
On the mechanics of growing thin biological membranes

Manuel K. Rauscha and Ellen Kuhlb
aDepartment of Mechanical Engineering, Stanford University, 496 Lomita Mall, Stanford, CA
94305, USA
bDepartments of Mechanical Engineering, Bioengineering, and Cardiothoracic Surgery, Stanford
University, 496 Lomita Mall, Stanford, CA 94305, USA

Abstract
Despite their seemingly delicate appearance, thin biological membranes fulfill various crucial
roles in the human body and can sustain substantial mechanical loads. Unlike engineering
structures, biological membranes are able to grow and adapt to changes in their mechanical
environment. Finite element modeling of biological growth holds the potential to better understand
the interplay of membrane form and function and to reliably predict the effects of disease or
medical intervention. However, standard continuum elements typically fail to represent thin
biological membranes efficiently, accurately, and robustly. Moreover, continuum models are
typically cumbersome to generate from surface-based medical imaging data. Here we propose a
computational model for finite membrane growth using a classical midsurface representation
compatible with standard shell elements. By assuming elastic incompressibility and membrane-
only growth, the model a priori satisfies the zero-normal stress condition. To demonstrate its
modular nature, we implement the membrane growth model into the general-purpose non-linear
finite element package Abaqus/Standard using the concept of user subroutines. To probe
efficiently and robustness, we simulate selected benchmark examples of growing biological
membranes under different loading conditions. To demonstrate the clinical potential, we simulate
the functional adaptation of a heart valve leaflet in ischemic cardiomyopathy. We believe that our
novel approach will be widely applicable to simulate the adaptive chronic growth of thin
biological structures including skin membranes, mucous membranes, fetal membranes, tympanic
membranes, corneoscleral membranes, and heart valve membranes. Ultimately, our model can be
used to identify diseased states, predict disease evolution, and guide the design of interventional or
pharmaceutic therapies to arrest or revert disease progression.
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1. Motivation
Biological membranes are fascinating structures: They are extremely delicate, with
thicknesses rarely exceeding a few millimeters, while at the same time playing vital roles in
the human body [26]. Typical examples are the skin membrane that is the largest protective
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organ of our body [55], the mucous membrane that lines the air-organ interfaces of our
respiratory, digestive, and urogenital tracts [34], the fetal membrane that protects unborn life
for the entire period of pregnancy [29], the tympanic membrane that separates our inner and
outer ear and plays a crucial role in hearing [15], the corneoscleral membrane that has
remarkable refractive properties and is essential for healthy vision [43], and the heart valve
membranes that guarantee unidirectional blood flow within our circulatory system [45].
Biological membranes are functionally optimized thin structures, which continuously
interact with their mechanical environment and, in many cases, support large physiological
loads [50]. One of the most astonishing aspects of these structures is their ability to grow,
change their external shape, and remodel their internal microstructure, to adapt to
environmental changes [48]. The inability to adapt is often the underlying cause for fatal
disease. For example, in some heart disease patients, the heart valves adapt to a
pathologically enlarged opening area to maintain healthy valve function. In other patients
with the same degree of enlargement, the valves are not able to adapt, which results in valve
leakage, backflow, potentially heart failure, and ultimately death [9]. Understanding the
interplay between thin biological membranes and their environment, and predicting their
ability to functionally adapt, might be the key to solving many challenging clinical problems
today.

During the past decade, mathematical modeling of thin biological membranes has become a
powerful approach to explore tissue and organ function [49], to predict the response to
internal and external loading [14], and to optimize medical devices and surgical techniques
[37]. Because of its versatile nature, the finite element method is often the discretization tool
of choice. Finite elements have been widely adapted to explore the mechanics of vascular
membranes [13], skin membranes [7], mucous membranes [41], tympanic membranes [30],
corneoscleral membranes [18], heart valve membranes [3], and many other thin biological
structures [32]. Most of these approaches discretize the biological membrane using finite
shell elements. When compared to standard three-dimensional solid elements, shell elements
generally provide a number of computational advantages such as enhanced efficiency and
improved conditioning [25]. Conditioning may become critical when modeling layered
membranes such as skin, which consist of multiple layers with distinct microstructure,
stiffness, and function [33]. In the context of biomedical modeling, a major advantage of
shell elements is that they typically only require a midsurface representation, which is
typically readily available from surface imaging data [46].

