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Introduction

The mammalian heart is the first organ to form in the 
vertebrate embryo. During development, heart chambers undergo 
structural changes mediated by specific cellular and extracellular 
cues such as hormone stimulation. Heart development involves 
stage-specific changes that are precisely regulated by spatial and 
temporal events on chromatin to regulate specific gene expression 
patterns.1 For example, genes expressed at later stages in cardiac 
development, such as cardiomyocyte maturation and terminal 
differentiation, show mono-methylation of histone H3 lysine 4 

(H3K4me1) at early stages of development, whereas activation 
at later stages are often specified by H3K4me3 modification.1 
During lineage commitment there are stage-specific acetylation 
(H3K27ac) and methylation (H3K4me1, H3K4me3 and 
H3K27me3) of lysine residues on histone H3 regulating gene 
expression and cardiac differentiation. For example, both 
methylation and acetylation of histone proteins at distinct lysine 
positions determine specific histone modification signatures that 
predict gene expression patterns that serve as transcription-factor 
binding sites as well as the exchange of co-regulatory complexes 
on promoters.2 Gene activation in pluripotent stem cells is 
associated with H3K4me1 patterns at gene promoters, which 
are also activated at later stages in the cardiac lineage, which is 
in striking contrast to H3K27me3 patterns and genes destined 
for suppression. Genes that code for the adult isoform cardiac 
contractile protein such as α-myosin heavy chain (α-MHC) and 
the transcription factor NKX2.5, are activated specifically at later 
stages of cardiac differentiation. These genes show high levels of 
H3K27me3 deposition at pluripotent stage, which are gradually 
erased and replaced by H3K4me3 modification.3

Cardiomyocyte cells respond using adaptive mechanisms to 
changing environmental stimuli such as increased workload. 
Such physiological changes are marked by an increase in 
cardiomyocyte size and ventricular mass, which is referred to as 
cardiac hypertrophy. Chronic exercise training or pregnancy can 
increase heart muscle mass and contractile ability, often referred 
to as physiological hypertrophy.4 However, there is a fine balance 
between physiological and pathological hypertrophy which are 
distinguished by cardiac failure. Pathophysiological surroundings 
such as acute and chronic myocardial stress including 
hypertension, valvular disease, and myocardial infarction, can 
dramatically increase the size of the ventricular chamber.4,5 
This is referred to as pathological-cardiac hypertrophy and, like 
physiological hypertrophy, stimulates a phase of neurohumoral 
and biomechanical signals within the myocardium. While 
it is considered that physiological hypertrophy is generally 
advantageous as well as reversible, pathological hypertrophy 
causes irreversible remodeling leading to deformation of the 
ventricles and reduced heart contractility.6
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Precisely regulated patterns of gene expression are 
dependent on the binding of transcription factors and 
chromatin-associated determinants referred to as co-activators 
and co-repressors. These regulatory components function with 
the core transcriptional machinery to serve in critical activities 
to alter chromatin modification and regulate gene expression. 
while we are beginning to understand that cell-type specific 
patterns of gene expression are necessary to achieve selective 
cardiovascular developmental programs, we still do not know 
the molecular machineries that localize these determinants in 
the heart. with clear implications for the epigenetic control of 
gene expression signatures, the eNCODe (encyclopedia of DNA 
elements) Project Consortium determined that about 90% of 
the human genome is transcribed while only 1-2% of transcripts 
encode proteins. emerging evidence suggests that non-
coding RNA (ncRNA) serves as a signal for decoding chromatin 
modifications and provides a potential molecular basis for 
cell type-specific and promoter-specific patterns of gene 
expression. The discovery of the histone methyltransferase 
enzyme eZH2 in the regulation of gene expression patterns 
implicated in cardiac hypertrophy suggests a novel role for 
chromatin-associated ncRNAs and is the focus of this article.
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The discovery of specific activator and repressor complexes 
important in cardiac development has revealed several mechanistic 
insights into myocardial function, cardiac development as well 
as heart disease. Ventricular hypertrophy is associated with 
re-activation of fetal genes that include ANP, BNP, and β-MHC 
as well as the suppression of SERCA2a and α-MHC genes in the 
adult heart.6 The recruitment of ATPase-dependent chromatin 
remodeling complexes that belong to the SWI/SNF family7 
have been shown to contextually associate with either histone 
acetyltransferases (HATs) or histone deacetylases (HDACs) to 
regulate cardiac gene expression.8 Indeed, the recruitment and 
binding of p300 HAT enzyme on gene promoters is closely 
associated with chamber-specific gene expression patterns 
conferred by histone acetylation under physiological states.9 
In addition, recent studies have expanded the complexity 
of regulatory determinants that participate in cardiac gene 
function, for example histone modifying proteins such as EZH2 
and ASXL2 specify MHC gene expression in postnatal cardiac 
homeostasis.10,11 Human homologs of Drosophila genes (Enhancer 
of zeste homolog 2 and Additional sex combs-like protein 2) 
EZH2 and ASXL2 are members of the Polycomb group (PcG) 
protein family implicated in maintaining gene repressive states by 
chromatin modification during later stages of heart development.

