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The rapid and reliable identification of promoter regions is important when the number of genomes to be sequenced is increasing
very speedily. Various methods have been developed but few methods investigate the effectiveness of sequence-based features
in promoter prediction. This study proposes a knowledge acquisition method (named PromHD) based on if-then rules for
promoter prediction in human and Drosophila species. PromHD utilizes an effective feature-mining algorithm and a reference
feature set of 167 DNA sequence descriptors (DNASDs), comprising three descriptors of physicochemical properties (absorption
maxima, molecular weight, and molar absorption coefficient), 128 top-ranked descriptors of 4-mer motifs, and 36 global sequence
descriptors. PromHD identifies two feature subsets with 99 and 74DNASDs and yields test accuracies of 96.4% and 97.5% in human
and Drosophila species, respectively. Based on the 99- and 74-dimensional feature vectors, PromHD generates several if-then rules
by using the decision tree mechanism for promoter prediction. The top-ranked informative rules with high certainty grades reveal
that the global sequence descriptor, the length of nucleotide A at the first position of the sequence, and two physicochemical
properties, absorption maxima and molecular weight, are effective in distinguishing promoters from non-promoters in human
and Drosophila species, respectively.

1. Introduction

Gene expression is often regulated by the transcription rate,
which is largely controlled by the binding of RNApolymerase
II (Pol II) to the regulatory regions of DNA sequences in
eukaryotic cells [1].The regulatory regions (called promoters)
that contain a transcription factor binding site and a TATA
box are immediately upstream of transcription start sites
at which transcription factors and Pol II are accumulated
to initiate the transcription (Figure 1) [2, 3]. Promoters are
extremely diverse and difficult to identify experimentally
using specific sequence patterns or motifs [3, 4]. Therefore,
the identification of promoters is very challenging, especially
in the sequencing of eukaryotic genomes. Some methods
for predicting promoters have been developed, and these
methods may be categorized into the following four classes
according their types of sequence features (see Table 1).

(1) Context-Feature Class. Context features are con-
tents of the documents that are represented by
basic unit DNA words called k-mer motifs (k-base-
long nucleotide sequences) [5]. Besides k-mer fre-
quency, some features based on k-mer motifs are
also used in promoter prediction including tran-
sition [6], distribution [6], entropy density profile
(EPD) [6], codon-position-independent frequencies
of mononucleotides [6, 7], digitized DNA sequence
[8], position-specific propensity [9, 10], relative
entropy [10], and flanking genomic sequence [4].

(2) Signal-Feature Class. Powerful biological signals con-
tain core-promoter elements [11], some short mod-
ular transcription factor binding sites [12], and CpG
islands [13, 14]. The core-promoter elements that play
important roles in the assembly of transcriptional
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Figure 1: The promoter of a DNA sequence containing a transcription factor binding site and a TATA box is immediately upstream to a
transcription start site.

machinery contain the TATA box, the exons region
[15, 16], the intron region (initiator sequences), [15,
17–19], downstream promoter elements [20], a TFIIB
recognition element [11], motif ten element [21], and
CCAAT box [19, 22, 23]. The TATA box, initiator
sequences, and consensus sequences for transcription
factor binding sites are often used in various promoter
recognition methods [24]. However, these features
have been confirmed to exist only in a small propor-
tion of all human promoters [25, 26].

(3) Structure-Feature Class.Many physical and structural
properties of DNA sequences are estimated. They
include DNA curvature [27], flexibility [22, 23],
denaturation values [28, 29], base stacking energy
[16, 28], stabilizing energy of Z-DNA [30], Z-DNA
[31], and radical cleavage intensity [28, 32]. In par-
ticular, McPromoter [29] is a probabilistic promoter
predictor that uses a neural network to combine
the sequence features and structural profiles, such
as those of DNA bend ability or GC structure, in
promoter prediction.

(4) Epigenetic-Feature Class. Few promoter prediction
methods utilize epigenetic information [22, 33]. For
example, HMM-SA is a supervised learning method
for predicting promoters and enhancers from their
unique chromatin modification signatures [33]. Simi-
larly, CoreBoost HMsystematically analyzes different
chromatin features for promoter prediction [22].

Table 2 lists some representative methods that use the
above four types of features in combination with effective
classifiers to predict promoters. These classifiers involve
Fisher’s linear discriminant algorithm [6], the hiddenMarkov
model [22, 23], the AdaBoost algorithm [8], decision trees
[18], relevance vector machines [34], the expectation max-
imization algorithm [35, 36], artificial neural networks [12,
15, 17, 19, 29, 37], support vector machines (SVM) [38,
39], artificial immune recognition systems [40], and others.
Recently, the use of ensemble classifiers has become popular
in promoter prediction systems. For example, CoreBoost [23]
andCoreBoost HM [22] used ensemble classifiers to improve
prediction performance.Thesemethods apply boosting tech-
niques with stumps to extract sequence features, including

the core-promoter elements score, transcription factor bind-
ing site density, the DNA flexibility of promoter sequences,
Markovian log-likelihood ratio scores, k-mer frequencies,
and epigenetic features.

Even though many promoter prediction methods have
been developed, the effectiveness of used features in identi-
fying promoters still needs to be explored. However, accurate
promoter prediction relies largely on feature extraction and
model selection [3]. Currently, Prom-Machine [39] simply
selected 128 four-mer motifs and then utilized these motifs
in conjunction with SVM to improve prediction sensitivity
and specificity toward the DNA sequences of the five fol-
lowing species: plants, Drosophila, human, mouse, and rat.
Additionally, one recently publishedmethod, FSPP [41], used
both filter and wrapper algorithms to select effective feature
subsets from 13 kinds of structural features, including DNA-
bending stiffness, duplex free energy, and duplex disrupt
energy to improve further the sensitivity and accuracy of
promoter prediction. Our previous method, ProPolyII [42],
selects a small number of sequence-based features to improve
prediction performance in human species.

These methods motivate this work to focus on feature
selection and effectiveness evaluation of the selected features
in promoter prediction. This work presents a knowledge
acquisitionmethod (named PromHD) based on if-then rules
for promoter prediction in human and Drosophila species.
The knowledge can be revealed from three aspects: (1)
identified informativeDNA sequence descriptors (DNASDs),
(2) rules of distinguishing promoter from nonpromoter,
and (3) further analysis of distinguishable mechanism using
DNASDs. PromHD utilizes a reference feature set of 167
DNASDs, comprising three descriptors of physicochemical
properties (absorptionmaxima,molecular weight, andmolar
absorption coefficient) [43, 44] with 128 top-ranked fre-
quency descriptors of 4-mer motifs and 36 global sequence
descriptors. To the best of our knowledge, these three
descriptors of physicochemical properties are used herein
for the first time in identifying promoter DNA sequences
and their sequence-based representation differs from the
structural profiles of McPromoter [29]. The 128 top-ranked
frequency descriptors of 4-mermotifs are extracted from 256
4-mer combinations of nucleotides (4-base-long nucleotide
sequences) according to the scores that equal the difference
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Table 1: Conventional features for promoter prediction.

