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Abstract
Gastric cancer (GC) imposes a significant health burden around the globe despite its declining
incidence. GC is often diagnosed in advanced stages and carries a poor prognosis. In depth
understanding of molecular underpinnings of GC has lagged behind many other cancers of its
magnitude, as a result our knowledge base for identifying germline susceptibility traits for risk and
somatic drivers of progression (to identify novel therapeutic targets) is limited. A few germline
(PLCE1) and somatic (ERBB2, ERBB3, PTEN, PI3K/AKT/mTOR, FGF, TP53, CDH1, and c-
MET) alterations are emerging and some are being pursued in the clinic. Novel somatic gene
targets, Arid1a, FAT4, and MLL/MLL3 are of interest. Clinically, variations in the therapeutic
approaches for localized GC are evident by geographic regions. These are driven by preferences
for the adjunctive strategies and the extent of surgery coupled with philosophical divides.
However, there is a greater uniformity in approaches to metastatic cancer, an incurable condition.
Having realized only modest successes, the momentum is building for carrying out more phase 3
comparative trials and some are using biomarker-based patient selection. Overall, rapid progress
in biotechnology is improving our molecular understanding and can help with new drug discovery.
The future prospects are excellent for defining biomarker-based subsets of patients and application
of specific therapeutics. However, many challenges remain to be tackled. Here we review
representative molecular and clinical dimensions of GC.

Review
The objective of this review is to adequately highlight advances in molecular and clinical
arenas that reflect the current understanding and it is intentionally not encyclopedic. Details
of preventive strategies, impact of new classifications, and nuances of surgery and radiation
therapeutics are beyond the scope of this review.

1. Epidemiology
Globally, the incidence of GC ranks 4th in men and 5th in women, but its death rate is next
to lung cancer.1 In 2008, there were ~989,600 (8% of all cancers) new GC cases worldwide
and 738,000 (10% of all cancer deaths) deaths. 70% of deaths occurred in the developing
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regions with China having ~40% of them.1 The endemic regions are in Asia, Eastern Europe
and South America. The incidence of GC has declined over time,2 due to improving living
standards.2–5 The exemplary early detection strategy has reduced the GC death rate in
Japan.6 Helicobacter pylori (HP) infection as a risk factor is of importance for preventive
strategies.7

2. Risk factors
Risk factors include old age, smoking, alcohol, above normal body weight, high salt and or
fat consumption, low vegetables and fruits consumption, low economic status, pernicious
anemia, other chronic gastric diseases, and HP infection.5,8 Of these risk factors, the biology
of HP is fascinating (Figure 1).

HP infection increases the risk 3–6 fold9 and is more associated with distal GC and
intestinal histologic phenotype.10 Chronic active gastritis is an integral part of HP-related
GC.10,11 HP’s attachment to gastric epithelial cells leads to inflammation and an increase in
the reactive oxygen or nitrogen species causing tissue damage.12,13 CagA, an oncoprotein,
producing HP species are carcinogenic.11,14,15 CagA is encoded by cag PAI and is
translocated by HP into the host epithelial cytosol.14,16 Phosphorylated CagA (by Src and c-
Abl kinases),17,18 forms a complex with the SRC homology 2-domain (SH2)-containing
tyrosine phosphatase SHP-2 in a phosphorylation-dependent manner, resulting in
cytoskeletal reorganization that can induce cell transformation to GC.19 CagA activates the
ERK/MAP kinase cascade, resulting in Elk-1 phosphorylation and increased c-fos
transcription.20 In addition, CagA promotes invasion through activation of hepatocyte
growth factor/scatter factor receptor c-MET.21 Its induction of Toll-like receptors (TLRs)
leads to proliferation.22 CagA induces E-cadherin-mediated impairment of cell adhesion
junctions leading to cytoplasmic and nuclear accumulations of β-catenin.23 CagA binds Crk
adaptor proteins (Crk-II, Crk-I, and Crk-L)24 and kinase PAR1,25 eliciting loss of cell
polarity. CagA stimulates cytokines IL-8, IL-1 and TNF-alpha26–28 through NF-kB in
epithelium.29 Pro-inflammatory IL-1 gene cluster polymorphisms (IL-1B, encoding IL-1B
and IL-IRN, and its receptor antagonist) increase the risk of non-cardia GC.30,31 CagA also
upregulates cyclo-oxygenase-2 (COX-2)26,32 that is overexpressed in GC. COX-2 induced
prostaglandins are oncogenic.33,34 HP alters the Fas-associated factor 1 (FAF1) that
promotes apoptosis but it is reduced in GC.35 HP also mediates increases in another
oncoprotein, aquaporin 3 (AQP3).36

