Skip to main content
. 2014 Feb 18;9(2):e87135. doi: 10.1371/journal.pone.0087135

Table 1. FRET distance measurements within the cardiac troponin complex.

Acceptor Donor Ca2+-saturated state Ca2+-free state
TnT-240 TnI- FRET(HW) Å 11.1 ns Å FRET(HW) Å 9.5 ns Å
DABMI 131 AEDANS 48.1(10.2) 38.13 50.89 47 (11.7) 48.49
DABMI 145 AEDANS 55.6(14.3) 54.17 58.1(14.4) 59.29
DABMI 151 AEDANS 66.9(12.8) 60.52 67.34 63.9(18.0) 60.50
DABMI 160 AEDANS 73.3(18.1) 72.57 73.37 70.7(21.8) 71.09
DABMI 167 AEDANS 78.4(19.9) 76.93 79.49 76.7(35.5) 72.95
TnT-276 TnI-
DDPM 131 MIANS 20.4(1.2) 18.21 21.87 19.1 (3.6) 14.36
DABMI 145 AEDANS 34.3(11.2) 37.36 28.2(10.7) 32.79
DABMI 151 AEDANS 53.6(14.3) 45.24 56.09 44.7(21.9) 41.60
DABMI 160 AEDANS 51.8(10.7) 57.12 55.21 54.2(20.7) 52.56
DABMI 167 AEDANS 61.3(20.5) 66.12 65.83 62.3(29.2) 60.43
DABMI 17 AEDANS 54.6(16.0) 53.26 50.0(15.4) 48.82
DABMI 27 AEDANS 45.1 (9.1) 44.92 47.4(11.0) 47.39
DABMI 40 AEDANS 38.0 (13.6) 40.00 39.4(19.3) 45.09
TnT-288 TnI-
DDPM 131 MIANS 25.9(4.1) 21.87 26.1(8.8) 22.90
DABMI 145 AEDANS 39.5(17.8) 37.36 39.6(18.3) 40.39
DABMI 151 AEDANS 51.4(16.9) 56.09 50.1(22.2) 47.70
DABMI 160 AEDANS 55(21.3) 55.21 57.8(22.9) 58.65
DABMI 167 AEDANS 65.4(29.2) 65.83 63.2(26.3) 65.03
DABMI 5 AEDANS 54.9 (5.6) 58.59 56.8 (7.6) 57.81
DABMI 17 AEDANS 57.6(21.9) 55.99 55.6(20.1) 52.30
DABMI 40 AEDANS 46.9(14.2) 45.47 47.5(13.4) 47.06
TnC-12 TnI-
DDPM 5 AEDANS 42.6(4.7) 42.07 45(7.5) 42.85
DDPM 15 AEDANS 39.9(3.3) 41.92 43.4(11.6) 44.38
DDPM 30 AEDANS 41.3(16.6) 41.24 42.1(16.5) 42.60
DDPM 43 AEDANS 38.8(16.3) 36.33 36.3(6.9) 35.65
TnC-35 TnI-
DDPM 5 AEDANS 39.6(16.4) 35.54 33.7(2.8) 33.54
DDPM 15 AEDANS 24.9(11) 25.12 24.5(5.9) 24.77
DDPM 30 AEDANS 16(6.5) 14.76 19.2(7.3) 18.47
DDPM 43 AEDANS 35.5(4.1) 33.65 31.10 36.2(4.4) 34.07
TnC-89 TnI-
DDPM 5 AEDANS 34.1(15.5) 39.51 36.6(16) 40.73
DDPM 15 AEDANS 41.9(16.4) 39.52 34.5(2.3) 38.83
DDPM 30 AEDANS 45.2(16.8) 41.54 39.3(9.9) 38.19
DDPM 43 AEDANS 33.1(15.3) 21.43 29.04 37.8(16.2) 37.0
TnC-93 TnI-
DDPM 5 AEDANS 47.8(13.9) 40.08 38.7(16.3) 40.43
DDPM 15 AEDANS 33.8(15.4) 38.31 34.8(14.2) 37.44
DDPM 30 AEDANS 39.3(16.2) 40.42 39.8(16.5) 37.08
DDPM 43 AEDANS 28.9(3.6) 22.84 24.99 39.1(14.4) 37.20
TnI-129 TnI-
Trp 5 AEDANS 24.62(8.165) 33.85 41.2(20.4) 42.11
Trp 15 AEDANS 31.0(13.8) 27.75 32.1(2.5) 36.16
Trp 30 AEDANS 27.9(2.5) 27.33 30.4(12.1) 33.76
Trp 43 AEDANS 26.2(11.6) 33.22 27.10 35.2(14.6) 40.39
TnI-150 TnI-
Trp 5 AEDANS 31.2(1.2) 31.92 34.9(2.0) 34.76
Trp 15 AEDANS 31.8(1.2) 31.20 32.2(5.6) 31.51
Trp 30 AEDANS 29.7(10.5) 30.42 20.5(2.5) 25.77
Trp 43 AEDANS 26.9(3.1) 24.50 27.42 29.1(10.9) 27.25
TnC-13C/51C [18] 31 32.55 31.20 25.8 25.49
TnI-5 [22] IAANS TnI-192 Trp 51.5 52.06 46.8 46.94

The FRET distances measured between donor and acceptor probes in the Ca2+-saturated and the Ca2+-free states are tabulated. The half-widths are parenthesized. The FRET distances and restraints were applied as NOE restraints [49] between the Cα's of the participating amino acids. In columns 3,4 and 5,6 the experimentally measured FRET distance is tabulated along with the distance between the Cα's of the participating amino acids in the modeled structures, in the Ca2+-saturated states and Ca2+-free states respectively. In the FRET analysis, due to the ambiguity in the value of the dipole–dipole orientation factor between energy donor molecules and energy acceptor molecules and due to the dimensions of the probes attached by linkers to the side chains of the amino acid residues, the measured distance will have an uncertainty of ±10% [53]. Although the length of probe linkers is ∼10 Å, the linker is not unidirectional but folds randomly (during folding and rotation the probe and can acquire length of ∼7 Å). Based on these above factors there is good correlation between the measured FRET distance and the model. The italicized numbers in the third column pertain to the distance between the C-alphas in the crystal structure (1J1E). Compared to X-ray crystallography technique, FRET is a low resolution structural tool, and it does not have the lattice constraints that would be present in X-ray determined structure. However, FRET can acquire structural information in a more physiological environment, particularly with time-resolved approach (as we used here) it can provide dynamic information (represented by HW of the distance distribution) associated with each measured distance. Broad distributions of our FRET distances listed in Table 1 suggest that troponin exhibits a much dynamic structure in solution than in crystal. Therefore some discrepancies in the mean FRET distances with respect to the distances measured in X-ray structure would be expected. If we consider the structural dynamics (large HWs) observed in solution samples, these differences are in reasonable range.