Mechanisms that regulate gene expression are under the 
direct control of specific classes of transcription factors and 
core machinery that serve to alter chromatin structure and 
function. However the precise actions of transcription factors 
and chromatin remodeling determinants, including histone and 
non-histone modifying enzymes in gene transcription are poorly 
characterized in the heart. Moreover, the diversity of transcription 
factors and chromatin modifying enzymes specifying gene 
expression patterns presents a major conceptual problem when 
attempting to predict specific interactions with target genes. In 
this article we explore the basis of cell type-specific and gene-
specific patterns of gene regulation that integrate chromatin-
interacting ncRNAs with histone modifying enzymes that 
functionally serve to alter gene structure and expression. Recent 
experimental observations show that chromatin remodeling and 
histone modification confer important transcriptional programs 
as a result of development and cardiac disease.12-15 The diverse 
interplay of histone modifying enzymes interacting with long 
non-coding RNAs (lncRNA) that serve to localize DNA-binding 
proteins as well as direct specific post-translational modifications 
to regulate gene expression has been described and is the focus of 
our discussion.16-18

Physiological Roles of lncRNAs in the Heart

Recent advances in nucleic acid sequencing technologies have 
revealed that nearly 90% of the genome is transcribed in one tissue 
type or another, with estimates that between 70–98% constitute 
ncRNAs.19-21 These transcripts are broadly classified in two groups 
according to nucleotide length: short ncRNAs (<200 nt), such 
as microRNA (miRNA) and long ncRNAs (>200 nt), such as 
the natural antisense transcripts (NATs) (Table 1). Interestingly, 
ncRNAs have been thought for some time to interact with DNA 

to regulate important nuclear functions. Indeed, Jacob and 
Monod explored this concept of base complementarity between 
RNA and DNA sequences22 which later was experimentally 
examined in triplex-forming sequences derived from human 
c-MYC.23 Direct evidence of interacting ncRNA mediating gene 
silencing-epigenetic changes exposed recruitment of important 
regulatory components in RNA-dependent DNA methylation.24

When, in 1993 two studies published back-to-back in 
Cell described a putative role for short ncRNAs in C. elegans 
development, the importance of these critical findings was 
probably underappreciated in transcription biology.25,26 How 
ncRNAs recognize and interact with target sequences to regulate 
gene expression still remains poorly characterized. Although 
short ncRNAs are strongly conserved but of unknown function, 
the seminal discoveries by the groups led by Ambros and Ruvkun 
have revealed a regulatory complexity mediated by ncRNAs. The 
field has expanded tremendously with a better understanding of 
the significance in biology and disease. Recent studies now show 
that during development, ncRNAs are expressed in a dynamic 
fashion and regulated by specific cellular and environmental 
cues.16,17

The importance of short ncRNAs in heart development was 
elegantly demonstrated by cardiac-specific deletion of miRNA-
processing enzyme, DICER.27 Abundantly expressed in the 
heart, miR-1 and miR-133 are associated with cardiovascular 
development and myeloid differentiation.28-30 Recently, functional 
paradigms for several lncRNAs have also been described such as 
the participation in embryonic differentiation and cell-lineage 
development as well as transcriptional control.16,17,31,32 While 

