let fz,Mz′ (y) denote the distribution of Yz,Mz′, for (z, z′) ∈ {0, 1}⊗2. Similarly, we denote the
conditional distribution [Yz,Mz′|Mz′= mz′] by fz,Mz′(y|mz′). Let D = (M1 − M0). The conditional

distribution [Yz,Mz′|Mz = mz, , D = d] is denoted by fz,Mz′(y|mz, mz′, d). Multivariate
distributions are defined using similar notation below.

2.2 Assumptions
Recall the observed data is Mobs = ZM1 + (1 − Z)M0 and Yobs = ZY1,M1 + (1 − Z )Y0,M0. The
observed data are not sufficient to identify the conditional distribution

and the joint distribution, fM0,M1(m0, m1) which are necessary to identify the joint posterior
distribution of NIE and NDE without assumptions. Thus, we make the following
assumptions.

Assumption 1. (Randomization assumption)

(1)

This assumption will hold in our application since the treatment was randomized.

Assumption 2 stratifies the population into those for whom the treatment has a large and
small effect on the mediator.

Assumption 2a: For a fixed z and for some ε,

Note for binary responses, the above conditional probability uniquely determines the
corresponding conditional distribution. The random variable D quantifies the treatment
effect on the mediator. A consequence of the assumption is that, for example,
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It means that, among people for whom the treatment effect on the mediator is small (as
quantified by ε), the distribution of the outcome is same whether that mediator value was
induced by Z = 1 or Z = 0. It does not imply an exclusion restriction. That is, we are not
assuming [Y1,M0|M0 = m] = [Y0,M0|M0 = m].

Assumption 2b: The next assumption is for the subgroup of subjects for whom Z has a
greater than ε effect on M. For this group, for a fixed z, ε, and χ, we assume

where the sensitivity parameter χ is a relative risk with the following restriction:

or

Note we differentiate m1 > mo + ε from mo > m1 + ε through the sgn(d) in the above
expression. We discuss elicitation of χ and ε in Section 4.

Note that with Assumption 2, we implicitly assume a discontinous relationship (a step
function at ε) between the conditional probabilities and the treatment effect on the mediator,
D. There are not good alternatives to this, e.g., a smooth function of D, since this is not
identifiable from the data (and would involve additional sensitivity parameters). We view
the step function assumption as a reasonable alternative. By considering a several
combinations of χ and ε, we should be able to capture many plausible scenarios. The key is
differentiating the population into those where the intervention has a large versus small
effect on the mediator.

Assumption 3

This assumptions says that the potential value of the mediator under treatment z′ is
independent of the potential outcome under treatment z conditional on the potential value of
the mediator under treatment z; for example, M1 ⊥ Y0,M0|M0. This assumption also implies

That is, the potential outcomes Yz,Mz are independent of the mediator under the other
treatment, mz′ conditional on the mediator associated with the potential outcome, mz; for
example, Y1,M1⊥ M0|M1. Thus this assumption says that no additional information is
provided about the potential outcomes, Yz,Mz from the mediator under the other treatment,
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Mz′ after we condition on the mediator under treatment z. Note it clearly does not imply
Y1,M1⊥ M1|M0.

This assumption is not required, but considerably simplifies computations. We examine
sensitivity to this assumption via simulations in Section 5.

Assumption 4: We assume the joint distribution of the mediator follows a Gaussian copula
model (Nelsen, 1999),

where Φ1 is the univariate standard normal CDF and Φ2 is the bivariate normal CDF with
mean (0, 0)T, variance (1, 1)T and correlation ρ ∈ (−1, 1).

The joint distribution of the continuous mediators can be identified up to a sensitivity
parameter ρ by first specifying the two marginal distributions. There is no information in the
data about ρ because it represents the association between two variables that are never
observed simultaneously. We will therefore treat ρ as known and vary it as part of a
sensitivity analysis. The special case ρ = 1 implies equipercentile equating of the mediators
(i.e., the ranks of M0 and M1 are the same). In Section 3, we discuss Bayesian nonparametric
estimation of the marginal distributions which are identified from Mobs as outlined in
Section 2.4.