HP alters DNA methylation of E-cadherin (CDH1), an oncogenic event.37,38 HP promotes
methylation of tumor suppressor TFF239 and RUNX340 and likely 6 other tumor suppressors
(FLNc, HAND1, THBD, p41ARC, HRASLs and LOX).41 It would appear that HP is clearly
carcinogenic but in susceptible individuals.

3. Single nucleotide polymorphisms (SNP) and Genome-wide association studies (GWAS)
Genetic susceptibility can be critical, for example, all endemic areas have high prevalence of
HP but have few GC cases.42 Rare germline mutations in CDH-1 lead to familial GC.43,44

SNPs can facilitate GC but one adverse allele may be a weak contributor, however, multiple
adverse alleles can increase the risk.45 Prior SNP investigation have focused on genes
involved in mucosal protection against HP (e.g., IL1B, IL1RN, and TNF-α), carcinogen
metabolism (e.g., CYP2E1 and GSTM1), deoxynucleotide synthesis, DNA repair (e.g.,
MTHFR and XRCC1), and tumor suppressors (e.g., TP53 and CDH1). However, these have
had limited yield and none can be used clinically.

GWAS can scan the whole genome for implicating SNPs. A Japanese group documented
that PSCA was associated with diffuse GC.46 They genotyped 188 cases and 752 controls
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for 85,576 SNPs and then replicated in 749 cases and 750 controls for 2,753 SNPs. The
intronic rs2976392 SNP in PSCA was identified as the risk allele and the SNP was in
diseuilibrium with rs2294008 located in exon 1. The second study included 1,077
esophageal cancer cases and 1,733 controls leading to 18 hits that were validated in 2,766
cases of cardia GC and PLCE1rs2274223 and C20orf54 rs1304295 SNPs were associated
with GC risk.47 The third study included 2,240 GC cases and 3,302 controls and identified
the PLCE1rs2274223 SNP as a risk allele for cardia GC.48 PLCE1 SNPs were associated
with GC risk,49,50 and prognosis of Chinese patients51 but not Caucasian patients.52 The
fourth GWAS in China included 1,006 cases and 2,273 controls and replicated in 3,288
cases and 3,069 controls; SNP rs13361707 located between PTGER4 and PRKAA1 and the
ZBTB20 rs9841504SNP were associated with risk.53 Table 1 sumerizes the current GWAS
results. Clearly, we have a long way to go.

GWASs have identified previously unknown genes, for example, the PLCE1 is not known to
be involved in GC, but its oncogenic role in skin and intestine is reported.47

4. Gastric cancer stem cells (GCSCs) and Aberrant signaling pathways (Figure 2)
Gastric carcinogenesis is complex and not fully characterized.54 Although, intestinal GC
(IGC) develops after systematic progression from the pre-neoplastic stages, diffuse GC
(DGC) is thought to arise de novo as the result of downregulation (mutation or promoter
methylation) of CDH1,55,56 thereby permitting tumorigenesis and progression. Nevertheless,
accumulated genetic alterations (mutations, amplifications, insertions, deletions, and or
recombinations) lead to GC.57,58 More alterations accumulate as GC progresses. Cancer is
hierarchically organized with ample plasticity. There is increasing evidence for the existence
of GCSC to initiate tumor by self-renewal and differentiation. The origin of human GCSCs
is still unclear, but may be the mesenchymal stem cells in bone marrow.59,60

CSCs can undergo epithelial mesenchymal transition (EMT), activate oncogenic pathways61

and embryogenesis signaling pathways62 essential for self renewal and maintenance. The
combination of EMT, CSC, and drug resistance forms the axis of evil.63 EMT leads to the
CSC-like phenotype.64 CSCs depend on the Wnt, Notch, and Hedgehog (Hh) pathways.65

Four pleiotropic transcriptional factors (Snail, Slug, Twist, and Zeb1/2) orchestrate the EMT
and related processes.66 c-MET and TGF-β signaling can be critical for EMT. c-MET
activation can induce the reprogramming transcription factors known to support embryonic
stem cells and induce differentiated cells to form the pluripotent stem (iPS) cells.67