Features Label
Context features
𝑘-mere frequency A1
Transition A2
Distribution A3
Entropy density profile A4
Codon-position-independent frequencies of
mononucleotides A5

Digitized DNA sequence A6
Position-specific information A7
Relative entropy A8
Flanking genomic sequence A9

Signal features
TATA B1
5󸀠UTR (untranslated region) B2
Exons region B3
Intron region B4
3󸀠UTR B5
Downstream promoter element B6
TFIIB recognition element B7
Motif ten element B8
CCAAT B9
GC B10
Transcription factor binding site C
CpG islands D

Structural features
DNA curvature E1
DNA flexibility E2
Stabilizing energy of Z-DNA E3
DNA denaturation values E4
Base stacking energy E5
Nucleosome positioning preference E6
Dinucleotide free energy E7
Tri-nucleotide CG content E8
DNA bendability E9
DNA-bending stiffness E10
A-philicity E11
Protein induced deformability E12
Propeller twist E13
B-DNA twist E14
Protein-DNA twist E15
Duplex stability (disrupt energy) E16
Duplex stability (free energy) E17
Radical cleavage intensity E18
Z-DNA E19

Epigenetic features F

between the occurrence frequencies of the 4-mer motif
in the positive and negative datasets [45, 46]. PromHD

further utilizes an effective feature mining algorithm (called
DNASDmining), which is based on an inheritable biob-
jective genetic algorithm [47, 48], to mine informative
DNASDs.

A total of 1871 human and 1926 Drosophila promoter
sequences were downloaded from the Eukaryotic Promoter
Database [49], which is a database containing over 4800
promoters from various species. The same numbers of
nonpromoters in human and Drosophila species were col-
lected to evaluate the proposed PromHD method. Accord-
ingly, PromHD identifies two subsets of 99 and 74 DNASDs
and yields test accuracies of 96.4% and 97.5% in human and
Drosophila species, respectively, which are better than those
of SVM-4mer (91.0% and 94.6%) and SVM-GSD (93.6%
and 89.2%), respectively. Based on each of the 99- and 74-
dimensional feature vector, PromHD uses the decision tree
method C5.0 [50] to generate several if-then rules. The
top-ranked rules reveal that the global sequence descriptor,
the length of nucleotide A at the first position of the
sequence, is efficient in distinguishing human promoters
from nonpromoters, consistent with the findings of Wang
et al. and Zhao et al. [22, 23]. Alternatively, the top-ranked
rules in Drosophila species reveal that two physicochemical
properties, absorption maxima and molecular weight, are
effective in distinguishing promoters from nonpromoters.
Further analysis of the two feature subsets shows that 32
features are common including three physicochemical prop-
erties, 14 descriptors of 4-mer motifs, and 15 global sequence
descriptors. When the three descriptors of physicochemical
properties are excluded, PromHD with the remaining 96(=
99 − 3) and 71(= 74 − 3) DNASD features yield test
accuracies of 94.4% and 95.5% in human and Drosophila test
datasets, respectively. The prediction accuracies fall by 2.0%
(= 96.4% − 94.4% and = 97.5% − 95.5%), reconfirming
the three physicochemical properties are obviously effective
in distinguishing promoters from nonpromoters in human
and Drosophila species. The promoter prediction system
by using the PromHD method has been implemented at
http://iclab.life.nctu.edu.tw/promhd.

2. Materials and Methods

In this work, a block diagram is used to illustrate the main
components of the proposed PromHD method. Figure 2
presents five main components, which are datasets, DNA
sequence descriptors, DNASDmining algorithm, estimating
appearance-frequency ratios, and the PromHD prediction
system.

2.1. Datasets. More than 4800 eukaryotic Pol II promoters
from many species have been collected in the Eukaryotic
Promoter Database (http://epd.vital-it.ch) in May 2013 [49],
in which the transcription start site was determined exper-
imentally and the numbers of promoters in the human and
Drosophila species greatly exceed those in other species.
Therefore, two datasets, HP (1871 human promoters and
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Table 2: Some representative prediction methods and classifiers with their used features. The informative features are explained in Table 1.

Methods Classifier Features
ARTS [16] SVM B2, E5, E13
CorePromoter [20] Stepwise strategy B1, B6, C
CoreBoost [23] LogitBoost algorithm with decision trees A1, B1, B9, B10, C, D, E2
CoreBoost HM [22] Hidden Markov model A1, B1, B9, B10, C, D, E2, F
CpGcluster [13] Distance-based algorithm D
CpGProD [14] A generalized linear model D
DragonGSF [12] Artificial neural network B9
DragonPF [15] Artificial neural network D
EP3 [28] Analysis approach E3–18
Eponine [34] Relevance vector machine B1
FSPP [41] SVM E4–6, E10–17
FirstEF [18] Decision tree B4, D
Fuzzy-AIRS [40] Artificial immune recognition system A1
GDZE [6] Fisher’s linear discriminant algorithm A1–5, E7
GSD-FLD [6] Fisher’s linear discriminant algorithm A1–4

HMM-SA [33] Hidden Markov model, simulated
annealing F

McPromoter [51] Artificial neural network,
hidden Markov model E3–6, E8–17

NNPP2.2 [37] Artificial neural network B1, B4

Nscan [52] Hidden Markov model,
Bayesian networks B2–5

Prom-Machine [39] SVM A1 (128 top-ranked 4-mer motifs)
PromPredict [53] A scoring function and threshold values A10, B12, E1, E7, E9, E17
Promoter 2.0 [19] Neural networks and genetic algorithms B1, B4, B9, B10
PromoterExplorer [8] AdaBoost algorithm A1, A6, D
PromoterInspector [54] Context analysis approach A1
PromoterScan [55] Linear discriminant analysis B1, C
ProSOM [30] Artificial neural network E5, E7
PSPA [9] Probabilistic model A1, A7
TSSW [56] Linear discriminant function B1
vw Z-curve [7] Partial least squares A5
Wu method [10] Linear discriminant analysis A3–5, A7, A8

1871 nonpromoters), and DP (1926 Drosophila promoters
and 1926 nonpromoters), are established and used in this
work to evaluate the proposed PromHD method. Segments
of promoter sequences from −200 to +51 relative to a
transcription start site [39] are collected. The nonpromoter
sequences are extracted from the EMBL CDS (coding
sequences) database (ftp://ftp.ebi.ac.uk/pub/databases/embl/
cds/), which is a database of nucleotide coding sequences.