The choice of the Gaussian copula here is for several reasons: 1) it allows complete
flexibility in the marginals (which we model in Section 2.4.1 using a nonparametric
Bayesian approach) and 2) it is parsimonious in terms of sensitivity parameters (here only
one sensitivity parameter, ρ).

Assumption 5. (Conditional independence between potential outcomes)

Note that Assumption 5 is not necessary to estimate E[NIE|data] and E[NDE|data]; for these,
we just need the marginal posterior distributions for the potential outcomes. However, it is
necessary to estimate other features of the posterior distribution of NIE and NDE. In
particular, the posterior mean of the NIE and NDE is not effected by this assumption;
however the posterior variance is. In fact, this assumption provides an upper bound on the
variance of the NIE assuming deviations only involving positive dependence between the
potential outcomes. In particular, the difference (which we denote as A) between the
variance of the NIE under Assumption 5 and under the case that Assumption 5 does not hold
(with the strongest possible conditional dependence between the outcomes) is

where
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For further details on this and the entire derivation, see the Web appendix.

This assumption states that the correlation between the potential outcomes is completely
explained by the two values for the potential mediator; implicitly, it is assuming there are no
other mediators. We can weaken this assumption, but not without adding additional
sensitivity parameters. In the data example, we provide information on the changes to the
posterior variance under violations of Assumption 5. Another option to weaken this
assumption would be to have it hold only conditional on baseline covariates; we discuss this
extension in Section 7.

We emphasize that none of these assumptions are ‘checkable’ from the observed data.

2.3 Alternative assumptions required for non-parametric identification
The average NIE and NDE can be identified non-parametrically with an alternative set of
assumptions (Imai et al. 2010; Robins 1999). In particular, Imai et al. (2010) showed that
non-parametric identification required the treatment assignment ignorability (1) and
ignorability of the mediator (i.e., sequential ingnorability),

for z, z′ = 0, 1. In addition, a positivity assumption is required for treatment and the
mediator: P(Z = z) > 0 and P(M = m|Z = z) > 0 for all m, z. The above assumptions are
typically made conditional on pre-treatment covariates. A sensitivity analysis can be used to
quantify effects of unmeasured confounding (Imai et al., 2010a; Imai et al., 2010b;
VanderWeele, 2010).

We do not make the sequential ignorability assumption. As stated earlier, this is typically
not a reasonable assumption for mediators in behavioral trials. For example, our Assumption
2b allows for a dependence between M0, M1 and the potential outcomes that is not assumed
to vanish after conditioning on Z (unlike with sequential ignorability). However, we require
additional assumptions about the joint distribution of (M0, M1) because we need to identify
the posterior distributions of NDE and NIE, not just the means.

2.4 Identification of joint distributions for computation of direct and indirect effects
—In the following, we will demonstrate that Assumptions 1–4 are sufficient to identify the
joint distribution of NIE and NDE. We state this formally in the following theorem. We also
note that by randomization of the treatment, (1), the distributions fMz(Mz), fMzYz(Mz|Yz,Mz)
and fz,Mz(Yz,Mz) are estimable from (Yobs, Mobs).

Theorem: The joint posterior distribution of NIE and NDE is identified under Assumptions
1–5.

Proof: Consider the following factorization of the joint distribution of the two potential
outcomes (one of which is observed), which we will denote as B,
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(2)

We can further factor B as

where ‘A’ corresponds to ‘Assumption’ in the above. Each component in (2) is identified by
randomization (Assumption 1) and/or Assumption 4. To obtain the posterior distribution of
indirect effects, we need

The second term in the integrand is a function of the estimable quantities in (2). Using
Assumption 5, the first term in the integrand can be factored as

By Assumption 3, the first term is equal to f1,M1 (y11|m0, m1) = f1,M1 (y11|m1) which can be
estimated using the observed data via randomization (and a function of components in (2)).
Also, we observe the pairs (Y1,M1, M1). The second term, f1,M0(y10|m0, m1) is identified by
Assumptions 2 and 4. From Assumption 2, we identify f1,M0(y10|m0, m1)using f1,M1(y11|m0,
m1) and the sensitivity parameters, (χ, ε). Using Assumption 4, we identify the distribution
of M0 given M1 and estimate f1,M1(y11|m0, m1).