TGFβ can be pro-oncogenic by inducing matrix deposition, immunosuppression, and
EMT.68–70 TGF-β signaling drives EMT and CSC self-renewal mediated by targeting
microRNAs,66 upregulating Snail family members, and repression of E-cadherin.63

Downstream of c-MET and TGF-β receptor, PI3K/Akt/mTOR signaling conveys pro-
survival messages for CSC expansion and maintenance.71 There has been interest in
targeting mTOR with metformin to inhibit CSCs.72 Ras and Hh help maintain CSCs.73,74

GCSCs express CD133, CD44, ALDH1 (aldehyde dehydrogenase 1) and ABCG2 (ATP-
binding cassette sub-family G member 2); CD44 and ALDH are associated with therapy
resistance and can be exploited therapeutically upon understanding the underlying
mechanisms.75

Members of the human epidermal receptor (HER) family have been of interest.76 Oncogenic
properties are conferred through the RAS/MEK/MAPK and PI3K/Akt/mTOR
pathways.77,78. Overexpression of HER2 is due to HER2 amplification and this is more
prevalent in IGC than DGC. 79,80
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HER2 interacts with EGFR, HER381, and IGF1R.82 These genes are amplified and/or
overexpressed83,84 or acquire activating mutations.85–87

Constitutive activation of c-MET triggers proliferation and anti-apoptotic signals.88

Amplification/overexpression of c-MET rather than mutated gene can activate receptor
tyrosine kinase.89,90 c-MET overexpression/amplification is more common in IGC91,92 but
its amplification has been reported in DGC cells.93. Amplified c-MET cross talk can activate
EGFR, HER2, and HER3 to establish a signaling network leading to constitutive PI3K/AKT
signaling.94–96 GCs with c-MET overexpression coexpress EGFR, HER-3, or both;97

clinically relevant for the dual inhibition strategies.93,96,97

PI3K/AKT/mTOR pathway is frequently altered as a results of amplification or
overexpression (PIK3CA, Akt1), activating mutations (PIK3CA)55,98 of components, or loss
of PTEN.99 Overexpression of phospho-mTOR can occur in DGC.55 HER3 and FGFR
amplification in DGC is another mechanism for PI3K/Akt activation.100,101

TGFβ is overexpressed in DGC102 and it stimulates collagen synthesis and subsequent
fibrosis. TGFβ can be anti-apoptotic through transactivation of EGFR.103 The bone
morphogenetic proteins (BMPs), members of TGF-β superfamily activate PI3K/Akt.104

There has been considerable interest in the inhibition of angiogenesis. In that regard, VEGF
and VEGFR overexpression is common in IGC through activation of NFκB by HP. 105,106

While HERs, c-MET, PI3K/AKT/mTOR, VEGFRs, VEGF have been targeted, TGFβ and
CDH1 are not targetable. There are also several novel targets worth mentioning. Chromatin
modifiers such as ARID1A, MLL3, MLL, and FAT4 (cell adhesion) are of increasing interest
and importance.107,108

While some efforts have been made to genotype IGC and DGC (and identify novel
subtypes)109–120, clinically relevant and robust molecular subtypes have yet to emerge. IGC
and DGC genotypes in one study121 resulted in homogeneity in response to therapy than did
the phenotypes.

5. MicroRNAs
miRNAs play a role in tumorigenesis, tumor progression, and metastasis. Here we update
(Figure 3) our recent review.122 Oncogenic miRNAs (oncoMIRs): OncoMIRs are
overexpressed and inhibit tumor suppressors leading to cell proliferation, invasion, and
reduced apoptosis. For example, overexpression of miR-296-5p in GC cells increased cell
proliferation and inhibition of apoptosis by repression of tumor suppressor CDX1.123