Both of the HP and DP datasets are equally divided into
two subsets—one for training (learning) (HPL and DPL)
and the other for independent testing (HPT and DPT). The
learning dataset is done with the purpose of identifying a
small set of DNASDs and finding the best parameters of a
SVM to train the complete dataset [57, 58] (see Evaluation
Measures). The sequences in the training and test datasets
are randomly and near-equally partitioned. The numbers of

DNA sequences within promoter and nonpromoter classes
are presented in Supplementary Table S1 available online at
http://dx.doi.org/10.1155/2014/327306.

2.2. DNA Sequence Descriptors. This work presents a
reference feature set of 167 DNA sequence descriptors
(DNASDs in Supplementary Material) that comprises
three sequence descriptors of physicochemical properties,
128 top-ranked frequency descriptors of 4-mer motifs,
and 36 global sequence descriptors. Therefore, a DNA
sequence is represented as a 167-dimensional feature
vector 𝑃 = [𝑃

1
, 𝑃
2
, . . . , 𝑃

𝑛
]
𝑇, where 𝑛 = 167. All of the

features of P are rescaled into the range [0, 1] and are
employed to SVM (Figure 2). The following three sections
describe three subsets of DNASDs with using the sequence
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Figure 2: A block diagram of the PromHD method. The block
diagrammainly contains the following important parts: (1) datasets,
(2) DNA sequence descriptors, (3) DNASDmining algorithm, (4)
estimating appearance-frequency ratios, and (5) PromHD predic-
tion system.

CATAGCCATTGCATGACCCG of length 20 as an example
(called S20).

2.2.1. Physicochemical Properties of Nucleotides. The physic-
ochemical properties of the DNA structure of eukaryotic
genomes are critical to promoter recognition.This study pro-
poses a sequence-based set of three physicochemical proper-
ties of nucleotides (http://www.geneinfinity.org) for design-
ing prediction features that are used to distinguish promoters
from nonpromoters. The three DNA sequence descriptors,
denoted as𝐷AM,𝐷MW, and𝐷MAC, are derived from the three
physicochemical properties—absorption maxima, molecular
weight, and molar absorption coefficient, respectively—by
averaging over a nucleotide sequence [59].The three descrip-
tors are the attributes of the subvector [𝑃

1
, 𝑃
2
, 𝑃
3
] in the

reference set of 167 DNASDs.
The sequence S20 has five As, seven Cs, four Gs, and four

Ts. With reference to Table 3, the values of the absorption
maxima (determined at pH 7.0) for nucleotides A, C, G, and
T are 259, 271, 253, and 267, respectively. Accordingly, the
descriptor 𝐷AM has a value 263.6 = (5 × 259 + 7 × 271 +

4 × 253 + 4 × 267)/20. The other two descriptors 𝐷MW and
𝐷MAC have values 484.95 and 11950, respectively.

2.2.2. Global Sequence Descriptors. The global description
of promoter/nonpromoter sequences contains four parts,
entropy density profile (EDP), composition, transition, and
distribution of DNA nucleotides [6]. The EDP model is a
global statistical description for a DNA sequence, based on
Shannon’s artificial linguistic description for a DNA sequence
of finite length [60]. Let 𝑞

𝑖
be the frequencies of occurrence

of nucleotides in a promoter/nonpromoter sequence, where
𝑖 is the index that specifies the nucleotides (A, C, G, T). Six
EDPs,𝐷EH,𝐷EQ,𝐷EA,𝐷EC,𝐷EG, and𝐷ET, correspond to the
six attributes of the subvector [𝑃

4
, . . . , 𝑃

9
], defined as follows:

𝐷EQ = 𝑞
2

A + 𝑞
2

C + 𝑞
2

G + 𝑞
2

T, 𝐷EH = −∑
𝑖

𝑞
𝑖
log 𝑞
𝑖
,

𝐷E𝑖 =
−1

𝐷EH
𝑞
𝑖
log 𝑞
𝑖
,

(1)

where 𝐷EH is the Shannon entropy and 𝐷EQ is a statistical
quantity.

The composition is used to measure the frequency of
occurrence of each kind of letters in the sequences, and thus
herein it is the 𝑞

𝑖
in (1). Additionally, the four frequencies 𝑞

𝑖

are also called 1-mer motifs of the nucleotides (A, T, C, and
G), denoted as 𝐷C1 (A), 𝐷C1 (T), 𝐷C1 (C), and 𝐷C1 (G), and
correspond to the four attributes of [𝑃

10
, . . . , 𝑃

13
].

The third part, transition 𝑇(𝛼, 𝛽), characterizes the per-
cent frequency with which 𝛼 is followed by 𝛽 or 𝛽 is followed
by 𝛼. The six transition frequencies, 𝐷

𝑇
(A, C), 𝐷

𝑇
(A, G),

𝐷
𝑇
(A, T), 𝐷

𝑇
(C, G), 𝐷

𝑇
(C, T), and 𝐷

𝑇
(G, T), correspond

to the six attributes of [𝑃
14
, . . . , 𝑃

19
]. For example, for the

S20 sequence, there are four transitions of this type 𝑇(A, C),
CATAGCCATTGCATGACCCG in bold style; that is, the
value of𝐷

𝑇
(A, C) is 21.0526 (= 4/19) × 100.00.

The fourth part of the global description, distribution,
measures the chain length within which the first, 25%,
50%, 75%, and 100% of certain type of letters are located,
respectively. For example, for the S20 sequence, the first, 25%,
50%, 75%, and 100% of the nucleotide A are located within
the second, 4th, 8th, 13th, and 16th nucleotides, respectively.
So, the five distributions of the nucleotide A, 𝐷

𝐷
(A, 1st),

𝐷
𝐷
(A, 25%), 𝐷

𝐷
(A, 50%), 𝐷

𝐷
(A, 75%), and 𝐷

𝐷
(A, 100%),

have values of 10 (= 2/20∗100), 20 (= 4/20∗100), 40 (= 8/20∗
100), 65 (= 13/20∗100), and 80 (= 16/20∗100), respectively.
A total of 20(= 4 × 5) distributions corresponding to
[𝑃
20
, . . . , 𝑃

39
] when four types of nucleotides are considered.

2.2.3. Frequency Descriptors of 4-Mer Motifs. The number of
4-mer combinations of nucleotides (4-base-long nucleotide
sequences) is 256. Prom-Machine [39] uses top 128 of the
256 4-mer motifs to improve prediction sensitivity and
specificity. Our earlier works estimated the scores of amino
acids [45] and of GO terms [46] for predicting DNA-binding
proteins and nonclassical secretory proteins, respectively.
Thatmotives this work, in which a score for each 4-mermotif
is calculated and the 128 top-ranked 4-mer motifs based on
those scores are identified.The score is the difference between
the occurrence frequencies. A detailed description follows.
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Table 3: Three physicochemical properties of nucleotide.