Table 1. Classification of functional ncRNAs. Transcriptional gene silencing 
functions of short (grey background) and long ncRNAs by chromatin 
interaction

ncRNA class
Chromatin 
interaction

MicroRNA (miRNA) Yes114

Small interfering RNA (siRNA) Yes115

Piwi-interacting RNA (piRNA) Yes116

Small nuclearRNA (snRNA) Yes92

Small nucleolarRNA (snoRNA) Yes117

Natural antisense transcript (NAT) Yes80

Large intergenic ncRNA (lincRNA) Yes35

Promoter associated RNA (paRNA) Yes118

Circular RNA (circRNA) Yes78

enhancer RNA (eRNA) Yes119

Pseudogene RNA (trans-NAT) Yes120,121

Transcribed ultraconserved regions (T-UCRs) Yes122

Short-lived RNA transcripts (SLiTs) Yes32

Telomeric repeat-containing RNA (TeRRA) Yes123

Transfer RNA (tRNA) Not reported

Ribosomal RNA (rRNA) Not reported
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lncRNAs can serve as spliceosome and ribosome components in 
eukaryotic RNA metabolism, recent experimental observations 
indicate a role in organizing chromatin conformation and shaping 
the genome. For example, chromatin interacting lncRNAs were 
recently identified as key determinants of gene imprinting (such 
as XIST and KCNQ1OT1 as well as AIR), whereas the recruitment 
of PRC2 components are implicated in gene suppression events 
that involve HOTAIR and TUG1.33-35 Recently, knockdown of 
lncRNAs expressed in embryonic stem cells has revealed more 
than one hundred functional lncRNAs associated with the 

maintenance of pluripotency.36 In addition, several lncRNAs 
have been implicated in normal heart physiology. For example, 
in the mouse, Braveheart (Bvht) and Fendrr are thought to have 
critical roles in cardiac lineage specification during embryonic 
development.16,17 The silencing of Bvht in mES cells results in the 
loss of cardiomyocyte beating in embryoid bodies (EB) at day 
11 of differentiation.16 Whereas the expression of tissue-specific 
Fendrr is a regulator of heart and body wall development.17 While 
these results are not fully understood, it is hypothesized that 
Bvht and Fendrr control gene expression by interacting with the 
regulatory cofactors, PRC2 and TrxG/MLL complexes. These 
studies highlight the importance of lncRNA transcripts defining 
chromatin structure and gene expression necessary for heart 
development. Recent studies have also identified putative roles 
for over expressed lncRNAs in cancer (MALAT1 and HOTAIR) 
and Alzheimer disease (BACE1-AS), as well as reduced expression 
of lncRNAs in anemia (LincRNA-EPS) and Huntington disease 
(HTT-AS).37-40 In addition to the general involvement of DNA-
binding motifs that function in the recruitment of transcription 
factors, new roles for lncRNAs in mediating chromatin-protein 
interactions have recently been described.20,41 Several lncRNAs 
have putative sequence motifs and structural domains implicated 
in protein association and interacting with specific gene targets. 
Indeed, several chromatin-interacting proteins have recently been 
described to have ncRNA-binding domains such as the polycomb-
group (PcG) proteins, which are involved in the suppression of 
gene expression mediated by chromatin modification.42,43