Similarly, to obtain the posterior distribution of direct effects, we need

The first term, f(1,M0),(0,M0)(y10, y00|m0, m1) can be factored via Assumption 5
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The identification of the first term was outlined in the identification of the NIE. For the
second term, f0,M0(y00|m0, m1) = f0,M0(y00|m0) by Assumption 3, which is estimable from the
observed data and randomization (since function of quantities in (2)).

2.4.1 Models and Estimation—The models required for inference in the previous
section can be specified nonparametrically and estimated using the observed data. In
particular, we need the following component nonparametric models:

We specify Dirichlet process priors for the distributions FMz,y(mz|Yz,Mz= y): y = 0, 1; z = 0, 1.
We also place independent Unif(0, 1) priors on πz,Mz. The relevant posterior can be sampled
in WinBUGS (see the supplementary materials).

Note that the identified quantities in the previous subsection, fz,Mz(y|m) can be estimated
quite easily using the models; this is clear if we rewrite fz,Mz(y|m) as fMz,y(m|y)fYz,Mz (y)/
fMz(m).

3. Posterior computations
We construct an algorithm to sample from the posterior distribution of the direct and indirect
effects. We proceed using the following steps.

1. Fix the sensitivity parameters, (ρ, χ, ε).

2. Sample [FM1,1, FM1,0, FM0,1, FM0,0, π1,M1, π0,M0] ~ p(FM1,1, FM1,0, FM0;,1, FM0,0,
π1,M1, π0,M0|mobs, yobs) where mobs = {Mzi, i = 1, …, n} and yobs = {Yzi,Mzi

, i = 1,
…, n} using WinBUGS.

3. For each sample (FM1,1, FM1,0, FM0,1, FM0,0, π1,M1, π0,M0), compute NDE and
NIE.

4. Repeat Steps 2–3 Q times.

If we place a prior on the sensitivity parameters, Step 1 is replaced by sampling the prior and
Step 4 becomes repeat Steps 1–3 Q times. Details on WinBUGS in Step 2 and all of Step 3
can be found in the supplementary materials.

4. Sensitivity Analysis and Elicitation
Assumptions 2 and 4 contain three sensitivity parameters, (χ, ε, ψ). We discuss a general
strategy to elicit a range for each sensitivity parameter.

Assumption 2
To help understand the first two sensitivity parameters, we assume, wlog, that the treatment
has a non-negative (non-decreasing) effect on the mediator and using Assumption 2, we
have the following expression

(3)

In the following, we choose Z = 1 (wlog) and assume (m1 − m0) > ε. In addition, we can
simplify the expression in (3), which will facilitate elicitation, as follows,
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The first equality comes from Assumption 3; the second from Assumption 2a. So we can
rewrite (3) as

(4)

where m is the value of the mediator under the control arm. The numerator corresponds to
m1 > (m0+ε) (assuming a larger value for the mediator is better). If we assume the treatment
has a larger effect on other mediators (not measured) or other relevant mechanisms, then we
might expect the probability in the numerator to be larger than the denominator
corresponding to a larger direct effect. We use expression (4) for eliciting.

To elicit likely values for ε, we consider how big d should be for the following ratio to be
not equal to one,

Assumption 4
The parameter ρ in Assumption 4 corresponds to the rank correlation between the mediator
values under the treatment and control arms, with ρ = 1 corresponds to a perfect correlation
and ρ = 0 corresponding to independence. We use these two benchmarks to elicit a value. A
conservative approach would be just to consider any value in [0, 1) (assuming the
relationship was positive).

We elicit a range of values for each sensitivity parameter.

5. Simulation study to assess sensitivity to violations of Assumption 3
We explicitly suggest approaches for sensitivity analysis with sensitivity parameters for
Assumptions 2 and 4. For Assumption 5, we derived analytic results that demonstrate its
impact (only on the posterior variance). In the below, we assess, via simulations, sensitivity
to violations of Assumption 3.