DNASD Description Nucleotide Rank by MED
A C G T Human DPL

𝐷AM Absorption maxima (determined at pH 7.0) 259 271 253 267 2 1
𝐷MW Molecular weight 491.2 467.2 507.2 482.2 7 2
𝐷MAC Molar absorption coefficient 15200 9300 13700 9600 11 3

Table 4: Top 20 descriptors of 4-mer motifs. Top 20 descriptors of the 4-mer motifs are contained in the reference set of 167 DNASDs. The
descriptors of the TATA motif are ranked at the 199th and 98th when applied for the HPL and DPL datasets, respectively.

Rank HPL dataset DPL dataset
4-mer motif Score Included (𝑚 = 99) 4-mer motif Score Included (𝑚 = 74)

1 TGAA 1000 + AAAG 1000 +
2 TGAT 941 + AAGA 956 +
3 CCGG 878 − TTCG 948 +
4 TATG 843 + AGAA 922 −

5 TGGA 817 − GAAA 866 −

6 GATG 770 + AAGG 791 +
7 TCAA 739 + CGCC 787 −

8 TACA 702 + AGAT 777 −

9 AGGC 697 − AATA 759 −

10 ATGA 694 + TCGC 747 −

11 TTGA 672 + TGAT 744 +
12 CGGC 662 − TGAA 732 −

13 CAGG 651 − ATCG 732 +
14 ATGT 634 − TCGA 724 +
15 AGCG 633 − CGGT 724 −

16 CGCG 629 − ATAA 712 +
17 AGCC 618 − CGAT 710 −

18 TCAT 595 − CGCG 703 −

19 GAGC 592 + GAAG 699 +
20 AGGG 582 − ATAG 697 −

...
...

...
...

...
...

...
25 AAGT 642

...
...

...
...

...
...

...
199 TATA 111 − 98 TATA 365 −

+: included in the set of𝑚 DNASDs.
−: not included in the set of𝑚 DNASDs.

Step 1. The occurrence frequencies 𝑓
𝜔
and 𝐹

𝜔
are those of

the 𝜔th 4-mer motif in all training promoter (positive) and
nonpromoter (negative) sequences, respectively, where 𝜔 =

1, 2, . . . , 256. For example, TATA is the 199th 4-mer motif,
that is,𝜔 = 199, and its occurrence frequencies in the positive
and negative classes of the HPL dataset are 𝑓

199
= 84 and

𝐹
199
= 453, respectively (see Table 4).

Step 2. Calculate the total numbers of occurrences of 256 4-
mer motifs in the positive and negative classes, Σ𝑓

𝜔
and Σ𝐹

𝜔
.

For example, the total numbers of occurrences of 256 4-mer
motifs in the positive and negative classes of the HPL dataset
are 29104 and 137017, respectively.

Step 3. The two proportional frequencies of occurrence in
the positive and negative classes for each 4-mer motif are the

values of 𝑓
𝜔
/Σ𝑓
𝜔
and 𝐹

𝜔
/Σ𝐹
𝜔
, respectively. For example, the

proportional frequencies of occurrence of TATA are 0.002892
(= 84/29104) and 0.003309 (= 453/137017) in the positive
and negative classes, respectively.

Step 4. The score for each 4-mer motif is the absolute value
| ⋅ | of the difference between the proportional frequencies of
occurrence in the positive class and that in the negative class.
For example, the score of TATA is 0.000417 (= |0.00309 −

0.002892|).

Step 5. Normalize scores of all 256 4-mer motif into the
range [0, 13000], and represent them as {𝜃

1
, 𝜃
2
, . . . , 𝜃

𝑛
}. The

normalized score is also called the frequency descriptor of
the 4-mer. For instance, the score of TATA motif is 111 (see
Table 4).
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Step 6. All 256 frequency descriptors are ranked in descend-
ing order. The top 128 motifs with descriptors are denoted as
𝐷C4(⋅) and they correspond to [𝑃

40
, . . . , 𝑃

167
]. For example,

the descriptor of the well-known TATA box, as shown in
Table 4, is 𝐷C4(TATA) = 111 and corresponds to 𝑃

137
for the

DPL dataset.

2.3. Proposed DNASDmining Algorithm. An efficient feature-
mining algorithm, DNASDmining, for identifying a set
of informative DNASDs is developed. The DNASDmining
algorithm is an expansive version of an inheritable biobjective
genetic algorithm, which is based on an intelligent genetic
algorithm (called IGA) [47, 61], to identify a small number
𝑚 out of 𝑛 = 167 DNASDs. The feature selection is a
combinatorial optimization problemComb(𝑛,𝑚)with a huge
search space of size Comb(𝑛,𝑚) = 𝑛!/(𝑚!(𝑛 − 𝑚)!). The
IGA, based on an orthogonal experimental design using a
divide-and-conquer strategy and systematic reasoning, can
efficiently solve the large combinatorial optimization prob-
lem to obtain the solution 𝑆

𝑟
to Comb(𝑛, 𝑟). The mechanism

can efficiently search for the next solution 𝑆
𝑟+1

to Comb(𝑛, 𝑟+
1) by inheriting the last solution 𝑆

𝑟
. DNASDmining obtains

all solutions 𝑆
𝑟
from 𝑟 = 𝑟start to 𝑟end one by one using IGA

with the inheritable mechanism [47, 61].

2.3.1. Feature Selection. The input of theDNASDmining algo-
rithm is a training set of DNA sequences that are categorized
into two classes—promoter and nonpromoter sequences.The
output comprises a set of 𝑚 informative DNASDs and the
parameter settings (𝐶, 𝛾) of an SVM classifier. The SVM
is a binary classifier of LIBSVM with a radial basis kernel
function [62], where a kernel parameter and a cost parameter
𝐶 are tuned by IGA. In this study, 𝛾 ∈ {2−7, 2−6, . . . , 28} and
𝐶 ∈ {2

−7
, 2
−6
, . . . , 2

8
}. The IGA-chromosome 𝑆 comprises 𝑛

binary IGA-genes 𝑔
𝑖
for selecting informative features and

two 4-bit IGA-genes for encoding 𝛾 and 𝐶, where 𝑖 =

1, 2, . . . , 167. The 𝑖th DNASD feature 𝑃
𝑖
is used in the SVM

classifier if 𝑔
𝑖
= 1; otherwise, 𝑃

𝑖
is excluded (𝑔

𝑖
= 0).

Figure 2 shows the sequence representation and the IGA-
chromosome encodingmethod. Supplementary Table S2 lists
the parameter settings of IGA, such as population size𝑁pop =
20. In this algorithm DNASDmining, 𝑟start = 30, 𝑟end = 100,
and 𝐺max = 60 based on former experience.

Step 1 (initiation). Randomly generate an initial population
of𝑁pop individuals. All the 𝑛 binary genes in the individual 𝑆
have 𝑟 1’s and 𝑛 − 𝑟 0’s where 𝑟 = 𝑟start and gen = 0.