Traditionally, most finite element tools have been developed to explore the acute, short-term
response to mechanical loading. Now, more and more finite element tools focus on
predicting the chronic long-term response to environmental changes. Examples involve the
simulation of arterial wall growth in hypertension [52], and in response to stenting [31], skin
growth during tissue expansion [55], airway wall growth in chronic obstructive pulmonary
disease [39], ocular growth in glaucoma [19], cardiac growth under physiological [16] and
pathological [17] conditions, both in systemic and pulmonary hypertension [47], muscle
growth during limb lengthening [56], to name but a few. Despite significant scientific
progress throughout the past two decades [2], very few finite element algorithms can
efficiently and robustly simulate growing biological structures of small thickness. This is of
particular importance when studying growing biological membranes, which grow in
membrane area but not in membrane thickness, such as skin [42, 57]. The goal of this
manuscript is therefore to establish a finite element model for growing biological
membranes using discrete Kirchhoff shell kinematics.

The remainder of this manuscript is organized as follows: In Section 2, we briefly
summarize the continuum modeling of membrane growth, including the kinematic equations
of growth, the constitutive equations of collagenous tissues with a pronounced
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microstructural direction, and the equations for stretch-driven membrane growth. In Section
3, we present the temporal discretization of the growth equation and its consistent
algorithmic linearization. In Section 4, we illustrate the computational implementation of
our growth model within a generalpurpose finite shell element. In Section 5, we demonstrate
the basic features of our model using typical benchmark problems for thin shells. To
illustrate the clinical relevance of membrane growth, we conclude with an example of mitral
leaflet adaption in response to a heart attack. In Section 6, we conclude by discussing the
current work, its relevance to the computational community, and its implications in
biomechanical and biomedical research.

2. Continuum Modeling of Membrane Growth
2.1. Kinematics of Membrane Growth

In the following section, we lay out the framework for the theory of finite growth. We begin
by introducing the deformation map φ, which maps a material point X of a body in the
reference configuration B0 onto its spatial counterpart x = φ(X, t) in the current
configuration Bt at every point in time t. The key kinematic assumption of the theory of
finite growth is the multiplicative decomposition of the deformation gradient,

(1)

into a reversible elastic part Fe and an irreversible growth part Fg, where ∇X denotes the
gradient of a field with respect to the material placement X at fixed time t. Similarly, we can
multiplicatively decompose the corresponding Jacobian,

(2)

into a reversible elastic volume change Je = det (Fe) and an irreversible grown volume
change Jg = det (Fg). Subsequently, we will also utilize the area change according to
Nanson’s formula,

(3)

where n0 denotes the surface normal in the reference configuration. Here we consider the
special case of area growth, for which growth takes place exclusively within the membrane
plane, while the membrane thickness does not grow [7]. This implies that the total the area
change ϑ obeys a multiplicative decomposition into a reversibly elastic area change ϑe and
an irreversibly grown area change ϑg = ∥Jg Fg−t · n0∥ = Jg. In the following, we will assume
an isotropic in-plane growth, for which the growth tensor Fg takes the following simple
format,

(4)

where the area growth ϑg takes the interpretation of a scalar-valued growth multiplier. Using
the Sherman-Morrison formula, we can directly invert the growth tensor,

(5)

and obtain an explicit representation of the elastic tensor Fe,
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(6)

where n = F · n0 denotes the surface normal in the current configuration. We further
introduce the right Cauchy-Green deformation tensor C and its elastic part Ce,

(7)

along with the left Cauchy-Green deformation tensor b and its elastic part be,

(8)

It proves convenient to also introduce the growth deformation tensor, Cg = Fg t · Fg, and its
inverse,

(9)

which follows directly from the covariant pullback of the elastic left Cauchy-Green
deformation tensor be. In the following, we consider a transversely isotropic material with a
characteristic microstructural direction m0 in Bg, tangential to the shell midsurface, i.e., m0 ·
n0 ≐ 0, [8]. We characterize the material through the following kinematic invariants

(10)

and their derivatives

(11)

Remark 1 (Kirchhoff Shell Kinematics)—In the following, we adopt Kirchhoff shell
kinematics for thin shells and rotate the local coordinate system such that two of its base
vectors lie within the shell midsurface, while the third base vector points in the direction of
the shell normal. According to the Kirchhoff shell theory, the deformation gradient takes the
following reduced format,

Consequently, the right Cauchy-Green deformation tensor C = Ft · F adapts the same
reduced format with

For our particular form of growth of equation (4), for which the growth tensor Fg

characterizes in-plane growth, a similar reduced format with
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holds for the elastic right Cauchy-Green deformation tensor Ce = Fg−t · C · Fg−1.