For the simulation, similar to the data example, we assume Y1,M1 ~ Ber(0.71). We consider
the following (simple) violations of assumption 3. We assume logit(M0)|logit(M1), Y1,M1 ~
N (μ, σ2) μ = β0 + β1logit(M1) + β2Y1,M1 and the logit transformation is on the interval [0,
350]. Based on the data (and setting ρ = .3 in Assumption 4), we obtain β0 = −1.5241 and β1
= 0.1842. We consider deviations from Assumption 3 (β2 = 0) in terms of the following
values for β2, {1.07, 2.14, 4.28} which are half, full and twice of s.d. of m0 after the logit
transformation. For the simulation, we also consider varying the sensitivity parameters from
Assumption 2 as follows: χ ∈ {1, 1.15, 1.3, 2} and ε ∈ {50, 75, 100}.
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For each scenario, we compute the NIE assuming Assumption 3 holds and compare it to the
true NIE when Assumption 3 does not hold. The results are in Table 1 (and Table S.1 in the
supplementary materials).

The posterior mean and standard deviation of the NIE are not very sensitive to small to
medium size violations of Assumption 3 with the estimates not differing by much more
than .02. However, for the large violation (2 standard deviation change), the estimates can
differ by as much as .05 to .08. There are no consistent patterns of bias, including bias
toward the null.

6. TOURS: weight management trial
6.1 Description of Data

This was a randomized trial to compare the effectiveness of extended care programs
designed to promote successful long term weight management. Participants completed a
standard six month lifestyle modification program and then were randomly assigned to
telephone counseling, face-to-face counseling or an education control group (Perri et al.,
2008). This completed trial is referred to as TOURS. A very important question in this trial,
and obesity research in general are identifying mediators of weight change. In this trial,
different measures of adherence to behavioral weight-management strategies were recorded.
Here, we focus on the (continuous) mediator, the number of days with self-monitoring
records for food intake (which takes values 0 to 350) during the weight management phase
of the trial, 6 to 18 months. Among those that lost at least 5% of their weight by 6 months,
we define the (binary) outcome of interest to be whether or not they maintained the loss of at
least 5% from 6 to 18 months.

In the analysis of the original trial, the telephone and face-to-face treatment arms resulted in
similar weight maintenance that was considerably larger than the education control arm.
Here, we assess the NIE and NDE of the mediator for the face-to-face (FTF) vs. education
control (EC) arms. The sample sizes for the two treatment arms were 63 and 62,
respectively.

6.2 Models
We assume the following prior for the conditional distribution of the mediators given the
binary response (y ∈ {0, 1}), FMz,y(mz|Yz,Mz = y) ~ DP(Kz, Wz × Beta[0,350](α1z, β1z) + (1 −
Wz) × Beta[0,350](α2z, β2z)), where the base measure is a mixture of Beta distributions on the
interval [0, 350] and KZ is the precision parameter. We place the following priors on the
hyperparameters, Kz ~ DiscUnif [1, 20] and αiz ~ Unif (0, 70) and βiz ~ Unif (0, 70) for i = 1,
2 and Wz ~ Unif(0, 1): z = 1, 2.

6.3 Elicitation of sensitivity parameters
The combined expertise of the authors in weight management trials and causal inference
were utilized the determine reasonable values for the sensitivity parameters.

Assumption 2: Regarding the sensitivity parameter ε, it was thought that a difference of at
least one day per week in filling out the food intake records could be interpreted as clinically
important and significant; we discuss this issue further in the discussion section. As a result,
we consider values of ε ∈ (50, 100); roughly corresponding to a difference of 1 to 2 days per
week. In addition, in terms of the ratio in (4), the impact of the treatment on the mediator
being more than 50 days could reflect a positive impact on other factors innate to the
individual up to a relative risk of about 1.3. Thus, we considered values χ ∈ (1.0, 1.3).
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Assumption 4: For assumption 4, the correlation between m0 and m1 was thought to be
positive. So, we followed the conservative approach from Section 4 and consider ρ ∈ [0, 1).

For the analysis, we also consider independent uniform priors over these ranges.

6.4 Results
For sampling from the posterior distribution of the models for the observed data in section
6.2, we ran 10000 iterations and discarded the first 5000 as burn-in. We ran multiple chains
and trace plots indicated convergence.

