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Abstract
Studying connectivities among functional brain regions and the functional dynamics on brain
networks has drawn increasing interest. A fundamental issue that affects functional connectivity
and dynamics studies is how to determine the best possible functional brain regions or ROIs
(regions of interest) for a group of individuals, since the connectivity measurements are heavily
dependent on ROI locations. Essentially, identification of accurate, reliable and consistent
corresponding ROIs is challenging due to the unclear boundaries between brain regions,
variability across individuals, and nonlinearity of the ROIs. In response to these challenges, this
paper presents a novel methodology to computationally optimize ROIs locations derived from
task-based fMRI data for individuals so that the optimized ROIs are more consistent, reproducible
and predictable across brains. Our computational strategy is to formulate the individual ROI
location optimization as a group variance minimization problem, in which group-wise
consistencies in functional/structural connectivity patterns and anatomic profiles are defined as
optimization constraints. Our experimental results from multimodal fMRI and DTI data show that
the optimized ROIs have significantly improved consistency in structural and functional profiles
across individuals. These improved functional ROIs with better consistency could contribute to
further study of functional interaction and dynamics in the human brain.
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1. Introduction
The human brain’s function is segregated into distinct regions and integrated via structural
and functional connectivities (Sporns et al., 2005; Friston 2009; Biswal 2010; Van Dijk et

*To whom correspondence should be addressed: Tianming Liu, Assistant Professor, Department of Computer Science & Bioimaging
Research Center, The University of Georgia, Boyd GSRC 420, Athens, GA 30602, Phone 706-542-3478, tliu@uga.edu Web: http://
www.cs.uga.edu/~tliu.
Kaiming Li: School of Automation, Northwestern Polytechnical University, Xi’an, China; and Department of Computer Science and
Bioimaging Research Center, The University of Georgia, Athens, GA.
Lei Guo: School of Automation, Northwestern Polytechnical University, Xi’an, China
Dajiang Zhu: Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA.
Xintao Hu: School of Automation, Northwestern Polytechnical University, Xi’an, China
Junwei Han: School of Automation, Northwestern Polytechnical University, Xi’an, China
Tianming Liu*Department of Computer Science and Bioimaging Research Center, The University of Georgia, Athens, GA.

Information Sharing Statement
Source codes of the proposed computational algorithms and methods are available at: http://www.cs.uga.edu/~tliu/neuroinformatics/
neuroinformatics_jointmodeling.htm.

NIH Public Access
Author Manuscript
Neuroinformatics. Author manuscript; available in PMC 2014 February 18.

Published in final edited form as:
Neuroinformatics. 2012 July ; 10(3): 225–242. doi:10.1007/s12021-012-9142-5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://www.cs.uga.edu/~tliu
http://www.cs.uga.edu/~tliu
http://www.cs.uga.edu/~tliu/neuroinformatics/neuroinformatics_jointmodeling.htm
http://www.cs.uga.edu/~tliu/neuroinformatics/neuroinformatics_jointmodeling.htm


al., 2010; Hagmann et al., 2010). Studying connectivity among these regions and modeling
their functional interactions and dynamics has drawn increasing interest and effort from the
neuroimaging and neuroscience communities (Friston et al., 2003; Sporns et al., 2005;
Biswal 2010; Van Dijk et al., 2010; Lynall et al., 2010; Kennedy, 2010; Hagmann et al.,
2010). For example, a variety of computational models such as DCM (dynamic causal
modeling), GCM (Granger causality modeling) and MVA (multivariate autoregressive
modeling) have been proposed (Friston et al., 2003; Goebel et al., 2003; Harrison et al.,
2003) to describe the functional interactions among brain regions, or regions of interests
(ROIs). When modeling brain connectivity and functional interactions, network node ROIs
provide the structural substrates for extracting fMRI signals, and thus the identification of
reliable, reproducible, accurate and consistent functional ROIs is critically important for the
success of network construction and connectivity analysis (Bullmore et al., 2009; Poldrack
2011). This fundamental problem of how to determine the best possible ROIs (regions of
interests) across a group of individuals, widely-recognized as the problem of “blobology”
(Poldrack 2011), has been a longstanding challenge that affects numerous neuroimaging
analyses for years. From our perspective (Liu, 2011), the major challenges come from
uncertainties in ROI boundary definition (Cabeza et al., 2001), the remarkable structural and
functional variability across individuals (Van Essen et al., 2007), and high nonlinearities
within and around ROIs (Li et al., 2010a). For instance, a minor change to the ROI location
or size would significantly alter its structural and functional connectivity patterns (Li et al.,
2010a; Liu, 2011).

Currently, there are four broad categories of approaches for ROI identification (Liu, 2011),
and each has its own merits. The first approach is manual labeling of structural images by
experts (Biswal et al., 2010; Sobel et al., 1993). This approach makes full use of the experts’
abilities, but it is difficult to perform on large datasets and might be vulnerable to inter-
subject variability. The second is a data-driven clustering of ROIs from the brain image
itself. For instance, the ReHo (regional homogeneity) algorithm (Zang et al., 2004) has been
used to identify regional homogeneous regions as ROIs from resting state fMRI data.
Another example is the ICA-based methods for ROI identification (Calhoun et al., 2004).
This approach is purely data-driven and thus not biased, but in some situations they may
have difficulty in building correspondences among those data-driven clustering centers
across individuals. Other data-driven methods for ROI identification include cortical
parcellation approaches by using morphological (e.g., Mangin et al., 1995; Li et al., 2009),
connectional (e.g., Behrens et al., 2004; Jbabdi et al., 2009), or functional (e.g., Heuvel et
al., 2008; Nelson et al., 2010) features. The third is to predefine ROIs in a template brain
image, and warp them to the individual subject space using image registration algorithms
(e.g., Jenkinson et al., 2002; Shen and Davatzikos, 2002; Avants et al., 2008; Yap et al.,
2009; Yeo et al., 2010). Apparently, ROI correspondence is a built-in feature for this
category of image registration. The accuracy of ROIs, however, might be heavily dependent
on the warping techniques, the atlas used, and the anatomical variability across subjects
(Derrfuss and Mar, 2009). Lastly, ROIs can be defined from the activated regions observed
during a task-based fMRI paradigm (e.g., Faraco et al., 2011). This method is widely used in
the fMRI community to determine functionally-specialized brain regions (Friston, 2009).