Overexpressed miR-301a directly targets tumor suppressor RUNX3.124 miR-17-5p/20a
targets p21 and p53-induced nuclear protein 1 (TP53INP1).125 miR-18a levels were
correlated with those of survivin, Bcl-xL, and c-Myc (downstream targets of STAT3 and
negatively regulated by PIAS3; thus, miR-18a acts as an oncoMIR by negatively regulating
PIAS3.126 microRNA-372 is oncogenic as it targets TNFAIP1 and modulates NFkB
signaling in GC cells.127 IRX1, a newly identified tumor suppressor gene, is inactivated by
miR-544.128 miR-10b is highly expressed in IGC is associated with the depth of invasion,
lymph node, and metastatic progression.129 Tumor suppressor miRNAs (TsMIRs): TsMIRs
are downregulated miRNAs, thus facilitating activity of target oncogenes. miR-195 and
miR-378 are downregulated in GC and GC cells and their target oncogenes are CDK6 and
VEGF.130 miR-133b’s oncogene target is FGFR1 often amplified in DGC.131 miR-29c‘s
oncogene target is Mcl-1 and activation of miR-29c by celecoxib represses Mcl-1 and
promotes apoptosis of GC cells.132 miR-34a is downregulated in GC cells and its oncogene
target is survivin.133 miR-145 suppresses v-ets erythroblastosis virus E26 oncogene
homolog 1 (Ets1) by binding to 3′-UTR and reducing the oncogenic processes.134 Let-7i is
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frequently downregulated in most tumors and is prognostic of lymphatic invasion, nodal
metastasis, and poor pathologic in GC.135 ZFX has a role the maintenance of CSCs and it is
the target of miR-144 in GC.136 miR-101 targets the 3′-UTR of COX-2 mRNA and its
downregulation in GC correlates with COX-2 overexpression and proliferation.137

microRNA-146a inhibits NF-kappaB by targeting CARD10 and COPS8 in GC.138

miRNAs as biomarkers: miRNAs are stable in serum, plasma, gastric juice, and other body
fluids.139 miR-21 and miR-106a were overexpressed in GC and gastric juice compared to
normal controls.140 Additionally, miR-421 in gastric juice of GC patients was higher than in
controls (P < 0.001) and it resulted in early diagnosis of GC compared by serum
carcinoembryonic antigen.141 Plasma miR-106b, miR-20a, and miR-221 levels were
elevated in GC patients than in healthy controls (P < 0.05).142 Plasma levels of
miRNA-199a-3p was associated with tumor invasion, malignant node, and metastases.143

Circulating miR-17-5p and miR-20a (miR-17-5p/20a) have been detected in GC patients and
both miRs correlated with clinical variables.144 The miR-200c expression level in blood in
GC patients were significantly higher than in normal controls (p = 0.018). Clearly, research
on several miRs needs to be fully developed and holds promise.

6. Mechanisms of resistance using HER2 as an example
The major reason for treatment failure in patients is the occurrence of primary and or
secondary resistance. We focus on secondary resistance and use her2 inhibition as an
example. The predominant mechanism is the compensatory signaling by other cell surface
receptors.145 HER2 overexpressing cells when inhibited reprogram other oncogenes,
including IGF-IR and c-MET, growth differentiation factor 15 (GDF15), and other members
of the ERBB family.146 The IGF-IR-mediated resistance involves the PI3K pathway, leading
to enhanced degradation of p27Kip1.82,147,148 While activated MET mediates resistance in
GC cells149,150 by restoring shared downstream signaling in the MAPK and AKT
pathways.149 Increased levels of EGFR and HER3 ligands can overcome HER2
inhibition.63,100,146 Constitutively activated p95HER2, truncated HER2 receptor, is the most
intriguing mechanism of resistance in response to the blockade of the extracellular domain
of HER2.151 Membrane mucins such as Muc4 interact with HER2 in HER2-overexpressing
breast cancer cells resulting in epitope masking that blocks trastuzumab binding.152 Other
proteins that confer resistance include focal adhesion kinase (FAK), and Src, as well as
alterations in cell cycle regulators.153 Constitutive activation of PI3K due to activating
PIK3CA mutations,57 reduced PTEN expression,154 or deregulated signaling can induce
resistance to HER2 inhibition.57,155,156 Finally, STAT3 activation can mediate resistance as
a result of production of IL-6.157 All this suggests that cancer cells have many redundant
mechanisms to overcome therapy resistance and we have considerable work ahead of us.
Including exploring drug conjugates and immune modulation.