Remark 2 (Incompressibility)—In the sequel, we assume that the reversible, elastic
deformation is fully incompressible, i.e., that all volumetric changes are a consequence of
growth,

Together with the Kirchhoff shell kinematics of the previous Remark and the particular
format of the growth tensor in equation (4), this allows us to explicitly express the out-of-
plane component of the elastic elastic right Cauchy-Green deformation tensor as

where ϑe is the reversible elastic in-plane area change.

2.2. Constitutive Equations
We consider an incompressible, transversely isotropic, hyperelastic material [22],
characterized through a free energy function ψ, which we additively decompose into a
volumetric part U and an isochoric part ψ̄,

(12)

The volumetric part U enforces elastic incompressibility, Je = 1, in terms of the pressure p,
which we have to prescribe constitutively. The isochoric part ψ̄ is a function of the elastic
invariants  and . We can then introduce the elastic Piola-Kirchhoff stress in the
intermediate configuration,

(13)

where we have introduced the abbreviations pe = Je p and  and .
Through a contravariant pull back to the reference configuration, S = F g−1 · Se · Fg−t, we
obtain the total Piola-Kirchhoff stress,

(14)

Here, because of the particular format of the growth tensor Fg, and because of the
orthogonality of the characteristic directions for microstructure and growth, m0 · n0 = 0, the

pull back of the microstructural direction, , is nothing but a scaling
with the reciprocal square root of the area growth ϑg. Through a contravariant push forward
to the current configuration, τ = F · S · Ft, we obtain the Kirchhoff stress,

(15)

where m = Fe · m0 denotes the microstructural direction in the current configuration. We can
then introduce the fourth order tensor of elastic moduli ℂe in the intermediate configuration
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as the derivative of the elastic Piola-Kirchhoff stress Se with respect to the elastic right
Cauchy-Green tensor Ce,

(16)

where we have used the abbreviations , , and

 as well as the short hand notations ⊗̄ and ⊗̱ for the non-standard fourth
order products {•⊗̄◦}ijkl = {•}ik{◦}jl and {•⊗̱◦}ijkl = {•}il{◦}jk. Last, for the algorithmic
realization, it proves convenient to push the tensor of constitutive moduli ℂe to the current
configuration,

(17)

Remark 3 (Plane Stress Condition)—To explicitly ensure the plane stress condition,
S33 ≐ 0, we impose the zero-normal stress condition and require that the out-of-plane
component of the stress tensor vanishes identically [44]. Using equation (14), we can
explicitly restate the plane stress condition as

With the specific format of in-plane area growth Fg introduced equation (4), ,

such that , the condition of elastic incompressibility, Je = 1 such that pe = Je p =
p, and the fact that the microstructural direction m0 with m0 · n = 0 is always tangential to
the shell midsurface, m03 = 0, we can simplify the plane stress condition as follows,

We solve the above equation to obtain the following explicit expression

for the pressure p.

2.3. Stretch Driven Membrane Growth
We assume that growth is a strain-driven process, and define the temporal evolution of the
growth multiplier ϑ̇g as the product of the growth function kg and the growth criterion ϕg

[17].
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(18)

The growth function

(19)

governs the shape of the growth profile through three scalar parameters, the growth constant
τg, the upper bound for area growth ϑmax, and the non-linearity parameter γ. The growth
criterion

(20)

reflects the choice of elastic area-stretch ϑe as the driving force behind the growth response.
The Macaulay brackets activate area growth, 〈ϑe − ϑcrit〉 = ϑe − ϑcrit, when the elastic area
stretch exceeds a physiological threshold, ϑe ≥ ϑcrit. They deactivate growth, 〈ϑe − ϑcrit〉 =
0, for elastic area stretches within the physiological range, ϑe < ϑcrit. Figure 1 illustrates the
evolution of the total stretch ϑ, of the elastic stretch ϑe, and of the growth stretch ϑg in a
virtual creep test, left, and in a virtual relaxation test, right.