Even identifying ROIs using task-based fMRI, regarded as the standard approach for ROI
identification (Friston, 2009), still needs substantial improvements. For instance, it was
reported that spatial smoothing, a common preprocessing technique in fMRI analysis to
enhance SNR, may introduce artificial localization shifts (up to 12.1 mm for Gaussian kernel
volumetric smoothing) (Jo et al., 2008) or generate overly smoothed activation maps that
may obscure important details (Ou et al. 2010). For example, as shown in Fig. 1a, the local
maximum of a working memory ROI (Faraco et al., 2011) was shifted by 4mm due to the
spatial smoothing process. As a consequence, the ROI’s structural connectivity profile (Fig.
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1b) was significantly altered. Furthermore, group-based activation maps may show different
patterns from an individual’s activation map; Fig. 1c depicts such an example. The top panel
is the group activation map from a working memory study (Faraco et al., 2011), while the
bottom panel is the activation map of one subject in the study. As we can see from the
highlighted boxes, the subject has less activated regions than the group analysis result. In the
working memory dataset (Faraco et al., 2011) used in this paper, there were about 16% of
subjects that had the above mentioned problem. In conclusion, standard analysis of task-
based fMRI paradigm data is inadequate to accurately localize ROIs for individuals.

In this paper, we premise that computational optimization of functional ROIs based on
existing fMRI/DTI data can contribute to identification of accurate, reliable and consistent
functionally-specialized brain regions. With these optimized functional ROIs, the reliability
and robustness of brain connectivity analysis and computational modeling of functional
interactions among brain networks could be potentially improved significantly (Bullmore et
al., 2009). To this end, this paper proposes a novel computational methodology to optimize
the locations of an individual’s ROIs initialized from task-based fMRI with the objective of
jointly maximizing the group-wise consistency of functional and structural connectivity
patterns and anatomic profiles within a group of subjects. We use the ROIs identified in a
block-based working memory paradigm (Faraco et al., 2011) as a test bed application to
develop and evaluate our methodology. The optimization of ROI locations is formulated as
an energy minimization problem and is solved via the well-established simulated annealing
approach (Granville et al., 1994). Our experimental results show that the proposed
optimization framework achieved our ROI optimization objective of improving group-wise
consistency of the ROIs’ structural and functional connectivity profiles across different
brains. Also, our experiments demonstrate that the optimization procedure only optimizes
those individual ROIs that are not consistent with the rest of the group, but does not
systematically move the fMRI-derived ROIs to different functional regions. This result
reveals an important observation: the same corresponding functional ROI identified by fMRI
data across different brains has quite consistent structural fiber connection patterns derived
from DTI data within the group after optimization, suggesting the close relationship between
structural fiber connection pattern and brain function. Our work might stimulate further
research into the possibility of learning predictive models of functional ROIs based on
consistent DTI-derived fiber shape patterns.

The major contributions of this paper are summarized as follows. First, we proposed a novel
computational pipeline that jointly models group-wise anatomic, structural connectivity and
functional connectivity profiles as constraints for the purpose of ROI optimization. We
designed five experiments to evaluate and validate this computational pipeline and
demonstrated that our ROI optimization objective is effectively achieved. Second, our
experimental results demonstrate the close relationship between structural fiber connection
patterns and brain function, which are defined by DTI tractography and fMRI-derived
functionally-specialized regions respectively. This result provides direct support to the
“connectional fingerprint” concept proposed in Passingham et al. 2002, which states that
each brain’s cytoarchitectonic area has a unique set of extrinsic inputs and outputs and this is
crucial in determining the functions that each brain area performs. Third, our ROI
optimization framework achieved more consistent functional ROIs across different brains,
providing more reliable and accurate structural substrates for brain connectivity analysis and
computational modeling of functional interactions in the future. In addition, these consistent
functional ROIs offer novel insights into the regularity of brain structure and function, and
might stimulate future investigation of structured representation of common brain
architecture.
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The arrangement for the rest of the paper is as follows. In section 2, we detail the data
acquisition and preprocessing of the multimodal data including fMRI and DTI data; then we
formulate the energy function for ROI optimization, introduce the anatomical constraint
energy, structural connectivity constraint energy and functional connectivity constraint
energy respectively, and provide the energy minimization solution. Section 3 presents five
carefully designed experiments, the results, and their interpretations. Discussions and
conclusion are provided in Section 4.

2. Materials and Methods
2.1 Data acquisition and preprocessing

Twenty-five healthy university students were recruited to participate in this study. Each
participant performed an fMRI modified version of a complex working memory span task,
the operation span (OSPAN) task (3 block types: OSPAN, Arithmetic, and Baseline) while
fMRI data was acquired (Faraco et al., 2011). DTI scans were also acquired for each
participant. FMRI and DTI scans were acquired on a 3T GE Signa scanner at The University
of Georgia Bioimaging Research Center. Acquisition parameters were as follows: fMRI:
64×64 matrix, 4mm slice thickness, 220mm FOV, 30 slices, TR=1.5s, TE=25ms, ASSET=2;
DTI: 128×128 matrix, 2mm slice thickness, 256mm FOV, 60 slices, TR=15100ms, TE=
variable, ASSET=2, 3 B0 images, 30 optimized gradient directions, b-value=1000).

To generate the initial functional ROIs, we analyzed fMRI data using FSL’s FEAT (Smith et
al., 2004; Woolrich et al., 2009), and adopted group activation map from the OSPAN
(OSPAN > Baseline) contrast to obtain activated functional ROIs. In total, we identified 16
consistent ROIs across the twenty five subjects based on the activated peak voxels. These
ROIs included bilateral insula, superior frontal gyrus, precentral gyrus, paracingulate gyrus,
inferior parietal lobule, and precuneus, and left medial frontal gyrus, right dorsolateral
prefrontal cortex, left occipital pole, and right lateral occipital gyrus. Then, for each
participant, these ROIs were identified based on the activated peak regions from its OSPAN
activation map under the guidance of group-wise activation maps. If certain functional ROI
was not detected as activated by FEAT for a subject (see Fig. 1c), this ROI was initialized
by registering the group ROI to the individual space via FSL FLIRT (Jenkinson et al., 2002).