Step 2 (evaluation). Evaluate the fitness values fitness(𝑆) of
all individuals. The fitness function of this training model
is the prediction accuracy of 10-fold cross-validation (see
Evaluation Measures) using the SVM classifier with the 𝑚
DNASDs, 𝛾, and 𝐶 by decoding the IGA-chromosome.

Step 3 (selection). Use the simple ranking selection that
replaces the worst 𝑝

𝑠
⋅ 𝑁pop individuals by the best 𝑝𝑠 ⋅ 𝑁pop

individuals to form a newpopulationwhere𝑝
𝑠
is the selection

probability.

Step 4 (crossover). Select 𝑝
𝑐
⋅ 𝑁pop parents from the mating

pool to perform orthogonal array crossover [47, 61] on the
selected pairs of parents where 𝑝

𝑐
is the crossover probability.

Step 5 (mutation). Apply the swap mutation operator to the
randomly selected𝑝

𝑚
⋅𝑁pop individuals in the newpopulation

where 𝑝
𝑚
is the mutation probability. To prevent a decline

in the best fitness value, mutation is not applied to the best
individual.

Step 6 (termination test). If 𝑔𝑒𝑛 = 𝐺max, then output the best
individual as 𝑆

𝑟
. Otherwise, increase the number gen by one,

and go to Step 2.

Step 7 (inheritance). If 𝑟 < 𝑟end, then randomly change one
bit in the binary genes of each individual from 0 to 1; increase
the number 𝑟 by one and let gen = 0, and go to Step 2.

Step 8 (decoding chromosome). Let 𝑆
𝑚
be the most accurate

solution with 𝑚 selected DNASDs among all solutions 𝑆
𝑟

Obtain the𝑚 informative features and values of the parame-
ters 𝛾 and 𝐶.

Step 9 (system uncertainty). Perform Steps 1–8 for 𝑅 inde-
pendent runs to obtain the best solution, 𝑆

𝑚
, and the associ-

ated parameter settings of the SVMclassifier (see Section 2.4).

2.3.2. Evaluation Measures. The independent dataset test,
subsampling or 𝑁-fold (e.g., 5- or 10-fold) cross-validation
test, and the jackknife test are often used to examine the
accuracy of a statistical predictionmethod [63].The jackknife
test is deemed to be the least arbitrarymethod that can always
yield a unique result for a given benchmark dataset [64]. The
𝑁-fold cross-validation test is used to estimate the error that
is involved in the predictions and thus it is also used formodel
selection [65]. In this work, 10-fold cross-validation scheme
is used. Additionally, the independent dataset test is also used
in this work to avoid overestimating the success rate of the
training model.

Overall accuracy (ACC), sensitivity (SN), and specificity
(SP) are three quality measures that are widely used to
evaluate the performance of promoter prediction methods
[66]. This work also utilizes Matthews correlation coefficient
(MCC) to measure the overall performance of the prediction
models. It takes into account true and false positives and
negatives and is generally regarded as a balanced measure
which can be used even if the classes are of very different sizes
[67]. These measures are defined as below:

ACC = (TP + TN)
(TP + FP + TN + FN)

,

SN =
TP

(TP + FN)
,

SP = TN
(TN + FP)

,
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MCC

=
(TP ∗ TN + FP ∗ FN)

√(TP + FP) ∗ (TP + FN) ∗ (TN + FP) ∗ (TN + FN)
.

(2)

TP, TN, FP, and FP stand for true positive, true negative, false
positive, and false negative, respectively. The MCC returns
a value in the range [−1, 1]. A value of 1 indicates a perfect
prediction; 0 indicates a random prediction, and −1 indicates
an inverse prediction.

2.4. Estimating the Appearance-Frequency Ratios. A total of
𝑅 experimental runs are executed to obtain the best solution
in this work due to the system uncertainty of the IGA-based
feature selection algorithm. That means that 𝑅 solutions are
generated and each solution comprises a subset of𝑚

𝑘
selected

DNASDs for 𝑘 = 1, . . . , 𝑅. The best solution must have both
high prediction accuracy and a high appearance-frequency
value. The estimation procedure is further described below.

Step 1. Calculate the appearance-frequency 𝐴𝑓
𝑗
according to

(3) for each of 𝑗 = 1, 2, . . . , 167 DNASDs in all 𝑅 runs. For
example, 𝑅 = 20 and the𝐷

𝑀𝑊
descriptor that is the 129th out

of 167DNASDs appears 19 times, so its appearance-frequency
𝐴𝑓
129
= 19.

Step 2. Sum all appearance frequencies to obtain 𝐴𝐹(= Σ𝑓j)
according to (4).

Step 3. Calculate the appearance-frequency𝐴𝑓𝑘 for each run,
𝑘 = 1, . . . , 𝑅 using (5).

Step 4. Calculate the appearance-frequency ratio R𝑘 =

𝐴𝑓
𝑘
/𝐴𝐹 and the mean value R𝑚. For instance, Figure 3

displays the meanR𝑚 = 47.0% for the HPL dataset.

Step 5. Select the candidate solutions 𝑆
𝑘
from the 𝑅 runs

whose appearance-frequency ratios R𝑘 are larger than the
mean valueR𝑚. For instance, the appearance-frequency ratio
R𝑘 for 𝑘 = 5, 9, 12, 15, 16, 17, 19, 20 exceeds the mean 47.0%,
as shown by Figure 3. Thus, these eight solutions are selected
as the candidate solutions.

Step 6. Thebest solution is the candidate solutions 𝑆
𝑘
with the

highest prediction accuracy. For the above example, the 5th
candidate solution 𝑆

5
having the highest accuracy 98.9% is

selected as the best solution of the DNASDmining algorithm,
where (𝐶, 𝛾) = (27, 2−5),

𝐴𝑓
𝑗
=

𝑅

∑

𝑘=1

𝑎𝑓
𝑗𝑘
, 𝑗 = 1, 2, . . . , 167, (3)

𝐴𝐹 =

167

∑

𝑗=1

𝐴𝑓
𝑗
, (4)
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Figure 3: Appearance-frequency ratios of 𝑅 DNASDmining solu-
tions, where 𝑘 = 1, 2, . . . , 𝑅. The mean frequency ratio is 47.0% for
HPL dataset.

𝐴𝑓
𝑘
=

167

∑

𝑗=1

𝑎𝑓
𝑗𝑘
, 𝑘 = 1, 2, . . . , 𝑅. (5)

2.5. PromHD Prediction System. The PromHD prediction
system is implemented by using a SVMclassifier with a subset
of m DNASDs, where the parameter settings of SVM and the
value of m are determined in the training phase. Figure 2
illustrates the prediction flowchart of PromHD. The input
to this prediction system is a query DNA sequence P. The
output is the predicted classpromoter or nonpromoter. The
prediction procedure is described as follows.