3. Computational Modeling of Membrane Growth
To embed the governing equations of membrane growth within a finite element setting, we
discretize the growth equation (18) in time using a simple finite difference scheme. This
allows us to express the temporal evolution of the area growth multiplier as

(21)

where Δt = t−tn denotes the time increment between the current time step t and the previous
time step tn. Now we introduce the residual Rϑ using equation (18) and the discretized
growth rate (21) as a function of the unknown growth multiplier ϑg,

(22)

To solve for the current growth multiplier ϑg, we employ a local Newton iteration and
linearize the residual Rϑ with respect to the growth multiplier ϑg,

(23)

where ∂kg/∂ϑg = −γkg/[ϑmax − ϑg] and ∂ϕg/∂ϑg = −ϑ/ϑg 2. For each local Newton iteration,
we update the growth multiplier ϑg according to

(24)

until we reach a user-defined convergence criterion. From a workflow perspective, this
implies that once the elastic area stretch ϑe exceeds the critical value ϑcrit, we enter the local
Newton iteration to iteratively solve for ϑg. Once we have determined the amount of area
growth, we can update the growth tensor Fg, calculate the elastic tensor Fe, determine the
elastic deformation tensors Ce and be, calculate the elastic Piola-Kirchhoff stress Se, the total
Piola-Kirchhoff stress S and Kirchhoff stress τ.
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To efficiently solve the equations of membrane growth within a finite element setting, we
linearize the second Piola-Kirchhoff stress S with respect to the right Cauchy-Green
deformation tensor C to obtain the total fourth order tangent moduli ℂ in the reference
configuration [17],

(25)

The first term represents the pull back of the elastic moduli ℂe of equation (16) from the
intermediate configuration to the reference configuration,

(26)

The second term results in following expression,

(27)

The third term is specific to the particular format of the growth tensor in equation (4),

(28)

The fourth term depends on the algorithmic solution of the evolution equation for the growth
multiplier ϑg,

(29)

and follows from expanding the algorithmic derivative ∂ϑg/∂C = [∂ϑ̇g/∂C + ∂ϑ̇g/∂ϑg · ∂ϑg/
∂C] Δt and solving for ∂ϑg/∂C = [1 − ∂ϑ̇g/∂ϑg Δt]−1 ∂ϑ̇g/∂C Δt = Δt/Kϑ ∂ϑ̇g/∂C as illustrated
in [20].

4. Finite Element Implementation of Membrane Growth
For the finite element implementation, we consider finite elements with discrete Kirchhoff
shell kinematics, for which the in-plane and out-of-plane components are fully decoupled. It
proves convenient, to first determine the in-plane components, here denoted through the
overhead symbol, and then calculate the out-of-plane components in a post-processing step.
Accordingly, we introduce the in-plane growth tensor,

(30)

and its inverse,

(31)

in terms of the in-plane unit tensor Î. This allows us to introduce the following simplified
expressions for the in-plane elastic tensor,
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(32)

the in-plane elastic right Cauchy-Green tensor,

(33)

and the in-plane elastic left Cauchy-Green tensor,

(34)

as the area-growth weighted elastic counterparts of the corresponding total components.
According to equation (13), we introduce the elastic in-plane Piola-Kirchhoff stress,

(35)

where m̂0 is the referential in-plane microstructural direction. Through a contravariant in-
plane pull back to the reference configuration, Ŝ = F̂g−1 · Ŝe · F̂g−t = Ŝe/ϑg, we obtain the in-
plane Piola-Kirchhoff stress as the area-growth weighted elastic in-plane Piola-Kirchhoff
stress,

(36)

Through a contravariant in-plane push forward to the current configuration, τ̂ = F̂ · Ŝ · F̂t,
we obtain the in-plane Kirchhoff stress,

(37)

where m̂ = F̂ · m̂0 is the current in-plane microstructural direction. The in-plane tangent
moduli in the reference configuration take the following simplified format,

(38)

where ℂ̂e are the in-plane components of the elastic moduli according to equation (16). Last,
for the algorithmic realization, we push the in-plane constitutive moduli to the current
configuration,

(39)

where ĉe are the in-plane components of the elastic moduli according to equation (17).
Rather than working directly with the Kirchhoff stress (37) and with the constitutive moduli
(39), the user-defined subroutine for shell elements in Abaqus/Standard [1] utilizes the
Cauchy or true stress, σ̂ = τ̂/J,

(40)

and the Green-Naghdi stress rate devided by the Jacobian, which requires the following
modification of the tangent moduli [44],
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(41)

where ĉ + τ̂ ⊗̄ î + î ⊗̄ τ̂ is the Jauman stress rate and Λ is a material-independent fourth
order tensor [53]. The local stress σabaqus of equation (40) and the local tangent moduli
cabaqus of equation (41) enter the righthand side vector and the iteration matrix of the global
Newton iteration. Upon its convergence, we store the current area growth ϑg locally at the
integration point level.