7. Clinical Dimensions
7.1 Regional differences—The epidemiology and location of the primary GC varies
geographically158 due to variations in genetic susceptibilities, predominance of certain
histologic phenotypes (e.g., IGC is frequent in the endemic areas), and carcinogenic forces
including HP. 159 Cardiac GC is more common in the West and non-cardia GC is more
common in the endemic regions. Besides these differences, surgical approach is more
comprehensive in Asia where a D2 dissection is a routine160 than in the West where it is D0
or D1. Other regional differences are in the adjunctive strategy for localized GC (LGC).
Many of these factors may account for differences in survival of patients in different
regions.159
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7.2 Localized GC—Localized GC (LGC) can be cT1 or higher with or without regional
nodes. Once a patient is diagnosed with LGC, a multidisciplinary evaluation (by medical
oncologists, surgical oncologists, surgeons, gastroenterologists, pathologists, radiation
oncologists, geneticists [if appropriate], and nutritionists) is highly recommended prior to
initiating any therapy.161 Endoscopic therapy for a T1 lesion, when feasible, is
recommended. For those GCs not amenable to effective endoscopic therapy, surgery should
be considered. However, adjunctive therapies have contributed to the higher (~10%) cure
rates than those obtained by surgery.162–165

Adjunctive Strategies: In North America and Europe, results from the INT-0116165 and
MAGIC 166 trials have established specific strategies. The postoperative adjuvant
chemotherapy strategy has been established in Asia.167,168

Post-operative adjuvant chemoradiation: Although, the safety of INT-0116, a phase III
trial that compared observation after surgery with adjuvant chemoradiation after surgery, has
been a concern; chemoradiation improved the 5-year cure rate by ~10%.165 This advantage
prevailed with a longer follow-up.169 A follow-up trial coordinated by CALGB170 produced
negative results as it investigated the adjuvant chemotherapy strategy that has failed many
times in the West. Similarly, the ARTIST trial that used the INT-0116 strategy, but differed
in two aspects: (1) the control group was treated with chemotherapy and (2) all patients had
a D2 gastrectomy, failed to demonstrate benefit for chemoradiation.171 Thus the ARTIST
trial raises more questions than the answers.

Postoperative Chemotherapy: The benefits of adjuvant chemotherapy after D2
gastrectomy was first established in Japan using S-1 as the adjuvant.167 The Adjuvant
Chemotherapy Trial of TS-1 for Gastric Cancer (ACTS-GC)167 randomized 1,059 patients
to one year of S-1 or observation. The primary analysis demonstrated a 33% improvement in
overall survival (OS) for the S-1 group. The results prevailed after a longer follow-up.172

Second Asian study, the Capecitabine and Oxaliplatin Adjuvant Study in Stomach Cancer
(CLASSIC trial) randomized 1,035 patients post D2 gastrectomy to capecitabine plus
oxaliplatin for 6 months or observation,168 and documented benefit for chemotherapy for the
endpoint of disease-free survival (at 3 years; HR 0.56, 95% CI, 0.44–0.72; P < .0001). A
meta-analysis based on data from 3,710 patients showed 7% improvement in OS for FU-
based postoperative chemotherapy when compared to surgery164 but this evidence is soft.

Perioperative or Preoperative Chemotherapy: The MAGIC (Medical Research Council
Adjuvant Gastric Infusional Chemotherapy) trial (that randomized 504 patients) established
the evidence for perioperative chemotherapy for GC patients in the West.166 A second trial,
although with differing tumor type composition (and terminated early because of the lack of
interest), demonstrated benefit for preoperative chemotherapy.163 Several trials using a
variety of adjunctive strategies are currently ongoing (MAGIC-B: NCT00450203,
CRITICS: NCT00407186, TOPGEAR and PRODIGY: NCT01515748.173 (Table 3)

7.3 Advanced Gastric Cancer (AGC)
First line therapy: Level 1-evidence for an advantage in OS is available for only a few
therapeutic agents (docetaxel,174 cisplatin,175 and trastuzumab176). Most trials have been
disappointing with the exception of the trastuzumab trial investigating a biomarker-based
enriched population.176 However, the longer follow up has reduced the HR for OS to 0.8
(http://www.fda.gov/AboutFDA/CentersOffices/OfficeofMedicalProductsandTobacco/
CDER/ucm230418.htm;), suggesting that only a few patients benefit. Notable among trials
with disappointing results are two randomized studies investigating the value of EGFR
inhibition (REAL-3; NCT00824785 and EXPAND; NCT00678535; these references will be
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updated). Two other studies are worth mentioning: (1) The AVAGAST trial was conducted
in 774 patients, randomized to chemotherapy with or without bevacizumab and it did not
meet its primary endpoint of OS177 and (2) the First line Advanced Gastric Cancer Study
(FLAGS) conducted in >1,000 patients randomized to S-1 plus cisplatin versus 5-FU plus
cisplatin also failed to meet its primary endpoint of OS advantage.178