The total effect of face-to-face (FTF) versus mail (EC) corresponded to a marginally
significant risk difference of .081(−.073, .25) suggesting the efficacy of the FTF treatment
(Tables 2–4). For all combinations of the sensitivity parameters considered, the conclusions
were quite robust corresponding to a large NDE ranging from about .077 to .089, with
credible intervals that covered zero (see Tables 2–4). The NIE was always much smaller in
magnitude, less than .01 in absolute value with credible intervals centered close to zero.

The results were least sensitive to the correlation between mediators (see Assumption 4) and
the NDE decreased (slightly) as epsilon increased but increased as the RR, χ increased.
When we assumed independent uniform priors on the sensitivity parameters (based on their
ranges elicited in Section 6.3), we drew similar conclusions (Table 5).

Thus, based on our analysis, there was some evidence for the efficacy of the FTF treatment,
but minimal evidence that the effect of the FTF treatment was mediated by the number of
self-monitoring records completed over the 12 month management portion of the trial.

The maximal influence (on the posterior variance) for a violation of Assumption 5 is A ≤ .
39.

6.5 Comparison with Baron and Kenny type estimators
For comparison, we also estimated the direct and indirect effects using the Baron and Kenny
approach under the assumptions of sequential ignorability and no interaction. We use the R
function mediate (Imai et al., 2010) and linear models as outlined in the Baron and Kenny
approach in Section 1. The natural direct effect was estimated to be .031(−.12, 18) of similar
magnitude to the natural indirect effect .054(−.000, .12), a quite different conclusion from
the analysis above. However, the assumptions underlying the Baron and Kenny approach are
unlikely to be reasonable in our (behavioral science) application and thus, we prefer the
analysis (in Section 6.4) under the assumptions proposed in Section 2. Note that the
sequential ignorability assumption is often weakened by including baseline covariates and
conducting sensitivity analysis (Imai et al., 2010; vanderWeele, 2010), which we did not do
here.

7. Discussion
We have proposed a Bayesian approach to the causal effect of mediation that involves three
sensitivity parameters and no parametric models for the observed data. Strategies to elicit
the sensitivity parameters were provided. Simulation studies suggested that estimation of the
NIE is not very sensitive to small to medium size violations of Assumptions 3 and
Assumption 5 provides an upper bound on the posterior variance of the NIE. For the
TOURS trials, the effect of the face-to-face counseling treatment vs. the education control
was marginally significant. However, based on our analysis, the potential mediator, the
number of self-monitoring food records completed was not a mediator of this relationship.
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We propose this as a general approach to assess mediation that allows easy to interpret
sensitivity parameters and realistic assumptions for behavioral trials.

There are several extensions to the current modeling approach. First, we might incorporate
baseline covariates to weaken some of our assumptions and potentially gain efficiency in
estimation of the natural indirect effects; we are currently working on this extension.
Second, we could develop a more detailed framework for eliciting a prior (not just the
range) for the sensitivity parameters. Third, extending the current framework (both defining
causal effects and models) to the setting of multiple mediators is an open question. Fourth,
we might consider alternatives to Assumption 2; in addition, we can generalize Assumption
2 by replacing the relative risk formulation with an odds ratio (exponential tilt) formulation
that would be appropriate for both a binary and a continuous response.

There are also numerous interesting extensions based on the TOURS data. Twelve subjects
(7.4%) dropped out before 18 months. We have not included them in the analysis. Future
analyses will include these subjects under specific assumptions about the dropout. In
addition, we have defined the mediator here as the total number of days with self-monitoring
records of food intake over the 12 month period. However, this may be too coarse a
summary. Future work will examine the record completion process, basically a 350-
dimensional vector of 0 and 1’s (that sum up to our mediator) as there may be a (clinical)
distinction between filling out no records per week versus one per week as opposed to two
per week vs three per week (that both correspond to a difference of 50 days of records).

We are working on making the methods available as an R package.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Table 2

Posterior means and credible intervals for NDE, NIE, and TE for ε ∈ {50, 75, 100}, χ ∈ {1.0, 1.15, 1.3} and
ρ=0.