Remark 4 (Growing Thin Films)
The in-plane representation of membrane growth proves conceptually elegant, since it
reduces the pull-back and push-forward operations (33), (34), and (36) to scalar scaling
operations in terms of the area growth ϑg. Its underlying idea is based on reducing the
generic continuum ansatz for the growth tensor of equation (4),

which characterizes area growth normal to the direction n0 [7], to its membrane
representation of equation (30),

which characterizes isotropic in-plane growth. In the zero-thickness limit, this in-plane
representation converges to the recently proposed formulation for surface growth [41],
which provides a suitable framework to model biological systems coated by thin films of
thicknesses in the nano- and micrometer regime [21].

5. Examples of Growing Thin Biological Membranes
We illustrate the key features of our model by means of four examples of membrane growth.
The first example is a pinched thin-walled cylinder, which undergoes significant bending
combined with a moderate area stretch. We demonstrate the irreversible nature of growth by
showing that the grown cylinder will not return to its original configuration upon unloading.
The second example is a stretched bilayered thin film consisting of a growing bottom layer
and a purely elastic top layer. As the thin film is subjected to biaxial stretching, the bottom
layer grows in area while the top layer does not. We show that when the load is released, the
panel folds out of plane, in an attempt to release the elastic energy stored in the top layer.
The third example is a pressurized thin membrane, which is initially planar, but displaces
out of plane upon inflation. We show the effects of heterogeneous growth and elastic
material anisotropy by comparing an isotropic and two fiber-reinforced membranes. The
fourth and last example is the clinical problem of a stretched heart valve leaflet. We
demonstrate the chronic adaptation of the leaflet membrane under pathological loading
conditions. In particular, we expose the leaflet to annular dilation and papillary muscle
displacement to quantify leaflet growth in a disease known as mitral regurgitation. In all four
cases, we adapt a Holzapfel-type constitutive model [22], and specify the isochoric part of
the free energy of equation (12) as follows,
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This specific format introduces the coefficients

for the elastic and total Piola-Kirchhoff stresses Se and S of equations (13) and (14), and the
coefficients ψ̄11 = 0, ψ̄14 = 0, and

for the elastic tangent moduli ℂe and ce of equations (16) and (17). The parameter c0
governs the isotropic response and corresponds to one half of the shear modulus μ in the
limit of infinitesimal strains. The parameters c1 and c2 govern the anisotropic response along
the pronounced mircostructural direction m0.

5.1. Example 1: Pinched Thin-Walled Cylinder
In the first example, a classical benchmark problem for shell elements [6], we subject a thin-
walled hollow cylinder of l = 30 cm length, r = 9 cm outer radius, and t = 0.02 cm thickness
to a prescribed a vertical pinching along the cylinder’s long-axis. We take advantage of
structural symmetry, and model a quarter of the cylinder with 420 Abaqus S4 four-noded
shell elements. We model the cylinder as isotropic elastic with c0 = 1.0 MPa, c1 = 0.0 MPa,
and c2 = 0.0, and assume it grows with ϑcrit = 1.0, ϑmax = 4.0, τg = 0.1/t*, and γ = 2.0, where
t* is a characteristic time of growth. First, we load the top and bottom mantle line of the
cylinder by increasing their vertical displacements until both sides touch each other. Then,
we hold the load constant and allow the structure to growth until growth has converged.
Finally, we gradually remove the applied load. Figure 2 displays five characteristic stages of
this loading history. As the cylinder is deformed, it is primarily subject to bending, while its
lateral walls experience a moderate area stretch. This area stretch gradually causes the
membrane to grow. Membrane growth varies regionally with ϑg = 1.05 corresponding to 5%
area growth at the lateral wall and ϑg = 1.00 corresponding to no area growth at the top and
bottom walls. Once the load is removed, the cylinder relaxes but the growth remains. The
inhomogeneous growth pattern induces residual stresses, which prevent the cylinder from
returning to its original circular configuration.

5.2. Example 2: Stretched Bilayered Thin Film
In the second example, we study the biaxial stretching of a bilayered thin film, which
consists of a growing bottom layer and a purely elastic top layer. The 10 cm × 10 cm square
sheet is modeled using 484 Abaqus S4 four-noded shell elements. Both layers are in perfect
contact and have a thickness of t = 0.5 cm each. We first model the non-growing top layer as
isotropic elastic with c0 = 0.1 MPa, c1 = 0.0 MPa, and c2 = 0.0, and then as anisotropic
elastic with c0 = 0.1, c1 = 0.1, and c2 = 0.1. In both cases, we assume that the bottom layer is
isotropic elastic with c0 = 0.1 MPa, c1 = 0.0 MPa, and c2 = 0.0 and grows with ϑcrit = 1.0,
ϑmax = 4.0, τg = 0.1 /t*, and γ = 2.0, where t* is a characteristic time of growth. The thin
film is stretched biaxially with a displacement of d = 2 cm in all four directions
corresponding to a total area increase of 96%. Once the growth process has converged, the
load is removed and the sheet is allowed to relax. Figure 3 displays five characteristic stages
of this loading history. Initially, both layers store elastic energy. As time evolves, the bottom
layer releases its elastic energy as it grows, while the top layer does not. Once the load is
removed, the bilayered film deforms out of plane in an attempt to achieve an energetically
optimal configuration. Isotropy of the elastic layer results in a symmetric out-of-plane
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coiling, top row. Anisotropy of the elastic layer results in an anisotropic out-of-plane
coiling, bottom row.