Second line therapy: A phase III AIO trial In 40 patients randomized patients to irinotecan
with best supportive care (BSC) or BSC. The OS was significantly longer for the irinotecan/
BSC arm but the has only 40 patients.179 The GRANITE-1 study (NCT00879333) that
randomized >600 patients to everolimus or placebo in second or third line setting also did
not achieve its primary endpoint of survival (will update reference). However, the REGARD
trial (NCT00917384) that compared BSC with or without ramucirumab in 345 patients has
demonstrated a borderline improvement in OS for ramucirumab.180 More impressively, the
Cougar-02 trial randomizing approximately 186 patients to BSC or docetaxel plus BSC
demonstrated a significant prolongation of OS in the docetaxel/BSC arm.181

Lapatinib, a dual inhibitor of HER2 and EGFR was investigated in a phase III study
(TYTAN) of 300+ patients randomized to lapatinib versus placebo but the primary endpoint
of prolongation of OS was not achieved.182

Targeting c-MET pathway is of interest. In a small study with crizotinib, 2 of 4 patients with
MET copy number gain >=5 had a prolonged response.183 Rilotumumab (AMG 102), a fully
human monoclonal antibody, demonstrated longer OS for patients having tumors with high
total c-MET expression.184 Table 3 lists representative completed studies and important
ongoing studies.

Conclusions
Considerable advances in biotechnology have improved our understanding of cancer,
nevertheless immense complexities confront us. Although, GC lags behind many other
tumor types, more progress is anticipated. Greater understanding of pathogenesis o IGC by
HP is poised to help with more sophisticated preventive strategies. Germline susceptibility
investigations have uncovered novel genes but clinical implementations have proven
problematic and more work is needed. Clinically, progress has been slow but adjunctive
strategies are now frequently employed for LGC around the world and this is an advance.
The future progressed will be propelled by further improvements in biotechnologies that will
produce better biomarkers and drugs.
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Figure 1. Molecular carcinogenesis of Helicobacter pylori in gastric cancer
H. pylori and its several virulence factors, such as CagA, interact with gastric epithelial cells
to induce chronic inflammation, mucosal damage and multiple alterations in gene expression
and genetic and epigenetic changes, eventually leading to gastric carcinogenesis.
Abbreviations: COX-2, cyclooxygenase-2; CpG island, areas of cytosine and guanine
repeats; LPS, lipopolysaccharide; RNS, reactive nitrogen species; ROS, reactive oxygen
species; VacA, vacuolating cytoxin A.

Wadhwa et al. Page 19

Nat Rev Clin Oncol. Author manuscript; available in PMC 2014 May 01.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2. microRNA targets and functions in gastric cancer
Some oncomiRs are overexpressed in tumours and inhibit tumour suppressors, leading to
cell proliferation, invasion and reduced apoptosis. By contrast, tsmiRs normally target
oncogenes that are downregulated in tumours and facilitate the activity of their target
oncogenes. Abbreviations: EMT, epithelial–mesenchymal transition; miR, microRNA;
oncomiRs, oncogenic microRNAs; tsmiRs, tumour-suppressor microRNAs.
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Figure 3. Targeted therapy in gastric cancer
Percentages signify the overall molecular characteristics in the disease: FGFR2
amplification (9%), VEGF/VEGFR overexpression (36–40%), EGFR amplification and
overexpression (27–44%), HER-2 amplification and overexpression (7–34%), c-MET
amplification (10–15%), kRAS mutation (2–20%), Raf mutation (0–3%), PI3K mutation (4–
36%), phospho-Akt expression (29–86%), phospho-mTOR expression (60–88%), PTCH1
overexpression (16%), SMO overexpression (12%) and HER3 mutations (10%, not
shown). *No clinical trials of these agents have yet been reported in gastric cancer. ‡No
known numbers or percentages for these genes and pathways. Abbreviations: EGFR,
epidermal growth factor receptor; FGFR, fibroblast growth factor receptor; GLI, glioma-
associated oncogene family zinc finger 1; HDAC, histone deacetylase; HER, human
epidermal growth factor receptor; HGF, hepatocyte growth factor; Hh, Hedgehog; IGFR,
insulin-like growth factor receptor; MMP, matrix metalloproteinase; mTOR, mammalian
target of rapamycin; PDGFR, platelet-derived growth factor receptor; Ptch-1, protein
patched homolog 1; Smo, smoothened; VEGF, vascular endothelial growth factor; VEGFR,
vascular endothelial growth factor receptor.
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Table 2