ε χ NDE NIE TE

50 1 0.077 (−0.078,0.25) 0.007 (−0.088,0.12) 0.085 (−0.070,0.25)

50 1.15 0.083 (−0.073,0.26) 0.001 (−0.10,0.11) 0.085 (−0.070,0.25)

50 1.3 0.089 (−0.085,0.26) −0.003 (−0.10,0.10) 0.085 (−0.070,0.25)

75 1 0.078 (−0.070,0.25) 0.006 (−0.086,0.11) 0.085 (−0.070,0.25)

75 1.15 0.082 (−0.083,0.25) 0.002 (−0.095,0.11) 0.085 (−0.070,0.25)

75 1.3 0.086 (−0.073,0.26) −0.001 (−0.10,0.099) 0.085 (−0.070,0.25)

100 1 0.078 (−0.075,0.25) 0.007 (−0.090,0.11) 0.085 (−0.070,0.25)

100 1.15 0.081 (−0.077,0.25) 0.004 (−0.091,0.11) 0.085 (−0.070,0.25)

100 1.3 0.086 (−0.072,0.26) −0.0007 (−0.10,0.10) 0.085 (−0.070,0.25)
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Table 3

Posterior means and credible intervals for NDE, NIE, and TE for ε ∈ {50, 75, 100}, χ ∈ {1.0, 1.15, 1.3} and
ρ=0.3.

ε χ NDE NIE TE

50 1 0.078 (−0.073,0.25) 0.007 (−0.086,0.12) 0.085 (−0.070,0.25)

50 1.15 0.082 (−0.074,0.25) 0.003 (−0.10,0.10) 0.085 (−0.070,0.25)

50 1.3 0.087 (−0.078,0.26) −0.0023 (−0.10,0.10) 0.085 (−0.070,0.25)

75 1 0.077 (−0.076,0.25) 0.007 (−0.095,0.12) 0.085 (−0.070,0.25)

75 1.15 0.081 (−0.076,0.25) 0.003 (−0.091,0.11) 0.085 (−0.070,0.25)

75 1.3 0.086 (−0.079,0.26) −0.001 (−0.10,0.10) 0.085 (−0.070,0.25)

100 1 0.078 (−0.071,0.25) 0.006 (−0.095,0.12) 0.085 (−0.070,0.25)

100 1.15 0.080 (−0.076,0.26) 0.004 (−0.092,0.11) 0.085 (−0.070,0.25)

100 1.3 0.085 (−0.079,0.26) 0.0001 (−0.10,0.10) 0.085 (−0.070,0.25)
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Table 4

Posterior means and credible intervals for NDE, NIE, and TE for ε ∈ {50, 75, 100}, χ ∈ {1.0, 1.15, 1.3} and
ρ=0.7.

ε χ NDE NIE TE

50 1 0.077 (−0.073,0.25) 0.007 (−0.092,0.13) 0.085 (−0.070,0.25)

50 1.15 0.082 (−0.079,0.25) 0.002 (−0.10,0.11) 0.085 (−0.070,0.25)

50 1.3 0.088 (−0.085,0.26) −0.003 (−0.10,0.099) 0.085 (−0.070,0.25)

75 1 0.077 (−0.066,0.25) 0.007 (−0.088,0.12) 0.085 (−0.070,0.25)

75 1.15 0.082 (−0.075,0.25) 0.003 (−0.096,0.11) 0.085 (−0.070,0.25)

75 1.3 0.086 (−0.087,0.26) −0.001 (−0.097,0.10) 0.085 (−0.070,0.25)

100 1 0.078 (−0.069,0.25) 0.007 (−0.091,0.12) 0.085 (−0.070,0.25)

100 1.15 0.080 (−0.076,0.25) 0.004 (−0.088,0.11) 0.085 (−0.070,0.25)

100 1.3 0.084 (−0.084,0.26) 0.0006 (−0.10,0.10) 0.085 (−0.070,0.25)
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Table 5

Posterior means and credible intervals for NDE, NIE, and TE for priors ρ ~ Unif[0, 1], ψ ~ Unif[50, 100], χ ~
Unif[1, 1.3].

NDE NIE TE

0.081 (−0.073,0.25) 0.003 (−0.086,0.12) 0.085 (−0.070,0.25)
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