5.3. Example 3: Pressurized Thin Membrane
In the third example, to mimic the physiological loading conditions of biological
membranes, we demonstrate growth of a thin membrane inflated by an external pressure
pext. The membrane has a length of l = 200 cm, a width of w = 50 cm, and a thickness of t =
1 cm. We discretize the membrane with 6,942 Abaqus S3 and S4 three- and four-nodes shell
elements. We first model the membrane as isotropic elastic with c0 = 0.1 MPa, c1 = 0.0
MPa, and c2 = 0.0, and then as anisotropic elastic with c0 = 0.1 MPa, c1 = 0.1 MPa, and c2 =
0.1, first with a vertical, then with a horizontal fiber reinforcement. In all three cases, we
assume membrane growth with ϑcrit = 1.0, ϑmax = 4.0, τg = 0.1, and γ = 2.0, where t* is a
characteristic time of growth. The outline of the structure is fixed in all three directions
while all inner nodes are free to move. As the pressure is gradually increased to pext = 0.1
MPa, the membrane inflates in the out-of-plane direction, stretches, and grows. Figure 4
displays five characteristic stages of this loading history. To illustrate the effect of elastic
anisotropy, we display the evolution of growth for an isotropic elastic membrane, top row,
an elastic membrane with fibers in the vertical direction, middle row, and an elastic
membrane with fibers in the horizontal direction, bottom row. All three membranes
experience a substantial growth upon inflation. While the isotropic membrane develops
spherical protrusions, the anisotropic examples display a distinct directionality in their
protrusion patterns.

5.4. Example 4: Chronically Stretched Mitral Leaflet
In the fourth example, we present a clinically relevant problem, the adaptation of a thin
biological membrane to altered mechanical forces following chronic disease [48]. Based on
in vivo imaging data, we discretize the anterior leaflet of a mitral valve with 1,920 Abaqus
S3 three-noded shell elements, and assign the leaflet a uniform thickness of 1mm. We
subject the leaflet to a transvalvular pressure, which was acquired in vivo under
physiological conditions [49]. In particular, we inflate the ventricular leaflet surface with the
experimentally measured end-diastolic pressure. At the supported leaflet edge, we prescribe
the experimentally measured leaflet positions as non-homogeneous Dirichlet boundary
conditions. At the free leaflet edge and at the center, we locally support the leaflet through
chordae tendineae. Choredae tendineae are cord-like tendons that connect regions of the
leaflet to the papillary muscles to limit leaflet deformation as the pressure increases [50].

We represent the chordae tendineae as incompressible, tension-only elastic wires with a
stiffness of c0 = 10 MPa [49]. We model the elastic response of the leaflet as isotropic,
incompressible Neo-Hookean with c0 = 1.0 MPa, c1 = 0.0 MPa, and c2 = 0.0 and assume
that the leaflet grows with ϑcrit = 1.1, ϑmax = 4.0, τg = 0.1, and γ = 2.0, where t* is a
characteristic time of growth. To simulate the effects of myocardial remodeling following
cardiac infarction, we impose two levels of annular dilation, λ=1.2 and λ=1.5 [51] combined
with a symmetric and asymmetric papillary muscle displacement of δ=5 mm [48]. These
values had previously been reported for controlled myocardial remodeling experiments in
sheep. Figure 5 displays the initial configuration, the acute elastic response, and the chronic
growth under these combined conditions. The top row illustrates the anterior mitral leaflet in
the reference configuration, at end diastole, with the mitral annulus superimposed in white.
The middle row shows the acute elastic area stretch ϑe in response to annular dilation of
λ=1.2 and λ=1.5, in combination with asymmetric displacement of the posterior-medial
papillary muscle, first and second column, and symmetric displacement of both papillary
muscles, third and fourth column, by δ=5 mm in apical, septal, and posterior-medial
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directions. The bottom row shows the chronic area growth ϑg, which regionally exceed
values of ϑg = 1.5, indicating more than 50% area growth upon leaflet adaptation.