Step 1. The query DNA sequence is represented as a 167-
dimensional DNASD feature vector P = [𝑃

1
, 𝑃
2
, . . . , 𝑃

167
]
𝑇.

Step 2. The 𝑚 informative DNASDs are selected from P,
where 𝑚 = 99 and 74 for human and Drosophila DNA
sequences, respectively.

Step 3. The 𝑚 selected features are input to the trained SVM
to classify P as a promoter or non-promoter.

3. Results and Discussion

3.1. Effectiveness of Informative DNASDs. DNA sequences
in this work are represented using 167-dimensional vectors
of DNASDs. This work uses an efficient feature selection
algorithm not only to select a subset of size 𝑚 from the
167 DNASDs but also to design a SVM-based classifier
simultaneously. To determine the candidate solution 𝑆

𝑟
in

the DNASDmining algorithm, the prediction accuracy of
10-CV is used as a fitness function of the IGA. Figure 4
shows the training accuracies of PromHD from 𝑟 = 30 to
100 when applied to the HPL dataset and processed the 5th
experimental run. These accuracies exceed those of SVM-
RBS using SVM with a number 𝑟 of selected informative
DNASDs that are selected by the rank-based selection (RBS)
method [68]. The RBS method is described below.
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Figure 4: Training accuracies of the PromHD method and using
SVM with a number 𝑟 of selected informative features for the HPL
dataset.

Each of the 𝑛 = 167DNASDswas ranked according to the
accuracy of the SVMwith the estimated single feature, where
the best values of parameters (𝐶, 𝛾) were determined using
a stepwise approach, where 𝛾 ∈ {2−7, 2−6, . . . , 28}, and 𝐶 ∈

{2
−7
, 2
−6
, . . . , 2

8
}. The 100 top-rank features 𝛿

𝑖
, 𝑖 = 1, . . . , 100,

were then picked, and the 30 top-ranked features with 𝑟 = 30
were used as an initial feature set {𝛿

1
, . . . , 𝛿

30
}. Consequently,

the feature set with size 𝑟 + 1 is incrementally created by
adding the best feature 𝛿

𝑟+1
(having the highest accuracy of

SVM using 10-CV) from the remaining 100 − 𝑟 features into
the current feature set.

3.2. Comparison of Prediction Performance between PromHD
and Other SVM-Based Methods. Two additional SVM-based
classifiers, SVM-4mer and SVM-GSD, are applied for com-
parisons with SVM-RBS. The SVM-4mer and SVM-GSD
methods are implemented by using the 128 top-ranked
descriptors of 4-mer motifs and 36 global sequence descrip-
tors, respectively, as input features to the SVM classifier
without feature selection, respectively. The best values of
parameters 𝐶 and 𝛾 that are determined using a stepwise
approach are used in the two SVM-based methods, where
𝛾 ∈ {2

−7
, 2
−6
, . . . , 2

8
} and 𝐶 ∈ {2−7, 2−6, . . . , 28}.

Tables 5 and 6 compare the three SVM-based methods
in terms of performance when applied to the HP and
DP datasets, respectively. SVM-GSD obtains the highest
testing accuracy of 93.6% for the human species; SVM-
4mer performs the best inDrosophila species. However, these
testing accuracies are lower than those of PromHD, 98.9%
and 96.4%, where 𝑚 = 99 and 74 informative features are
identified for human and Drosophila species, respectively.
Additionally, the testing MCC values of PromHD are 0.927
and 0.949 for HPT and DPT, respectively, which exceed
those of SVM-GSD (0.872 and 0.802), SVM-4-mer (0.823
and 0.830), and SVM-RBS (0.840 and 0.660), respectively.
PromHD also yields high sensitivity (SN = 0.967 and 0.961)

and specificity (SP = 0.960 and 0.988) performances when
used with HPT and DPT datasets, respectively.

3.3. Rule-Based Knowledge. This work presents a knowledge
acquisition method based on if-then rule for insight of pro-
moter predictionmechanism.The knowledge can be revealed
from three aspects: (1) identified informative DNASDs, (2)
rules of distinguishing promoters from nonpromoters, and
(3) further analysis of distinguishable mechanism using
DNASDs. This rule-based knowledge acquisition method
uses decision tree method C5.0 [50] to develop if-then
rules of the 99- and 74-dimensional DNASD feature vec-
tors in human and Drosophila species. Each if-then rule
has two types, one for promoter (Ri-p) and the other for
nonpromoter (Ri-n) prediction, where 𝑖 is the rule number
index. The selected DNASDs are 𝐷

𝐷
(A, 1st) (the length of

nucleotide A at the first position of the sequence), 𝐷
𝐷
(C,

100%) (the length of nucleotide C at the last position of
the sequence), 𝐷C4(GCTC) (the frequency descriptor of 4-
mer GCTC), and 𝐷MW (the physicochemical property of
molecular weight) in human species. Table 7 shows the
interpretable rules as follows.

Rules in human species:

R1-p: if 𝐷
𝐷
(A, 1st) > 0.0177542, then promoter prediction

with CF = 0.928;
R2-n: if 𝐷

𝐷
(A, 1st) ≤ 0.0177542, then nonpromoter predic-

tion with CF = 0.999;
R3-n: if 𝐷MW > 0.284657, 𝐷

𝐷
(A, 1st) ≤ 0.0950018

and 𝐷
𝐷
(C, 100%) ≤ 0.929016, then nonpromoter

prediction with CF = 0.999;
R4-n: if 𝐷C4(GCTC) >0.0634629, 𝐷MW > 0.284657 and

𝐷
𝐷
(A, 1st) 0.0950018, then nonpromoter prediction

with CF = 0.974.

The CF is a certainty grade of this rule in the unit interval
[0, 1]. The R1-p rule has a certainty grade of 0.928 to predict
935 (= 50%×1871) human promoters by using the𝐷

𝐷
(A, 1st)

feature.With the same𝐷
𝐷
(A, 1st) feature, the second rule, R2-

n, with a certainty grade of 0.999 can identify 864(= (96.2%−
50%) × 1871) nonpromoters. When applying these two rules,
the rule-based classifier yields a prediction accuracy of 96.2%,
reconfirming that the global sequence descriptor, the length
of nucleotide A at the first position of the sequence, is an
efficient feature in distinguishing human promoters from
nonpromoters.When adding the third rule, PromHD further
enhances the prediction accuracy up to 99.5%. For example,
a query sequence P has normalized values of 0.0179, 0.9218,
0.2499, and 0.2823 for𝐷

𝐷
(A, 1st),𝐷

𝐷
(C, 100%),𝐷C4(GCTC),

and 𝐷MW, respectively. The classification procedure using
the third rule R1-p (0.0179 > 0.0177542) predicts this query
sequence to be a promoter.

Alternatively, the selected DNASDs are 𝐷MW (the
physicochemical property of molecular weight) and 𝐷AM
(the physicochemical property of absorption maxima) in
Drosophila species. The interpretable rules, as shown in
Table 7, are as follows.
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Table 5: Comparisons of training and test accuracies (ACC, %), sensitivity (SN), specificity (SP), and MCC for the HP dataset.

Method No. of used
features (𝐶, 𝛾)

10-CV HPL Independent test HPT
ACC SN SP MCC ACC SN SP MCC

SVM-GSD 36 (28, 2−2) 97.4 0.972 0.976 0.949 93.6 0.930 0.941 0.872
SVM-4mer 128 (23, 2−3) 94.2 0.949 0.936 0.885 91.0 0.953 0.867 0.823
SVM-RBS 82 (27, 2−5) 96.0 0.964 0.956 0.920 91.9 0.885 0.962 0.840
PromHD 99 (27, 2−5) 98.9 0.979 0.979 0.979 96.4 0.967 0.960 0.927

Table 6: Comparisons of training and test accuracies (ACC, %), sensitivity (SN), specificity (SP), and MCC for the DP dataset.

Method No. of used
features (𝐶, 𝛾)

10-CV DPL Independent test DPT
ACC SN SP MCC ACC SN SP MCC

SVM-GSD 36 (22, 2) 95.1 0.956 0.946 0.902 89.2 0.789 0.996 0.802
SVM-4mer 128 (23, 2−6) 96.4 0.960 0.967 0.952 94.6 0.912 0.981 0.830
SVM-RBS 31 (27, 1) 95.3 0.959 0.946 0.906 80.5 0.612 0.996 0.660
PromHD 74 (24, 1) 99.3 0.996 0.990 0.986 97.5 0.961 0.988 0.949

Rules in Drosophila species:

R1-p: if 𝐷MW ≤ 0.280113 and 𝐷AM > 0.27604, then
promoter prediction with CF = 0.997;

R2-n: if𝐷AM ≤ 0.27604, then nonpromoter prediction with
CF = 0.999;

R3-n: if 𝐷MW > 0.280113, then nonpromoter prediction
with CF = 0.997.

The rule-based classifier uses the first rule to predict 961
(= 50% × 1922) Drosophila promoters. The first two rules
make the rule-based classifier have a prediction accuracy of
84.7% in Drosophila species. For example, a query sequence
𝑃 has normalized values of 𝐷MW and 𝐷AM, 0.4 and 0.3,
respectively. The classification procedure using the third rule
R3-n 𝐷MW(= 0.4) > 0.280113 predicts this query DNA
sequence to be a nonpromoter.

3.4. Top 20 Descriptors of 4-Mer Motifs. Table 4 lists that
the 𝐷C4(TGAA) and 𝐷C1(AAAG) descriptors have the max-
imum scores when applied to the HPL and DPL datasets,
respectively. A comparison between the two sets of the top
20 descriptors of 4-mer motifs reveals two common 4-mer
motifs. One is TGAA, which has scores of 1000 and 732; the
other is TGAT, at ranks of 2 and 12 when used with HPL and
DPL datasets, respectively.The descriptors of the well-known
TATAmotif are ranked at the 199th and 98thwhen applied for
the HPL and DPL datasets, respectively.

The former descriptor 𝐷
𝐶4
(TATA) ranking at the 199th

is excluded out of the reference feature set due to the
fact that only 128 top-ranked descriptors of 4-mer motifs
are allowed to be included. This agrees closely with the
findings of Gershenzon and Ioshikhes [11], who found that
the TATA motif exists only in a small proportion of all
human promoters. Additionally, only nine descriptors are
included in each of the two feature subsets of 𝑚 = 99

and 74 DNASD feature, which are marked with “+” Table 4.
This main reason is that the DNASDmining feature selection

algorithm considers a set of informative DNASDs at once,
rather than individual DNASDs.

3.5. Analysis of the IdentifiedDNASDs. Theorthogonal exper-
imental design with orthogonal array and factor analysis is an
efficientmethod for simultaneously examining the individual
effect of several factors on the evaluative function [47, 48].
In this study, the two levels of a factor represent its inclusion
and exclusion of the feature in the feature selection using
IGA [47, 48]. The factor analysis can quantify the effects
of individual factors on the evaluation function, rank the
most effective factors, and determine the best level for each
factor for optimization of the evaluation function. The most
effective factor has the largest main effect difference (MED)
amongst the levels of a single factor.

Figure 5 displays top 20 DNASDs when ranked in order
of decreasing MED value. The MED values of the first
two and four features exceed 30 when applied to the HPL
and DPL datasets, respectively. The two features with the
maximumMED values are 𝐷

𝐷
(A, 1st) and 𝐷

𝐷
(T, 1st), which

are two distributions of the global description, respectively
(Supplementary Table S3). Specifically, the 𝐷

𝐷
(A, 1st) has

the highest MED value of 93.1, meaning that the length of
nucleotide A at the first position of the sequences can be used
to distinguish promoters from nonpromoters in the human
species. This result is consistent with the first if-then rule, R1-
p (Table 7).

As for the four features with the MED values exceeding
30, they are the descriptors of the physicochemical properties
(𝐷AM, 𝐷MW, and 𝐷MAC) and 𝐷C4(AAGT), revealing that
the three physicochemical properties of absorption maxima,
molecular weight, and molar absorption coefficient can be
used to distinguish promoters from nonpromoters in the
Drosophila specie. The 𝐷C4(AAGT), a descriptor of the
AAGT motif, has the fourth highest MED value of 31.5;
however, it only has a score of 73 and a rank of 41, as
shown in Table 4, revealing that DNASDmining can consider
the internal correlation within relevant features rather than
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Table 7: The rule-based knowledge of promoter prediction in human and Drosophila species.

Species Rule-based knowledge CF Rules Accuracy
(Human)

R1-p: If𝐷
𝐷
(A, 1st) > 0.0177542 Then Promoter 0.928 1 50.0%

R2-n: If𝐷
𝐷
(A, 1st) ≤ 0.0177542 Then Non-promoter 0.999 1-2 96.2%

R3-n:
If𝐷MW > 0.284657 and

𝐷
𝐷
(A, 1st) ≤ 0.0950018 and

𝐷
𝐷
(C, 100%) ≤ 0.929016

Then Non-promoter 0.985 1–3 99.5%

R4-n:
If𝐷C4 (GCTC) > 0.0634629 and

𝐷MW > 0.284657 and
𝐷
𝐷
(A, 1st) ≤ 0.0950018

Then Non-promoter 0.974

(Drosophila)

R1-p: If𝐷MW ≤ 0.280113 and𝐷AM >

0.27604 Then Promoter 0.997 1 50.0%

R2-n: If𝐷AM ≤ 0.27604 Then Non-promoter 0.999 1-2 84.7%
R3-n: If𝐷MW > 0.280113 Then Non-promoter 0.997
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Figure 5: Top 20 DNASDs, which are ranked by MED values, for
human andDrosophila training datasets.TheMED values of the first
two and four features exceed 30 when performing HPL and DPL
datasets, respectively.

individual features using an efficient global optimization
[45]. The transition descriptor 𝐷

𝑇
(C, G) of the occurrence

frequency of CG or GC has the fifth highest MED value of
26.6.This analytical result agrees with those obtained in other
studies in [4, 19, 22, 23], which have found that GC content is
effective in identifying promoter regions.