Fig. 2 shows an example of the locations of 16 working memory ROIs for an individual;
these ROIs are mapped onto the corresponding WM (white matter)/GM (gray matter)
cortical surface reconstructed from DTI data via the approaches in Li et al., (2010b). The
fiber tracts and WM/GM cortical surface were obtained from DTI data as follows. DTI data
was pre-processed by brain extracting, motion correcting, and eddy current correction. Then
deterministic tractography was performed using MEDINRIA (Fillard and Gerig, 2003;
Fillard et al. 2007) with FA (fractional anisotropy) threshold of 0.2, smoothness of 20 and
minimum fiber length of 20. When necessary, fibers were extended along their tangent
directions to reach into the gray matter via the approaches in Li et al. 2010b. Brain tissue
segmentation was also conducted on DTI data by the method in Liu et al., 2007 and the
cortical surface was reconstructed from the tissue maps using the marching cubes algorithm
(Lorensen and Cline, 1987). The cortical surface was then parcellated into anatomical
regions using the HAMMER tool (Shen and Davatzikos 2002).

In this paper, the DTI image space, instead of T1-weighted structural MRI image, was used
as the standard space from which to generate the GM (gray matter) segmentation and from
which to report the functional ROI locations on the cortical surface. Since the fMRI and DTI
sequences are both EPI (echo planar imaging) sequences, the geometric distortions tend to
be similar and the misalignment between DTI and fMRI images is much less than that
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between T1 and fMRI images, as demonstrated in Fig. 3. Co-registration between DTI and
fMRI data was performed using the FSL FLIRT (Jenkinson et al. 2002).

FMRI BOLD signals and the activated ROIs were then mapped onto the cortical surface. We
do so because the main generators of electrical brain activity captured by fMRI signal are
known to be the pyramidal neurons of layer IV (Grova et al., 2006). Therefore, the cortical
surface-based mapping of fMRI BOLD signals should be a faithful representation of
functional activity in the brain (Li et al., 2010b). Additionally, the complex and variable
geometry of the cerebral cortex is well represented by the cortical surface. This mapping
facilitates the geodesically grouping of vertices into brain regions and networks, which is
more biologically meaningful than that based on Euclidean distance. To conduct the
mapping, we adopted GM tissue segmentation maps and fiber tracts as constraints to ensure
that vertices of the cortical surface would faithfully represent the BOLD signal from the
correct GM voxels. As an illustration, Fig. 4 depicts the process of fMRI signal mapping
under the guidance of structural information inferred from DTI-derived fibers and cortical
surface. Specifically, first, we ensure that vertices on the cortical surface represent the fMRI
BOLD signals extracted from GM voxels. For a cortical surface vertex that has fibers
passing through its neighborhood, we extracted the fMRI BOLD signal of the GM voxel
where these fibers end (e.g., the GM voxel in red color in Fig. 4a). Since fiber tractography
has difficulty in tracking into GM voxels, there might be some fibers that do not end in the
GM. For these cases, we extend the fibers slightly along their orientations to the GM, as
illustrated in our recent work in Zhang et al., 2010. For a cortical surface vertex that has no
neighboring fibers, we used its normal direction on the surface to find the GM
correspondence, as illustrated by the green GM voxel in Fig. 4a. Second, the fMRI BOLD
signals are geodetically smoothed (Gaussian kernel; sigma: 4mm) around the cortical
surface to enhance the signal-to-noise ratio (SNR). This step uses a geodesic neighborhood
rather than a Euclidian one, which should make smoothing more appropriate.

2.2 Joint representation of anatomical, structural connectivity and functional connectivity
profiles

Despite high degree of variability in brain structure and function across subjects, the task-
based fMRI data (Faraco et al., 2011) already identified consistently activated functional
brain regions in the working memory network (e.g., Fig. 2). Also, there are several other
aspects of regularity on which we base the proposed approach of joint representation of
brain structure and function. First, across subjects, the functional ROIs have similar
anatomical locations, e.g., similar locations in the atlas space. Second, the corresponding
functional ROIs possess similar structural connectivity profiles across subjects. In other
words, fibers penetrating the same functional ROIs have at least similar target regions across
subjects. Last, individual functional networks identified by task-based paradigms, like the
working memory network we adapted as a test bed in this paper, have similar functional
connectivity pattern across subjects. Therefore, a joint representation of anatomical,
structural connectivity and functional connectivity profiles would have the benefit of
capturing rich, complementary attributes of the same functional ROI simultaneously, thus
facilitating the optimization of ROIs towards a more consistent and reliable location.

The neuroscience bases of the above premises include: 1) structural and functional brain
connectivity are closely related (Passingham et al., 2002; Honey et al., 2009), and cortical
folding and axongenesis processes are closely coupled (Van Essen 1997). Hence, it is
reasonable to assume that there is complementary information within anatomical,
connectional and functional profiles of each ROI and to put these three types of
complementary information in a joint representation framework; 2) Extensive studies have
already demonstrated the existence of a common structural and functional architecture of the
human brain (Fox and Raichle, 2007; Van Dijk et al., 2010), and it makes sense to assume
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that the working memory network has similar structural and functional connectivity patterns
across individuals; 3) Our experiments using resting state fMRI demonstrated that the
functional networks have strong structural connections (Li et al., 2010b), which gives further
precedence to jointly modeling functional profiles and structural profiles. As an example
shown in Fig. 5a, the diagonal elements have the highest intensities (0.59±0.09) amongst
each row. This means most of the functional networks have very strong structural
connections within themselves. In Fig. 5b, we show an example of one functional network
(motor network) and the DTI-derived fibers connecting this network. As we can see, the
functional motor network has strong structural connections. This observation suggests the
consistency between functional and structural connectivity of the cerebral cortex.