6. Discussion
Thin biological membranes fulfill a number of crucial functions in the human body. Despite
their seemingly delicate appearance, they often sustain tremendous loads [26]. Like many
other soft and hard tissues, they interact with their chemical and physical environment to
optimize their form and function [4, 10]. Especially load bearing biological membranes such
as the skin, the pericardium, and the heart valve leaflets organize their microstructure and
morphology in order to sustain internal and external forces [12]. Computational modeling
holds tremendous potential to better understand the interplay of membrane form and
function and to reliably predict the effects of disease or medical treatment. Because of their
thin structure, biological membranes lend themselves ideally for spatial discretizations using
shell elements [11]. However, to the best of our knowledge, the current work is the first to
account for a biological growth model that is compatible with discrete shell kinematics.

In this manuscript, we employed a finite growth theory and introduced the total deformation
gradient as the product of an elastic tensor and a growth tensor [52]. The functional format
of the growth tensor mimics the modality of growth; whether the tissue grows isotropically
or anisotropically, inplane or out-of-plane. The appropriate choice is usually answered by
microstructural considerations [36]. For the current work, we selected a format that
represents isotropic in-plane area growth [7]. Furthermore, we postulated that growth is
mechanically driven as opposed to morphologically or chemically driven [41]. This implies
that mechanics and growth are bidirectionally coupled: Growth affects the mechanics
through the constitutive equations for the stress and the mechanics affect growth through the
evolution equation for growth [21]. Motivated by physiological observations [55], we
further assumed that growth is driven by the elastic area stretch, and that it is activated only
if the elastic area stretch exceeds a physiological threshold value.

From an implementation standpoint, our approach is strictly modular and limited to local
modifications at the constitutive level. To illustrate its universal character, we implemented
the growth model into a generic, commercially available non-linear finite element package,
Abaqus/Standard. Typically, for these types of platforms, at each global Newton iteration
step, at each integration point, the deformation gradient is made available to a user-definable
material subroutine, UMAT [1]. This material subroutine also provides access to the growth
multiplier ϑg, which is stored locally as an internal variable to keep track of the current
amount of growth [57]. In the material subroutine, we first split the deformation gradient
into its elastic and growth contributions. We then evaluate whether the elastic area stretch
exceeds a user-defined threshold, and update the growth multiplier if necessary. We then
successively calculate the new growth tensor, the elastic tensor, the elastic stress, and,
finally, the total stress and the tangent moduli. We pass the latter two back to Abaqus for the
next iteration, and store the updated growth multiplier once the global Newton iteration has
converged. This approach requires no additional modifications to the finite element code
other than changes in the material subroutine, which is modularly replaceable in most non-
linear finite element codes, commercial or non-commercial.

We have illustrated the features of our model by means of four examples with distinct
characteristic loading conditions. The first example is a common benchmark problem for
shell elements [6]. In a loading-holding-unloading scenario, this example nicely illustrates
the irreversible nature of growth. The second example shows the effect of differential
growth as it may occur in tissues subject to non-homoegeneous loading conditions across
their thickness. A typical clinical example is differential growth in the arterial wall [27],
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which is closely related to the notion of prestrain and residual stress [21]. In arteries, layer-
specific residual stresses have been studied in detail using different reference configurations
for the individual layers [23, 24]. These residual stresses arise naturally as a consequence of
growth [38] and can serve to identify critical conditions for growth-induced instabilities, for
example in airway wall remodeling [28]. The third example presents a loading scenario
characteristic of thin walled arterial aneurysms, where a surface pressure generates out-of-
plane deformation, which induces membrane stretching and growth [54]. The fourth
example illustrates the clinical problem of mitral leaflet growth in response to chronic
overstretch. For this example, we directly extracted the mitral leaflet geometry from surface
imaging data, and converted it into a triangular shell mesh [49]. We then reconstructed the
pathologic mechanical environment as seen in ischemic cardiomyopathy [9]. A strong
correlation between the experiments reported in the literature and the simulation presented
here provides support for the hypothesis that a local increase in area stretch initiates local
tissue adaption in the form of in-plane area growth: In controlled experiments in sheep, five
weeks after induced myocardial infarction, the average mitral annulus had dilated by 25%,
with local regions dilating by more than 50% [51]. In our simulation, we have represented
this effect through imposing an annular dilation of λ=1.2 and λ=1.5 to induce mitral leaflet
growth. In the sheep experiment, myocardial infarction caused a chronic papillary muscle
displacement in the order of δ=5 mm [48]. In our simulation, we have represented this effect
through displacing the posterior papillary muscle alone and both papillary muscles jointly to
induce asymmetric and symmetric mitral leaflet growth. In the sheep experiment, the
average mitral leaflet area had grown by 15.57%, with local regions growing up to 30% and
more [48]. In our simulation, leaflet growth varied locally from no area change at ϑg = 1.00
to 50% of area increase at ϑg = 1.50. These values agree excellently with the experiment
observations.