Supplementary Table S3 ranks all of the 𝑚 = 99

informative DNASDs by MED value. They consist of three
descriptors of physicochemical properties, four EDP descrip-
tors, two composition descriptors, three transition descrip-
tors, 14 distribution descriptors, and 73 4-mer frequency
descriptors, denoted as 3(𝐷P), 4(𝐷E), 2(𝐷C1), 3(𝐷𝑇), 14(𝐷𝐷),
and 73(𝐷C4), respectively, (see Table 8), where the abbrevia-
tions 𝐷P,𝐷C1,𝐷C4,𝐷E,𝐷𝐷, and𝐷𝑇 represent the descriptors
of the physicochemical property of nucleotides, the 1-mer
motif, the 4-mer motif, EDP, distribution, and transition,
respectively. On the other hand, the subset of 𝑚 = 74

DNASDs comprises 3(𝐷P), 2(𝐷E), 2(𝐷C1), 3(𝐷𝑇), 15(𝐷𝐷),

and 49(𝐷C4), shown inTable 7. Supplementary Table S4 ranks
all of the 74 informative DNASDs by MED value.

3.6. Common DNASDs in Human and Drosophila Species.
The percentages of common DNASDs in the two identified
feature subsets are 32% (= 32/99) and 43% (= 32/74). The
32 common DNASDs, as shown in Table 8, comprise three
descriptors of physicochemical properties, one EDP descrip-
tor, two composition descriptors, one transition descriptor, 11
distribution descriptors, and 14 descriptors of 4-mer motifs,
denoted as 3(𝐷P), 1(𝐷E), 2(𝐷C1), 1(𝐷𝑇), 11(𝐷𝐷), and 14(𝐷C4),
respectively

All of the three descriptors of physicochemical properties,
𝐷AM, 𝐷MW, and 𝐷MAC, are ranked the first, second, and
third for DPL and ranked the 5th, 6th, and 10th for HPL,
respectively, consistent with the interpretation of if-then rules
in Table 7. When the three descriptors of physicochemical
properties are excluded, PromHD with the remaining 96(=
99 − 3) and 71(= 74 − 3) DNASD features yields test
accuracies of 94.4% and 95.5% in human and Drosophila test
datasets, respectively. The prediction accuracies fall by 2.0%
(= 96.4% − 94.4% and = 97.5% − 95.5%), reconfirming the
three physicochemical properties are obviously effective in
distinguishing promoters from nonpromoters in human and
Drosophila species.

The one EDP descriptor 𝐷EG is ranked the 13th and 32th
for DPL and HPL, respectively, as shown in Supplementary
Tables S3 and S4. The two compositions that are related
to nucleotide A and G, denoted as 𝐷C1(A) and 𝐷C1(G),
clearly contribute to promoter prediction, consistent with the
findings of Wang et al. and Zhao et al. [22, 23]. The one tran-
sition descriptor 𝐷

𝑇
(G, T) that characterizes the frequency

of occurrence of two nucleotides GT or TG is ranked the
84th and 23th for human andDrosophila species, respectively.
Among the 11 common distribution descriptors, 𝐷

𝐷
(A, 1st),

𝐷
𝐷
(T, 1st), and 𝐷

𝐷
(G, 1st) are ranked the first, second, and

third for the human species but the 46th, 20th, and 27th
for Drosophila species, respectively. Two of the 14 common
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Table 8: Distribution of the extracted DNASDs.

HPL DPL Common
PCP 3 3(𝐷P) 3 3(𝐷P) 3 3(𝐷P)
GSDs 23 4(𝐷E), 2(𝐷C1), 3(𝐷𝑇), 14(𝐷𝐷) 22 2(𝐷E), 2(𝐷C1), 3(𝐷𝑇), 15(𝐷𝐷) 15 1(𝐷E), 2(𝐷C1), 1(𝐷𝑇), 11(𝐷𝐷)
Frequency descriptors
of 4-mer motifs 73 73(𝐷C4) 49 49(𝐷C4) 14 14(𝐷C4)

Total 99 74 32
The abbreviations𝐷P,𝐷C1,𝐷C4,𝐷E,𝐷𝐷, and𝐷𝑇 represent the descriptors of physicochemical property (PCP) and the global sequence descriptors (GSDs) of
1-mer motif, 4-mer motif, EDP, distribution, and transition, respectively.

descriptors of 4-mer motifs, 𝐷C4(GAGC) and 𝐷C4(GAAG),
not only have high scores of 592 and 699, respectively, but
are also identified by PromHD to be informative DNASDs
as can be seen by comparing Tables 4, S3, and S4. Although
the ranks of these common 32DNASDs largely differ between
human and Drosophila species, they form the six clusters of
𝐷P, 𝐷E, 𝐷C1, 𝐷𝑇, 𝐷𝐷, and 𝐷C4. The scenarios reveal that the
six clusters are all useful for distinguishing promoters from
nonpromoters in human and Drosophila species.

4. Conclusions

Promoter prediction is an important problem in elucidating
the regulation of gene expression.Therefore, the development
of a well-characterized promoter system is vital for syn-
thetic biology applications. This proposed PromHD method
presents a reference feature set of 167 DNASDs, utilizes a
feature mining algorithm to select a feature subset of infor-
mative DNASDs, and acquires rule-based knowledge based
on the selected feature subset.Themining algorithm using an
optimization approach to feature selection identifies themost
informative and discriminating DNASDs among human and
Drosophila species. The top-ranked rules reveal that the
global sequence descriptor, the length of nucleotide A at the
first position of the sequence, and two physicochemical prop-
erties, absorptionmaxima andmolecular weight, are efficient
in distinguishing promoters from nonpromoters in human
and Drosophila species, respectively. Additionally, this work
analyzes the contributions of a feature set of DNA sequence
descriptors to the promoter prediction using theMEDvalues.
The three physicochemical properties of absorption maxima,
molecular weight, andmolar absorption coefficient have high
MED values, meaning the three properties are clearly useful
in distinguishing promoters from nonpromoters in human
andDrosophila species. Futurework onPromHDwill develop
a well-characterized promoter system for synthetic biology
applications.Moreover, we believe that this proposedmethod
will also be effective in designing prediction methods for
other DNA sequence-based applications. The promoter pre-
diction system by using PromHD has been implemented at
http://iclab.life.nctu.edu.tw/promhd. All used datasets were
given in the website.
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