Based on the above premises, we propose to optimize the locations of individual functional
ROIs by jointly modeling the anatomic profiles, structural connectivity patterns, and
functional connectivity patterns as illustrated in Fig. 6. The goal is to minimize the group-
wise variance, or maximize group-wise consistency, of these jointly modeled profiles so that
the optimized individual ROIs have consistent anatomical, structural and functional profile
across the group. Mathematically, we modeled the group-wise variance of a brain network
as energy E as follows. A volumetric ROI from the fMRI statistical activation analysis result
is mapped onto the cortical surface (Li et al., 2010b), and is represented by a center vertex of
the surface and its neighborhood. Suppose Rij is the ROI j on the cortical surface of subject
i; we find a corresponding surface ROI region Sij so that the energy E is minimized:

(1)

where Eaij, Ecij and Efij are the anatomical constraint, the structural connectivity constraint,
and the functional connectivity constraint for the jth ROI of subject i respectively; λ is a
weighting parameter between 0 and 1, and it is experimentally specified; if not specially
designated, n is the number of subjects, and m is the number of ROIs in this paper. The
details of these energy terms will be provided in the following sections. Notably, our
experiments show that anatomical profiles are more easily influenced by inter-individual
variability, in comparison with structural and functional connectivity patterns. Therefore, the
implemented anatomical constraint energy Eaij in Eq. (1) is multiplicative, which is designed
to provide constraint only to ROIs that are in unreasonable locations. The reasonable range
was statistically modeled by the locations of ROIs warped onto the atlas space in Section
2.2.1.

2.2.1 Anatomical constraint energy—Anatomical constraint energy is defined to
ensure that the optimized ROIs have similar anatomical locations within a computationally
modeled neighborhood in the atlas space. Without losing generalization, we model the
locations of jth ROIs for all subjects in the atlas space using a Gaussian model (mean: MXj,
and standard deviation: σXj ). Let Xij be the center coordinate of region Sij in the atlas space,
then Eaij is expressed as:

(2)

where
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(3)

||●||, is the length of a vector; i∈[1, n]; j∈[1, m]; and n is the number of subjects, m is the
number of functional ROIs. The model parameters MXj and σXj were estimated using the
initial center coordinates Xij1 in the atlas space:

(4)

(5)

In this paper, a random subject’s MRI image was selected and used as the atlas space, and
all others’ MRI images were registered to this atlas image via the HAMMER algorithm
(Shen and Davatzikos, 2002). Fig. 7 shows an example of all working memory ROIs for 15
randomly selected subjects in the atlas space. It is evident that these warped ROIs roughly
follow a Gaussian-like distribution in the atlas space, which partly supports our models in
Eq. (2)–(5). The visualization of the warped ROIs in Fig. 7 also supports our premise that
the locations of each ROI should be constrained to be within a neighborhood during the ROI
optimization.

Under the definition in Eq. (2), if Xij is within the range of 3σXj from the distribution model
center MXj, the anatomical constraint energy Eaij will be one; otherwise, there will be an
exponential increase of the energy which punishes the possible involvement of outliers. In
other words, this energy factor Eaij will ensure the optimized jth ROI of subject i will not
significantly deviate away from the expected group anatomical location MXj.

2.2.2 Structural connectivity constraint energy—Based on the neuroscience
foundation that similar functional regions should possess similar structural fingerprints
(Passingham et al., 2002), we premise that the DTI-derived fibers emanating from the same
functional ROIs defined by task-based fMRI should have similar connectivity patterns.
Thus, one of our primary ROI optimization objectives is to maximize the consistency of
group-wise fiber connectivity patterns for the same functional ROI across different brains.
To achieve this objective, a structural connectivity constraint energy, represented by Ecij, is
defined to ensure that the overall distance between structural connectivity profiles across a
group of subjects is minimized after ROI optimization. Specifically, the energy is defined as:

(6)

where Cij is the structural connectivity pattern vector for ROI j of subject i, MCj is the group
mean for ROI j, and Covc−1 is the inverse of the covariance matrix for the connectivity
pattern vector. Intuitively, the energy function in Eq. (6) measures the overall variance of the
structural connectivity patterns among all possible ROI pairs within the 16 working memory
network. Therefore, minimization of this energy function will achieve the maximal
consistency of structural connectivity profiles of the functional ROIs in consideration.

The connectivity pattern vector Cij is a fiber target region distribution histogram. To obtain
this histogram, first, we parcellated all the brain surfaces into nine regions including four
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cortical lobes for each hemisphere and subcortical region (as shown in Fig. 8(a)) using the
HAMMER algorithm (Shen and Davatzikos, 2002). A finer parcellation is available but was
not used due to the relatively lower parcellation accuracy at the gyral/sulcal scale, which
might render the histogram too sensitive to the parcellation result. Then, we extracted fibers
penetrating each region Sij, and calculated the distribution of the fibers’ target brain regions
that are indexed by the above brain parcellation. Fig. 8 illustrates the definition of structural
connectivity pattern. In particular, Fig. 8c shows the structural connectivity pattern vectors
of the blue and green ROIs in Fig. 8b, demonstrating that the structural connectivity pattern
vector can reasonably represent the structural connection profile.

2.2.3 Functional connectivity constraint energy—The characterizing attribute of
functional networks is that the brain regions within the network have coherent temporal
activities (Fox and Raichle, 2007). Thus, another primary ROI optimization objective in this
paper is to maximize the consistency of group-wise functional connectivity patterns for the
same functional ROI across different brains. Specifically, a functional connectivity
constraint energy, represented by Efij, is defined to ensure that the overall distance between
functional connectivity profiles across a group of subjects is minimized after ROI
optimization. The functional connectivity constraint energy Efij is defined as follows.

(7)

where Pijk is the functional connectivity between the jth and kth ROI of subject i, MPjk and
σPjk are the group mean and standard deviation of the functional connectivity between ROI j
and k in the dataset respectively; k∈[1, m] and k ≠ j. The functional connectivity between
each pair of ROIs is measured by the Pearson correlation between two representative fMRI
BOLD signals extracted for a pair of ROIs. The representative fMRI signal was obtained by
selecting the first component after applying principal component analysis (PCA) on all
signals within an ROI. Intuitively, after optimization, the functional connectivity Pijk tends
to be similar, which means that the brain network of the group has similar functional
connectivity pattern among the ROIs. This premise is in line with other literature reports of
the consistency of functional connectivity within brain networks (Ng et al., 2009; Sabuncu et
al., 2010).