In conclusion, we have introduced a stretch-driven isotropic membrane growth model,
which is conceptually embedded within the theory of finite growth and is compatible with
standard shell kinematics. The model proved efficient and robust in four benchmark
problems of thin biological membranes exposed to different loading scenarios. We believe
that our membrane growth model will be widely applicable to simulate the chronic long-
term response of thin layered biological structures such as skin membranes, mucous
membranes, fetal membranes, tympanic membranes, corneoscleral membranes, and heart
valve membranes. These structures are optimized in form and function and gradual
deviations from their optimized design are critical indicators of disease. Computational
models like the one presented here have the potential to identify diseased states, predict
disease evolution, and, ideally, guide the design of interventional or pharmaceutic therapies
to arrest or revert disease progression.
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Figure 1.
Creep and relaxation tests in growing thin biological membranes. Evolution of total area
stretch ϑ, elastic area stretch ϑe, and growth area stretch ϑg under force control, left, and
displacement control, right. Horizontal dashed lines represent the elastic stretch limit ϑcrit

beyond which growth is activated, and the maximum area growth ϑmax to which growth is
limited. Forces, left, and displacements, right, are increased linearly up to the vertical dashed
lines and then held constant. Under force control, for a constant elastic stretch, the total
stretch increases gradually as the growth stretch increases, left. Under displacement control,
for a constant total stretch, the elastic stretch decreases gradually as growth stretch increases,
right.
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Figure 2.
Pinched thin-walled cylinder: Irreversible nature of growth. As the cylinder is deformed, it is
primarily subject to bending, while its lateral walls experience a moderate area stretch. This
area stretch gradually causes the membrane to grow. Membrane growth varies regionally
with ϑg = 1.05 corresponding to 5% area growth at the lateral wall and ϑg = 1.00
corresponding to no area growth at the top and bottom walls. Once the load is removed, the
cylinder relaxes but the growth remains. The inhomogeneous growth pattern induces
residual stresses, which prevent the cylinder from returning to its original circular
configuration.
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Figure 3.
Stretched bilayered thin film: Irreversible nature of growth under isotropic and anisotropic
conditions. As the film is biaxially stretched, the bottom layer, shown here, gradually grows
up to ϑg = 2.2 corresponding to more than 100% area growth, while the top layer, not
shown, deforms elastically at to ϑg = 1.0 and stores elastic energy. Once the load is
removed, the bilayered film deforms out of plane. Isotropy of the elastic layer results in a
symmetric out-of-plane coiling, top row. Anisotropy of the elastic layer results in an
anisotropic out-of-plane coiling, bottom row.

Rausch and Kuhl Page 20

J Mech Phys Solids. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4.
Pressurized thin membrane: Regional variation of growth under isotropic and anisotropic
conditions. As the membrane is inflated, it locally grows up to ϑg = 1.05 corresponding to
5% area growth, while other regions deform elastically at ϑg = 1.0 and do not grow. The
isotropic membrane shows significant area growth and develops spherical protrusions, top
row. Under the same pressure, the anisotropic membranes with vertical fibers, middle row,
and with horizontal fibers, bottom row, develop anisotropic protrusions.

Rausch and Kuhl Page 21

J Mech Phys Solids. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 5.
Chronically Stretched Mitral Leaflet: Mitral leaflet adaptation to annular dilation and
papillary muscle displacement as seen in ischemic cardiomyopathy. Anterior mitral leaflet in
the reference configuration at end diastole with the mitral annulus superimposed in white,
top row. Acute elastic area stretch ϑe, middle row, in response to annular dilation of λ=1.2
and λ=1.5, in combination with asymmetric displacement of the posterior-medial papillary
muscle, first and second column, and symmetric displacement of both papillary muscles,
third and fourth column, by δ=5mm. Chronic area growth ϑg, bottom row, regionally exceed
values of ϑg = 1.5 indicating more than 50% area growth upon leaflet adaptation.

Rausch and Kuhl Page 22

J Mech Phys Solids. Author manuscript; available in PMC 2015 February 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript


