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Abstract
The efficacy of targeted therapies in leukemias and solid tumors depends upon the accurate
detection and sustained targeting of initial and evolving driver mutations and/or aberrations in
cancer cells. Tumor clonal evolution of the diverse populations of cancer cells during cancer
progression contributes to the longitudinal variations of clonal, morphological, anatomical, and
molecular heterogeneity of tumors. Moreover, drug-resistant subclones present at initiation of
therapy or emerging as a result of targeted therapies represent major challenges for achieving
success of personalized therapies in providing meaningful improvement in cancer survival rates.
Here, I briefly portray tumor cell clonal evolution at the cellular and molecular levels, and present
the multiple types of genetic heterogeneity in tumors, with a focus on their impact on the
implementation of personalized or precision cancer medicine.
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Introduction
The lifetime risk of a clinical cancer diagnosis in humans is around one in three, with more
than 10 million cases diagnosed each year [1]. The oldest description of cancer dates back to
Ancient Egypt around 1600 BC when a number of breast cancer patients were described to
be surgically treated by cauterization. Since then, surgical resection and adjuvant therapy
can cure well-confined primary tumors, however, metastatic disease is largely incurable
because of its systemic nature and resistance to existing therapies. Currently, cancer is a
leading cause of death globally, and more than 90% of mortality from cancer is attributable
to metastasis, not the primary tumors from which these lesions arise. In the case of
leukemias, once leukemic cells are less confined to the bone marrow or the thymus, and are
found in the peripheral blood, the disease is already a systemic disease. Despite the
significant investment in cancer research and clinical trials over several decades around the
world and in the US, especially after enabling the National Cancer Act in 1971, only few
targeted therapies in leukemias and some solid tumors deemed therapeutically effective in
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phase III trials, and most current advanced cancer therapies have marginal improvement in
survival. A better understanding of tumor development and better classification of tumor
types at the cellular and genetic levels might provide improved strategies to suppress
progression of prenoplastic lesion towards the malignant and the metastatic state(s) and offer
more specific targets for drug development that would lead to more effective and
personalized cancer therapy.

It has been known that a large number of patients treated for cancer don’t respond to therapy
given to them. This indicates that every drug does not work similarly in every patient, given
that every patient has a unique biology and unique tumor architectures. These variations
should be reflected in their choice of therapy to improve efficacy and minimize side effects.
Several molecular mechanisms have been implicated in the development of neoplastic
lesions and therapy resistance, and novel targeted agents to treat these neoplasms after
diagnosis and/or relapse have been developed. However, variable efficacy has been
observed in late-stage clinical trials, most likely because of the lack of complete
understanding of the tumor development process and the biological heterogeneity of these
tumors. The key response to the long-term disappointments in the fight against cancer must
be revolutionary and lies in implementation of personalized or precision medicine where
cancer therapy is tailored to each patient’s biology and tumor signatures to achieve the best
medicinal outcome for that individual.

Precision cancer medicine traditionally involves determining the biological status of an
individual tumor before therapy by assessing genetic signatures, hormone metabolism, and
signaling activity, and then directing tailored treatment accordingly. The recent surge in
Next Generation Sequencing (NGS) of cancer genomes has supported the expansion of
molecular cancer profiling to support precision cancer medicine. However, translation of
these genetic and metabolic findings into clinically valuable genetic, epigenetic, proteomic,
biochemical, metabolic and imaging biomarkers for diagnosis, prognosis, and response to
therapy is an extended intricate process that remains critical for the wide implementation of
precision medicine in cancer therapy. The remaining central challenges for this approach
include selection of optimal drug targets, evaluation of genetic profiles and genetic
interactions, determining proper combinations of therapies, implementing clinical platforms
in phase I studies, and resolving the organizational, commercial, regulatory, and societal
challenges facing these precision cancer medicine approaches. To name a few,
organizational challenges include structure and administration of personalized clinical trials,
commercial concepts of personalized therapy such as pay for performance of multiple
tailored treatments replacing blockbuster drugs, regulatory evaluation of outcome of
personalized medicine, ethical considerations of genetic testing, and level of acceptance of
cancer patients to the new paradigm of personalized medicine studies. Ultimately, a better
understanding of the tumor and metastatic developmental process, and an optimum design of
targeted tailored therapies are instrumental in the success of precision cancer medicine. Two
concepts have recently gained a great deal of attention, and remain at the center stage of our
understanding of tumor development for designing better-tailored therapies; these are tumor
cell clonal evolution and tumor heterogeneity.

Tumor Cell Clonal Evolution
NGS for cancer samples is now widely accessible, increasingly affordable, and provides a
transformative influence on cancer care with a particular insight into the complexity of the
cancer genome [2]. With it, we came to realize the true meaning of the statement that cancer
is a disease of the genome. Neoplasms in general represent abnormal outgrowth of tumor
cells that gain selective advantages in cell growth, survival, and metabolism. Their sustained
growth kinetics lead to the formation of dominant neoplastic clones that compete with, and
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override normal and preneoplastic cells for space, energy, and nutrient requirements
utilizing their genetic and non-genetic drivers for selective advantage. Sequencing of
genomes from tumor cells within these clones revealed that tumors have partially or fully
transformed cells that harbor hundreds to thousands of genetic mutations, chromosomal
alterations, and epigenetic aberrations. The majority of these mutations represents neutral
(passenger) mutations, while the selection and propagation of dominant clones of tumor
cells that ultimately lead to malignant transformation are both successively and may be
independently sustained by multiple different combinations of driver mutations. The
orchestrated and sustained signaling actions of these driver mutations during the process of
clonal evolution provide, at each stage, a selection advantage, and allow dominant tumor
cell clones to finally control various interactions with microenvirmental clues at the eminent
stages of tumor development (Figure 1) [3,4]. Intrinsic changes in Tumor Initiating Cells
(TICs) result partially from ineffective DNA repair mechanisms [5] and deregulated stem
cell differentiation signals [6]. The repertoire of these intrinsic changes in preneoplastic
TICs confers neoplastic features of uncontrolled proliferation, unlimited self-renewal,
sustained angiogenesis, abnormal differentiation, and tissue invasion and metastasis making
hallmarks of cancer [3]. These mutations act as drivers for transformation of cells primed
with genetic and epigenetic changes to form preleukemic clones. The preleukemic clones
proceed in evolution with additional mutations and clonal selection causing occult leukemias
and solid tumors [7–9]. Sequencing studies revealed about 140 genes that when altered by
intragenic mutations can act as driver mutations during tumorigenesis [10]. A typical tumor
contains two to eight driver mutations, while the remaining are passenger mutations that do
not directly confer selective advantages [10], but might play critical roles in orchestrating
the genetic interactions between driver mutations and the microenvironment towards tumor
progression. The numbers of driver and passenger mutations that were revealed by
sequencing vary among tumor types and even from patient to patient. Genome sequencing
studies have also found that pediatric leukemias harbor on average 9.6 mutations per tumor,
while melanomas and lung cancer might harbor more than 200 mutations per tumor [10].
The latter might reflect effects of environmental factors such as smoking and UV radiation
that play significant roles in the etiology of lung cancer and melanomas, respectively.

It is believed that leukemia and neoplasms in general are abnormal outgrowth from a TIC(s)
whose progeny sequentially accumulate nested genetic and epigenetic mutations in cancer
genes, over an extended period of time during clonal evolution [11], that generate cellular
diversity [12] and clonal expansion [13–15]. TICs are the cellular drivers of clonal
expansion that can predict aggressive disease, and the TICs stem cell signature was shown to
influence leukemia clinical outcome [16]. TICs (sometimes referred to as Cancer Stem Cells
(CSCs), however, the CSCs term may only be used when self-renewal potential is a
recognized feature of the described cell type, i.e. some TICs may not be self-renewing stem
cells) were initially revealed through transplantation of subfractions of leukemic cells in
mice [17]. While the existence of CSCs is human tumors is still contentious, the evidence
for a central role of TICs in tumor development and resistance to therapy was recently
solidified by lineage tracing studies in mice [18–20]. Longitudinal tracking of single cell-
derived tumor cell clonal formation and monitoring of tumor development from TICs are
unfeasible at the current level of knowledge. Therefore, there has been no consensus on the
frequencies of TICs in the same tumor types and whether they are rare or frequent cells
within each tumor. Understandably, the frequencies of TICs are most likely dynamic
variables that reflect changes during the different phases of each tumor growth and also in
response to changes in the tumor microenvironment [21,22].

In addition to genetic drivers, non-genetic drivers of clonal tumor cell selection during
clonal evolution are also recognized, and among them are activation of alternative signaling,
cell quiescence and epigenetic drivers. The first of these non-genetic drivers of formation of
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dominant clones during clonal evolution include the activation of alternative or downstream
signaling pathway through signaling plasticity to achieve growth advantage or resistance to
targeted therapy, a phenomenon termed oncogenic bypass [23]. Additional mechanisms of
selection and drug resistance that are developed by TICs during clonal evolution of therapy
resistance clones include cell quiescence of tumor stem cells [24], whereas these cells
remain dormant awaiting further activating signals. Cell quiescence or cell dormancy is a
mechanism also employed by disseminated tumor cells that shed from primary tumors and
may lie dormant in distant tissues for long periods of time while retaining their potential for
clonal activation resulting in metastatic growth [25]. Epigenetic changes affecting DNA
methylation or chromatin proteins are likely to exert major influences on clonal evolution by
mediating abnormal DNA methylation, histone modifications and/or nucleosome
remodeling [26]. Cancer epigenome revealed simultaneous global losses and abnormal gains
in DNA methylation. The rates of these epigenetic changes are estimated to be significantly
higher than gene mutations [27]. However, unlike genetic changes in the DNA, DNA
methylation varies between different cell types, developmental stages, and with aging [28].
Moreover, criteria for distinguishing epigenetic changes that would represent driver changes
and provide selective advantages during clonal evolution are less established. Additionally,
targeting epigenetic drivers with current and future epigenetic cancer therapy depends on
adjusting treatment concepts towards dose optimization to avoid widespread toxicities [29].
The progression of clonal evolution of cancer, driven by genetic and non-genetic drivers
from frequent preneoplastic lesions, is a highly inefficient process, and is frequently aborted
before formation of occult malignancies [30]. When genetic sequences from multiple
subclones were compared using single cell sequencing, the branched clonal structures of
these cancers were revealed [31]. Furthermore, the evolutionary relationship and clonal
architecture of Acute Lymphoblastic Leukemia (ALL) examined in stem cell populations
demonstrated repeated independent copy number alteration within the same leukemic
tumors [32]. Evidence for clonal evolution from ancestral clones was revealed earlier in
non-Hodgkin’s lymphoma [33], and more recently in BCR-ABL1 ALL [34], ALL in twins
[32], T-cell ALL [35], and during leukemic relapse [36]. Therefore, mapping and targeting
tumor clones without driving additional clonal evolution and/or development of resistant
clones is an optimum goal for cancer therapy.