Comparison of molecular characteristics between intestinal and diffuse subtypes of gastric cancer.

Intestinal Reference Diffuse Reference

Amplification/overexpression

HER2 76 c-MET 183

EGFR 84 TGFβ 102

SHH/Ptch/SMO 192

VEGF 105 HER3 102

Notch1 193 FGFR2 101194

p-mTOR(47–60%) p-mTOR (58–64%) 195196

PIK3CA 55

MMP -1, -7(32–70%) MMP -1, -7(62–90%) 197,198

Activating mutations
EGFR 199 PIK3CA 55

c-MET 96

Loss of function mutations

E-cadherin 200

p53(*-overall 40%) p53(* -overall 40%) 89,201,202

PTEN(*) PTEN(*) 203

Loss of expression

E-cadherin (69%) E-cadherin (89%) 197

p53(*) P53(*) 204

PTEN(*) PTEN(*) 98

*
NS: No statistical correlation with pathological features. Other molecular alterations implicated in GC but has not been assigned to subtypes

include amplification of IGF-IR 205, Ki-Ras 206.

HER2-, EGFR-, MET- and VEGF-related signaling are predominantly implicated in the intestinal subtype, while loss of E-cadherin, FGFR2-,
mTOR-, HER3- and MMP-related pathways are more frequently involved in the diffuse subtype.
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Table 3

Major Phase III trials for gastric cancer

Table 3a: Localized gastric cancer trials

Trials Treatment Arms N Hazard Ratio
for OS; P

Primary end point
comparison in
months (survival
rates in %)

INT-116165 Surgery + CTRT (45Gy + 5FU) vs. Surgery 556 1.32; 0.004 OS (36 vs. 27)

MAGIC166 ECF/Surgery/ECF vs. Surgery 503 0.75; 0.009 5-year OS (36.3% vs.
23%)

CALGB-80101207 FU/CTRT-FU/FU vs. ECF/CTRT-FU/ECF 546 1.03; 0.80 OS (37 vs. 38)

ARTIST171 Surgery/XP vs. Surgery/XP/XRT/XP 458 0.0862 3-year DFS (74.2%
vs 78.2%)

ACTS-GC167 Surgery vs. Surgery/S-1 1,059 0.68; 0.003 3-year OS (70.1% vs.
80.1%)
RFS (65.4% vs.
53.1%)

CLASSIC168 XELOX and Surgery vs. Surgery 1,035 0.56; <0.0001 3-year DFS (74% vs.
59%)

FNLCC 163 Perioperative Chemotherapy vs. Surgery 224 0.69; 0.003 5-year OS (38% vs.
24%)

SAMIT*208 Surgery/UFT vs. Surgery/S1 vs. Surgery/Paclitaxel/UFT
vs. Surgery/Paclitaxel/S1

1,495 NR

ARTIST-II* Surgery/XP vs. Surgery/XP/XRT/XP 1,000 NR

MAGIC-B* NCT00450203 ECX + Bevacizumab vs ECX 1,100 NR

TOPGEAR*209 Preoperative CT vs. Preoperative CTRT 752 NR

CRITICS*173 ECX/Surgery/ECX vs. ECX/Surgery/CX-CTRT 788 NR

Table 3b: Advanced/Metastatic gastric cancer trials-First-line

Trials Treatment Arms N Hazard Ratio for
OS; P

Primary end point
comparison in months
(survival rates in %)

ToGA176@ CX/CF +trastuzumab vs. CX/CF 584 0.74, 0.0046 OS (13.8 vs 11.1)

AVAGAST177 Cisplatin/Fluoropyrimidine vs. Cisplatin/
Fluoropyrimidine+ Bevacizumab