2.3 Energy minimization solution
The minimization of the energy defined in Section 2.2 is known as a combinatorial
optimization problem. Traditional optimization methods may not fit this type of problem,
since it presents two difficulties. First, we do not know how the energy changes with the
varying locations of functional ROIs. Therefore, techniques like Newton’s method cannot be
used. Second, the structure of search space is not smooth, which may lead to multiple local
minima during optimization. To address this problem, we adopted the simulated annealing
(SA) algorithm (Granville et al., 1994) for the energy minimization. The idea of the SA
algorithm is based on random walk through the space for lower energies. In these random
walks, the probability of taking a step is determined by the Boltzmann distribution,

(8)
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Here, Ei and Ei+1 are the system energies at solution configuration i and i + 1 respectively; K
is the Boltzmann constant; and T is the system temperature. In other words, when a lower
energy is found, the current solution configuration will be taken since it reduces the gross
energy; when a higher energy is found, however, the configuration can also be accepted with
certain probability p (0 < p <1). This helps avoid local minima in the search space.

3 Results
We designed five experiments to demonstrate the effectiveness of the proposed framework
for functional ROI optimization. Our results show that the working memory ROIs have been
significantly improved in terms of the consistency of structural and functional profiles
across individuals, and the consistency of morphological and anatomic profiles.

3.1 Optimization using anatomical and structural connectivity profiles
In this section, we used only anatomical and structural connectivity profiles to optimize the
locations of ROIs. The goal was to verify whether the structural connectivity constraint
energy works as expected. As an example, Fig. 9 shows the fiber bundles emanating from
the right precuneus for eight subjects before (top panel) and after optimization (bottom
panel). The ROI is highlighted in a red sphere for each subject. As we can see from the
figure (please refer to the highlighted yellow arrows), after optimization, the third and sixth
subjects had significantly improved ROI locations relative to the rest of the group than
before optimization. That is, the fiber bundles of these two subjects after optimization are
more consistent with the rest of the group. It should be noted that among the eight subjects,
only two subjects have significantly ROI location movements (the third and sixth ones),
while other six subjects did not move much. This result suggests that our ROI optimization
does not systematically move the functional regions, but only optimize those individual
ROIs that are not consistent with the rest of the group. The results in Fig. 9 demonstrate the
validity of the energy function in Eq. (6) and our optimization strategy.

An important observation from Fig. 9 is that structural connection patterns for the same
functional ROI are reasonably consistent across individuals after optimization. As the
original ROIs were identified via consistent fMRI-derived activations, we hypothesize that
group-wise consistent fiber connection patterns (e.g., Fig. 9) are good predictors of brain
function. In the future, we could develop quantitative fiber shape descriptors to
computationally model those consistent fiber bundles for the purpose of constructing
predictive models of functional ROIs based on DTI data. Once the predictive models are
learned in the training stage with both fMRI and DTI data, they can be applied to predict
functional ROIs in the absence of fMRI data. These predictive models of functional ROIs
can be very useful in many clinical settings, in which fMRI data is difficult to acquire (Jack
et al., 2010), but DTI data is relatively easy to obtain.

To have a quantitative description of the optimization performance, we compared the
normalized structural connectivity constraint energy before and after optimization, as shown
in Fig. 10. The optimization procedure was conducted 15 times with random initial ROI
locations. And the gross structural connectivity constraint energy was normalized to range
[0, 1] for better visualization. As can be seen from Fig. 10, the structural connectivity
constraint energy was consistently reduced to a low level for all the 15 runs, meaning that
the structural profiles of the ROIs have similar connectivity patterns with other anatomical
brain regions after the optimization. Also, the energy reduction is reproducible across runs,
suggesting that our optimization approach is quite reliable. Therefore, the results in Figs. 9–
10 demonstrate that our optimization objective is effectively achieved and the optimization
procedure indeed improves the consistency of group-wise connection patterns for the
corresponding functional ROIs in a group of subjects.
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3.2 Optimization using anatomical and functional connectivity profiles
In this section, we optimized the locations of ROIs using functional connectivity and
anatomical profiles, aiming to validate the definition of functional connectivity constraint
energy. If this energy constraint works well, the functional connectivity variance within the
working memory network across subjects would decrease. Fig. 11 shows the quantitative
comparison of the standard deviation of functional connectivity before (left) and after (right)
optimization. As we can see, the variance is significantly reduced after optimization. This
demonstrated the effectiveness of the defined functional connectivity constraint energy and
the optimization procedure.

It should be noted that the standard deviations of functional connectivities within the
working memory network is quite low after the optimization, e.g., most of the matrix cells in
Fig. 11b are below 0.2. This result suggests that the functional connectivities after
optimization are reasonably consistent across subjects, partly demonstrating that these
optimized functional ROIs are likely to be within the same functional network. This
observation is consistent with the reports in the literature (Ng et al., 2009). For instance, it
was reported that consistent functional connectivity patterns can be inferred after a
procedure of removing outlier ROIs with a functional network via the group replicator
dynamics approach (Ng et al., 2009). Therefore, it is reasonable to use consistent functional
connectivity patterns across a group of subjects as ROI optimization objective, which is
further demonstrated by our quantitative results in Fig. 11.

Again, we compared the functional connectivity constraint energy before and after
optimization in order to quantitate the ROI optimization performance in Fig. 12. The
optimization procedure was conducted 15 times with random initial ROI locations. And the
gross functional connectivity constraint energy was normalized to range [0, 1] for better
visualization. As can be seen in Fig. 12, the gross functional connectivity constraint energy
consistently decreased and converged to the same level, which means after the optimization
the ROIs had similar functional connectivity patterns across the subjects, and the optimized
ROI locations remain stable across different runs. This result further demonstrates the
effectiveness of our ROI optimization approach.

3.3 Consistency between optimization of functional profiles and structural profiles
The relationship between brain structure and function has been extensively studied (Honey
et al., 2009), and it is widely believed that they are closely related. In this section, we
studied the relationship between functional profiles and structural profiles by looking at how
a decrease in the energy of one affected the other. Specifically, both of the optimization
processes in Section 3.1 and 3.2 were repeated 15 times with random initial ROI locations,
and the results are shown in Fig. 13. In general, the functional profile energies and structural
profile energies are closely related in such a way that most of the functional profile energies
decrease along with the structural profile optimization process (top panel in Fig. 13), and at
the same time, a majority of the structural profile energies also decrease as the functional
profile is optimized (bottom panel in Fig. 13). This positively correlated decreases of
functional profile energy and structural profile energy not only suggest the close relationship
between functional and structural profiles, but also demonstrates the consistency between
functional connectivity based optimization and structural connectivity based optimization. In
particular, this positive correlation independently cross-validates the two ROI optimization
approaches based on either functional connectivity or structural connectivity, as they were
performed separately in different runs (Fig. 13). Also, the result in Fig. 13 suggests that
optimizations based on both functional and structural connectivities will not be in conflict.
Instead, they will consistently contribute to moving the functional ROIs towards better
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locations, which lays down the foundation of the joint optimization of functional and
structural connectivities to be detailed in the following section.

3.4 Optimization using anatomical, structural and functional connectivity profiles
In this section, we used all of the constraints in Eq. (1) to optimize the individual locations
of the 16 working memory ROIs. Ten runs of the optimization were performed using
random initial ROI locations that met the anatomical constraint. The weighting parameter λ
equaled 0.5 for all these runs. Starting and ending temperatures for the simulated annealing
algorithm were 8 and 0.05, respectively; The Boltzmann constant K = 1. The optimization
results are shown in Fig. 14. We can see that most runs started to converge at step 24, and
the convergence energy was quite close across all runs. This result suggests that our
optimization object was effectively achieved and the simulated annealing algorithm
provided a valid solution to our optimization problem. Also, the result in Fig. 14 further
demonstrates that the three constraints of anatomic, structural and functional connectivity
profiles consistently contribute to moving the functional ROIs towards better locations, thus
achieving more consistent structural and functional profiles across the group of subjects.

By visual inspection, most of the ROIs moved to more reasonable and consistent locations
after the joint optimization. As an example, Fig. 15 depicts the location movements of the
right precuneus ROI in Fig. 9 for eight subjects. As we can see, the ROIs for these subjects
share a similar anatomical landmark, which appears to be the tip of the upper bank of the
parieto-occipital sulcus. If the initial ROI was not at this landmark, it would have moved to
the landmark after the optimization, as was the case for subjects 1, 4, and 7. The structural
fiber connection profiles of these ROIs are similar to those in Fig. 9. The results in Fig. 15
indicate the substantial improvement of ROI locations, in terms of converging to a common
anatomic landmark, achieved by the joint optimization procedure based on anatomical,
structural and functional connectivity constraints. Importantly, the results in Fig. 9 and Fig.
15 together demonstrated that our ROI optimization procedure not only improves the
consistency of structural fiber connection patterns, but also the consistency of
neuroanatomic locations.

3.5 Functional validation
In the previous four sections from Section 3.1 to 3.4, we have demonstrated that the
optimization pipeline could generate ROIs that have more consistent structural and
functional profiles across individuals by optimizing their anatomical locations. A natural
question arises: do the optimized ROIs still belong to the original functional network and is
there a functional localization improvement obtained by the ROI optimization? To answer
this question, we identified the individual functional networks by finding the activation
peaks in the individual brains, and considered them as the benchmarks with which to
compare the optimized ROIs. As illustrated in Fig. 16, the procedure of identifying
benchmark activation peaks is as follows. First, we performed a group-level activation
analysis based on all subjects and obtained the group activation map corresponding to the
OSPAN working memory stimulus. Then the group-level ROIs were identified by locating
the activated peak regions in the group activation map. Afterwards, these ROIs were
registered into individual brains to serve as a guide for locating the individualized ROIs. As
an example, Fig. 16a shows the group activation map and a group-level ROI (i.e., the blue
one highlighted by yellow arrows). In Fig. 16b, this ROI was registered to an individual
brain (i.e., the blue one highlighted by yellow arrows). The individualized ROI (i.e., the
voxel highlighted by the cross, and the center of the purple circles in Fig. 16c) was visually
identified by obtaining the activated peak region around the registered group-level ROI.
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We studied the movements of the optimized ROIs in the previous sections compared with
the benchmarks, and found that the Euclidean distance between the optimized ROIs and the
benchmark ROIs is averaged at 8.30±0.46mm, which is approximately a 2~3 voxels shift
from the activation peak in the fMRI image space. We also visualized the locations of these
optimized ROIs and the benchmarks in Fig. 17. As we can see in the figure, the distance
between the optimized ROIs (highlighted in green spheres) and the benchmark ROIs
(highlighted in red spheres) is relatively small for most of the ROIs. Considering the large
activated regions in Fig. 16, this result in Fig. 17 suggests that the optimized ROIs still
belong to the same functional regions. As a further quantitative study, we compared the z-
values of the optimized ROIs with those of the benchmark ROIs in Fig. 18. The average z-
value for an ROI’s 3*3*3 voxel neighborhood is measured in order to make a fair
comparison between the benchmark ROIs and the optimized ROIs. As we can see from the
comparison in Fig. 18, our optimized ROIs have comparable z-values with the benchmark
ROIs’ z-values, which further demonstrates that the optimization pipeline does not move the
ROIs out of the original functional regions. Interestingly, the averaged z-value of optimized
ROIs (3.38) are even slightly higher than the averaged one of the original benchmark ROIs
(3.05) by around 10.8%, suggesting that our ROI optimization can improve the functional
localizations of the fMRI-derived ROIs.