Tumor Heterogeneity
Tumor heterogeneity is recently recognized in leukemias and solid tumors [37], and is
attributed to multiple levels of heterogeneity at the cellular, molecular, genetic, and
therapeutic response levels. Variations between tumors arising at the same site accounts for
intertumoral heterogeneity, while variations in clonal growth, functional properties or
expression markers delineate intratumoral heterogeneity. Genetic heterogeneity between
different tumor clones and even within the same clones is a common feature in many tumor
types [38]. Moreover, cells within single genetic clones were deemed to display functional
variability in tumor propagation potential when single lentivirus-marked lineages were
examined for copy number alterations, sequencing, and lentiviral lineage tracking [39]. This
study revealed another layer of functional complexity beyond the genetic heterogeneity that
drives the intratumoral heterogeneity, and might define responses to therapy (Figure 1).

The recognition that driver mutations frequently encode protein kinases has led the recent
use of EGFR inhibitors [40], ALK inhibitors [41], BRAF inhibitors [42], and PARP
inhibitors [43] in cancers that are proven to harbor these mutations, or their signaling
pathway such as BRCA gene mutations in the case of PARP inhibitors. Combination
therapy utilizing these and other newer drugs that target multiple components of driver
signaling pathways should be tailored to fit the genetic interactions [44] within individual
genomic repertoire of each patient in personalized or precision medicine approach.
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Alternative approaches may target the TICs, the microenvironment, or to keep tumors
clinically manageable without selection of resistance clones utilizing modified dosing
regimen and intermittent therapy. Addressing the key challenges of defining the order of
events during tumor progression, the roles of driver and/or passenger mutations in clonal
selection and heterogeneity, and mechanisms of development of therapy resistant clones will
lead to significant advances in cancer care.
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Figure 1. Tumor intiating cells, tumor cell clonal evolution, and tumor heterogeneity
A simplified diagram displaying the different tumor evolution processes under review.
Within the tumor microenvironment, Tumor intiating cells (TICs) initiate premalignant
clones through the interactions with the niche cells. The premalignant clones may generate
frequent sublinical lesions such as carcinoma in situ (or preleukemic conditions) that are
either in most cases repaired at the cellular levels through cell death mechanisms, and at the
genetic levels through DNA repair of driver genetic mutations. The premalignant clones
may alternatively remain harboring quiescent TICs that can then undergo tumor cell
differentiation and/or plasticity within the competitive clonal evolution process to compete
for space, nutrients, and proximity to vascular supply. Acquisition of secondary genetic and
epigenetic changes in TICs or supportive tumor cells that favor enhanced self-renewal and
clonal growth allows premalignant lesions to become a clinically diagnosed malignancy.
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This tumor evolution process can take from weeks to several years or even decades
depending on the tumor type and the the host genetic and enviromental exposure factors.
TICs are the units of clonal evolution and their diversity seed the recently identified tumor
heterogeneity within each tumor (intratumor heterogeneity) (represented by a dominant
clone in red, and three additional subclones in green, blue and yellow in the model). I
proposed one dominat clone and three subclones for simplicity. Indeed, the frequency of
subclones can be unlimited and dependes on the sensetivity of the detection assays.
Neverthless, only detectable clones are thought to have clinical implications. Genetic and
phenotypic variations are also detected between individuals with the same tumor type
(Intertumor heterogeneity), and occur due to the diversity of clones generated during tumor
cell clonal evolution. Upon treatment (Rx), relapse might occur from the diagnostic
dominant clone that acquired more selective and drug resistance features, or from sublones
that have acquired or inherited resistance to therapy. Therefore, detecting clonal
heterogeneity and mechanisms of development of therapy resistant clones is critical for
tailoring combination therapies for personalized cancer medicine. Solid arrows indicate
defined pathways while dashed arrows indicate suggested mechanisms.
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