774 0.87, 0.1002 OS (10.1 vs 12.2)
PFS (5.3 vs 6.7)

EXPAND 210 NCT00678535 CX vs. CX+ Cetuximab 904 1.004, 0.9547 OS (10.7 vs 9.4)

REAL-3 211 EOC vs. mEOC–P 574 1.37, 0.013 OS (11.3 vs 8.8)

V325174 DCF vs. CF 457 1.47,<0.001 TTP (5.6 vs 3.7)

SPIRITS175 S-1 + Cisplatin vs. S-1 305 0.77, 0.04 OS (13.0 vs 11.0)

FLAGS178 cisplatin/S-1 vs. cisplatin/5-FU 1,053 0.92, 0.20 OS (8.6 vs. 7.9)

LOGIC* NCT00680901 CapeOx plus Lapatinib vs. CapeOx plus
Placebo

545 NR
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Table 3c: Advanced/Metastatic gastric cancer trials-Second-line

Trials Treatment Arms N Hazard Ratio for
OS; P

Primary end point
comparison in months
(survival rates in %)

GRANITE-1 NCT00879333 BSC Placebo vs everolimus 648 0.90, 0.1244 OS (4.3 vs 5.4)

REGARD180 NCT00917384 BSC with Ramicirumab vs. BSC 355 0.776, 0.0473 OS (5.2 vs 3.8)

TYTAN182 Lapatinib + paclitaxel vs. paclitaxel 261 0.2441 OS (11.0 versus 8.9)

Kang et al 212 BSC vs. docetaxel or irinotecan 202 0.657, 0.007 OS (3.8 vs 5.3)

AIO179 Irinotecan/BSC vs. BSC 40 0.48; 0.012 OS (4.0 vs 2.4)

COUGAR-02181 (Trial 13366390) Docetaxel/ASC vs. ASC 168 0.67, 0.01 OS (5.2 vs 3.6)

*
=Ongoing Trials, NR=Not Reported yet

N: Total Sample Size; P=P-value; CTRT: Chemoradiotherapy; OS: Overall Survival; RFS: Relapse Free Survival; PFS: Progression free survival;
DFS: Disease free Survival; HR: Hazard Ratio; ECF: Epirubicin, Cisplatin, 5-FU; ECX: epirubicin, cisplatin capecitabine; XP, capecitabine/
cisplatin, XRT: XP+ Radiotherapy; XELOX: Capecitabine plus Oxaliplatin; EOC: epirubicin, oxaliplatin and capecitabine; mEOC–P: mEOC +
panitumumab; CX: cisplatin and capecitabine; CF: cisplatin, fluorouracil; D: Docetaxel; UFT: Tegafur and Uracil; CapeOx: Capecitabine,
Oxaliplatin; BSC: best supportive care; ASC: Active Symptom Control; TTP=time to progression.

INT: US Intergroup Study; CALGB: Cancer and Leukemia Group B ; MAGIC: Medical Research Council Adjuvant Gastric Cancer Infusion
Chemotherapy; ACTS-GC: Adjuvant Chemotherapy Trial of S1 in Gastric Cancer; CRITICS: ChemoRadiotherapy after Induction chemo Therapy
in Cancer of the Stomach; ARTIST: Adjuvant Chemoradiation Therapy in Stomach Cancer; CLASSIC: Capecitabine and Oxaliplatin Adjuvant
study in stomach cancer; REAL-3: Randomized ECF for Advanced and Locally Advanced Esophagogastric Cancer 3; AVAGAST: Avastin in
Gastric Cancer; EXPAND: Erbitux in Combination with Xeloda and Cisplatin in Advanced Esophagogastric Cancer; GRANITE-1:Safety and
efficacy of RAD001 (Everolimus) Monotherapy plus Best Supportive care in Patients with Advanced Gastric Cancer; ToGA: Trastuzumab for
Gastric Cancer; LOGIC: Lapatinib Optimization Study in HER-2 Positive Gastric Cancer; SAMIT: Stomach Cancer Adjuvant Multi-institutional
Trial.

@
the hazard ration is reduced to 0.8 on a follow up analysis ((http://www.fda.gov/AboutFDA/CentersOffices/

OfficeofMedicalProductsandTobacco/CDER/ucm230418.htm;)
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