3.6 Reproducibility
In order to evaluate the reproducibility of the proposed computational framework, we
randomly separated the dataset in section 2.1 into two independent groups, each of which
consists of nine subjects. We applied the method on both groups using the same parameters
as those in Section 3.4, and compared the optimization performance in Figure 19. As we can
see from Figure 19(a), the two groups have similar optimization performances in terms of
increased group-wise consistency of anatomical, structural and functional profiles. The
overall energy E in Eq. (1) decreased about 9% for both groups. Specifically, group one has
more structural energy decrease than functional energy, while group two has less structural
energy decrease than functional energy, suggesting the initial configuration of group one has
better group-wise consistency in functional connectivity than group two, and the latter has
better initial group-wise consistency in structural connectivity than the former. We also
compared the distances between optimized ROIs and the benchmark in Figure 19 (b), and z-
values of optimized ROIs in Figure 19(c). The two groups have similar performances as in
Section 3.5 (group one distance: 8.65±0.56 mm, and group two distance: 8.45±0.51 mm). Z-
values of the optimized ROIs for two groups are also comparable to the benchmark in Figure
18. The average z-values for both groups are 2.82 and 3.25 respectively, suggesting that the
optimized ROIs still belong to original functional regions while obtaining increased group-
wise consistency in structural and functional profiles. These results indicate that the
proposed computational framework is reproducible on the independent groups.

4. Conclusion
This paper presented a novel computational approach to optimizing the locations of 16 ROIs
identified from working memory task-based fMRI data by maximizing the group-wise
consistency of structural and functional connectivity patterns and anatomical locations. The
structural and functional profiles of ROIs are jointly represented and modeled in the DTI
image space. The ROI optimization problem is formulated by an energy function, which is
then minimized by the simulated annealing optimization algorithm. Experimental results
demonstrated the optimized ROIs have more reasonable localizations after optimization, as
demonstrated by the improved consistency of their structural and functional connectivity
profiles and morphological and anatomic profiles across subjects. It has been demonstrated
that the ROI optimization procedure only moves those ROIs that are not consistent with the
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rest of the group to better locations, instead of systematically re-locating the functional
ROIs. These optimized ROIs with improved group-wise consistency and correspondence
will provide more accurate structural substrates for future modeling of functional
connectivity and interactions among brain networks via fMRI data across individuals and
populations.

An interesting observation that can be made from our results in Fig. 9 and other sections is
that specific white matter fiber connection patterns can be good predictor of functional brain
regions. That is, the white matter fiber connection patterns for the same functional region in
different brains are quite consistent, suggesting their predictive relationship. This is in
agreement with the “connectional fingerprint” concept presented in Passingham et al., 2002.
That is, each brain’s cytoarchitectonic area has a unique set of extrinsic structural
connectivity patterns, called the “connectional fingerprint” (Passingham et al., 2002), and
this is crucial in determining the functions of a brain region. The predictive relationship
between structural connectivity patterns and brain function indicates that it could be possible
to predict functional brain regions via consistent structural connectivity patterns in the
future. This capability could enable many applications in which no task-based fMRI data is
available. For instance, multimodal DTI and resting state fMRI data is widely available, but
it is more challenging to acquire task-based fMRI data for functional localization (i.e. it is
impractical for children or elder patients to perform extensive tasks during neuroimaging
scans). In these situations, prediction of functional ROIs based on widely available DTI data
can be an effective solution to accurately localizing functional brain regions.

In the computational framework, three criteria (i.e., group-wise consistency in anatomical,
structural and functional profiles) were adopted as ROI optimization constraints. These
criteria play different roles in the optimization process. Specifically, the anatomical
constraint optimized the ROI locations at the coarse level. It ensures that the ROIs do not
deviate away from reasonable cortical regions during optimization. At the fine level,
structural and functional connectivity profiles are the constraints that drive the ROIs to
accurate, reliable and consistent functional localizations for individuals. As mentioned in the
above paragraph and demonstrated in the result sections, structural connectivity patterns and
the brain’s functions are closely related. Therefore, there seems to exist some redundancy in
Eq. (1) by integrating both structural connectivity profile and functional connectivity profile
into the energy function. However, in real situations, these two items usually reveal
complementary information on characteristics of functional ROIs due to factors like
inadequate imaging resolution. Thus, it is highly recommended to keep both items in the
energy function when both DTI and fMRI data are available, and to change the weighting
parameter λ accordingly based on the data qualities.

The calculation of structural connectivity pattern was based on fibers tracts, which were
tracked via MedINRIA (version 1.90; Fillard et al., 2007). One particular issue about fiber
tracking in MedINRIA is that it effectively estimates the Rician noise in DWI images via a
MAP model, which regularizes the tensor at the same time (Fillard et al., 2007). This model
results in smooth tensor field, thus leading to more regular and longer fibers. The default
tracking parameters in MedINRIA (FA threshold: 0.3, maximum angle of deviation: 90°)
will generate reasonable and satisfactory fibers. It needs to note that using smaller angle of
deviation threshold in fiber tracking may segment a long fiber into pieces, which cannot
represent the structural connectivity profile of a functional region. Under such conditions,
the optimization framework may have difficulty in identifying individual ROIs, especially
when λ is large.

The energy minimization is a combinational optimization problem, and we adopted the well-
established simulated annealing (SA) algorithm (Granville et al., 1994) as the solution.
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Although it well fits our optimization scenario, an open problem, however, is to determine
the optimal parameters for this algorithm. Usually, it may take several tries before one finds
appropriate parameters. In this paper, the starting and ending temperatures for simulated
annealing were 8 and 0.05, and the temperature decrease factor was 1.2. Once the
parameters are determined, the computational cost of the optimization process is moderate.
On a laptop with Intel Core i5 2.6G CPU, the optimization with 9 subjects and 16 ROIs
takes about 30 minutes. Thus, it is feasible to apply the proposed computational framework
on other brain networks of similar sizes. However, it may take considerably longer time for
much larger brain networks, e.g., whole brain network with hundreds of ROIs.

In this paper, the ROIs were defined as spheres with fixed size. Our future work will extend
this ROI optimization framework to optimize other parameters such as ROI size and ROI
shape to achieve better accuracy. Currently, we used the working memory network defined
from OSPAN task-based fMRI data. In the future, we plan to evaluate our ROI optimization
methodology by using more functional ROIs identified in other brain systems such as the
visual, auditory, language, attention, and emotion networks. This extension will entail the
availability of multimodal DTI and fMRI datasets of these brain networks. Finally, we plan
to apply our methodology to clinical datasets in order to optimize functional ROI locations
and elucidate the possible alterations in structural and functional connectivities in brain
diseases such as Alzheimer’s disease.
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Figure 1.
(a): Local activation map maxima (marked by the blue cross) shift of one ROI due to spatial
volumetric smoothing. The top one was detected using unsmoothed data while the bottom
one used smoothed data (FWHM: 6.875mm). (b): The corresponding fiber tracts (in red) for
the ROIs in (a). The ROIs are represented using a sphere (radius: 5mm). (c): Activation map
differences between the group (top) and one subject (bottom). The highlighted boxes show
two missing activated ROIs for the subject, which were detected from the group analysis.
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Figure 2.
OSPAN working memory ROIs mapped onto a WM/GM surface. From left to right are left
lateral view, dorsal view and right lateral view respectively. The images are in radiological
convention.
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Figure 3.
Comparison of misalignments between different modalities. (a): fMRI data; (b): fMRI
overlapped by WM segmentation from T1 data; (c): fMRI overlapped by WM segmentation
from DTI data; the yellow circles and blue circles highlight the severe misalignment of T1
segmentation to fMRI versus that of DTI segmentation.
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Figure 4.
Illustration of BOLD signal mapping for two cortical vertices (yellow bubbles) that are not
in the GM (in purple). In Fig. 4(a), vertex 1 uses fiber guidance to find the GM voxel target
(in red); vertex 2 uses its normal direction to find the GM target (in green). Fig. 4(b) shows
the cortical surface overlaid by the fiber tracts.
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Figure 5.
(a) Structural connection matrix of resting state functional networks (34 networks in all)
from a subject; bottom: color bar, red means high self-structural connection. (b) The fibers
(in yellow) connecting the motor network (in red) of the subject.
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Figure 6.
ROI optimization scheme. The inputs are individual ROIs that are either identified by task-
based fMRI data or registration of group activated ROIs into individual space. The outputs
are optimized individual ROIs that have consistent anatomical, structural and functional
profiles across the group.
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Figure 7.
ROI distribution in the atlas space. Each ROI is represented by a sphere and different colors
refer to different functional ROIs. 15 out of 25 subjects were random selected and displayed
for clarity.
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Figure 8.
Structural connectivity pattern descriptor. (a): Brain surface parcellation using HAMMER
(Shen and Davatzikos 2002); (b): Joint visualization of the cortical surface, two ROIs (blue
and green spheres), and fibers penetrating the ROIs (in red and yellow, respectively); (c):
Corresponding target region distribution histogram of ROIs in (b). There are nine bins
corresponding to the nine brain regions. Each bin contains the number of fibers that
penetrate the ROI and are connected to the corresponding brain region. Fiber numbers are
normalized across subjects. Under the definition in Eq. (6), the same functional ROIs, e.g.,
the jth ROIs, will have similar connectivity pattern vector after optimization, which means
these ROIs connect to the same corresponding anatomical regions in different brains.
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Figure 9.
Comparison of structural profiles before and after optimization. Each column shows the
corresponding before-optimization (top) and after-optimization (bottom) fibers of one
subject. The ROI (right precuneus) is presented by the red sphere.
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Figure 10.
Comparison of the normalized structural connectivity constraint energy between before
(blue) and after (red) optimization. The optimization procedure was repeated 15 times, each
of which was initialized with random ROI locations. Optimization parameters for simulated
annealing algorithm: K = 1,Tstart = 8, and Tend = 0.05.
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Figure 11.
Quantitative comparison of the standard deviation of functional connectivity within the
working memory network before (a) and after (b) the optimization. Lower values mean
more consistent connectivity pattern cross subjects.
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Figure 12.
Comparison of the normalized functional connectivity constraint energy between before
(blue) and after (red) optimization. The optimization procedure was repeated 15 times, each
of which was initialized with random ROI locations. Optimization parameters for simulated
annealing algorithm: K = 1, Tstart = 8, and Tend = 0.05.
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Figure 13.
Relationship between ROI optimizations based on either functional connectivity or
structural connectivity. Top: Functional profile energy drops along with structural profile
optimization; Bottom: Structural profile energy drops along with functional profile
optimization. Each experiment was repeated 15 times with random initial ROI locations that
met the anatomical constraint.
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Figure 14.
Convergence performance of the simulated annealing. Each run has 28 temperature
conditions.
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Figure 15.
The movement of right precuneus before (in red sphere) and after (in green sphere)
optimization for eight subjects. The “C”-shaped red dash curve for each subject depicts a
similar anatomical landmark across these subjects. The yellow arrows in subject 1, 4, and 7
visualized the movement direction after optimization.
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Figure 16.
An illustration of the identification of benchmark ROIs. (a): Group activation map and one
example of group ROI (the blue one highlighted by yellow arrows). (b): Individual
activation map and the registered ROI in the subject space (the blue one highlighted by
yellow arrows) from the group template. (c): Identified benchmark ROI (the voxel
highlighted by the cross and the center of highlighted circles).
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Figure 17.
Visualization of optimized ROIs (green spheres) and benchmark ROIs (green spheres). The
average distance between optimized ROIs and the benchmarks is 8.30±0.46mm. The
average distances for each ROI across 15 runs are 8.31mm, 8.75mm, 7.83mm, 8.18mm,
8.50mm, 8.67mm, 7.77mm, 7.55mm, 8.08mm, 9.40mm, 8.45mm, 8.42mm, 8.00mm,
8.70mm, 8.39mm, and 7.89mm respectively.
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Figure 18.
Z-values of the 16 optimized ROIs (red ones) compared with those of the 16 benchmark
ROIs (blue ones). For the ROI in consideration, a 3*3*3 neighbourhood of the activated
peak voxel was used to generate the z-values, and only gray matter voxels were taken into
consideration to obtain the mean z-values. The average z-vlaue for the benchmark ROIs is
3.05, and the average z-value for the optimizized ROIs is 3.38.
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Figure 19.
Reproducibility study using two independent groups. (a) Decreases of energy E, Ec and Ef
after optimization. (b) Distance between optimized ROIs and the benchmarks. (c) Z-values
for the 16 optimized ROIs.
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