Non-Coding RNAs Connect EZH2 with Chromatin

The expression of lncRNAs and natural antisense transcripts 
have recently been shown to regulate gene transcription and 
protein translation in the heart.14,15 The antisense (AS) transcripts 
to NPPA (AS-NPPA) and β-MHC (AS-β-MHC) are examples of 
regulatory lncRNAs in the myocardium. These transcripts are 
thought to associate with chromatin and regulate the expression 
of sense counterparts, NPPA and β-MHC whose expressions 
are regulated by EZH2 in the heart. The EZH2 lysine 
methyltransferase has a binding domain that is thought to mediate 
interaction with lncRNAs.42 For instance, phosphorylation of 
threonine (T365) of EZH2 interacts with HOTAIR and XIST.33 
Although well characterized in cancer, the specific interactions 
of ncRNAs with histone modifying determinants such as 
EZH2 remain poorly described in the heart.44 Several lysine 
methyltransferase proteins have a conserved SET-domain region, 
which is thought to be critical to chromatin association as well 
as enzymatic activity. A number of methyl-writing SET-domain 
family members such as G9A, SET7, SMYD3, SET2, SET1, 
and EZH2, can bind to single-stranded DNA and RNA.45-48 
In addition, several MLL family proteins that contain the SET-
domain are known to interact with ncRNA either directly or 
indirectly.49,50 The methyl-erasing enzyme, LSD1, is thought to 
bind directly to the 3′ end of the HOTAIR lncRNA to regulate 
HOXD gene expression.51

Recent data published by several groups suggest putative 
roles for antisense transcripts in mediating EZH2 interactions 

Table 2. Chromatin immunoprecipitation in mouse left ventricle shows 
specific interaction of eZH2 at genes with bi-directional transcription.

Gene

ink4a, ink4b, Ak148321/ANRiL

Pax6, Pax6ost1

Nppa, Nppa-as1

Miat, 1700028D13Rik

α-MHC, β-MHC, AS β-MHC

Foxd2, 9130206i24Rik

Hoxc11, Hoxc12, Hotair

Gata3, 4930412O13Rik

Dio3, Dio3os

Ucn, Ucn-as

islr2, 1600029o15Rik

Dll4, Gm14207

Pou3f3, 2610017i09Rik

2610100L16Rik, Gm10724

Hoxa4, Hoxa5, Hoxa6, Hoxa7, 2700086A05Rik

irx5, 4933436c20Rik

Fbxo44, Fbxo2

Otx2, Otx2os1

H2-K2, AA388235

Pcnxl2, Bc021891

Dlx6, Dlx6as-1

Tbx2, 2610027K06Rik

Myl4 (ALC-1), Myl4-AS

cTn1 (Tnnt3), cTn1-AS

Tgfβ3, Tgfβ3-AS

Listed are genes as enriched by ChiP using antibodies that recognize eZH2 
and H3K27me3 modification.52 Genes on sense and antisense strands 
are distinguished by an underline. A significant proportion of the genes 
enriched by eZH2-ChiP in the mouse heart show specific binding of eZH2 
at key cardiac genes with antisense RNA expression. Several cardiac genes 
with antisense RNA expression including the cardiac regulatory lncRNA 
genes ANRIL, MIAT, and NPPA-AS appear to be bound by eZH2. Genes 
encoding non-cardiomyocyte expression programs such as the PAX6, which 
expresses opposite strand transcript is also repressed by direct binding of 
eZH2 in the heart. increased expression of Myosin light chain (MYL4) and 
TGFβ-3 genes was observed in eZH2 deficient mice,10,52 both of which are 
known to express regulatory antisense transcripts, however, show no direct 
association of eZH2 at these promoters.52
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with chromatin (Table 2).10,52 The expression of genes encoding 
contractile proteins and transcription factors implicated in 
heart disease are altered in EZH2-knockout mouse models.10 
Deep sequencing of chromatin immunoprecipitated from the 
mouse heart using antibodies that recognize EZH2 show direct 
interaction with genes implicated in cardiac disease (Table 2).52 
Interestingly, EZH2 appears to bind novel bi-directional 
promoter (bdP) sequence to regulate sense and antisense RNA 
expression. For example, the heart displays altered expression of 
tumor suppressor related genes CDKN2B, CDKN2A, and ARF 
encoding the INK4/ARF locus at chromosome 9p21 in EZH2-
null mice.10,52 The ANRIL antisense is thought to regulate 
these genes by PcG-dependent silencing.53 But, whether ANRIL 
directly regulates EZH2 chromatin interaction at the 9p21 
region in cardiomyocyte cells remains to be determined. In favor 
of a role in cardiac homeostasis, individuals homozygous for the 
SNP allele at the 9p21 region show altered ANRIL expression 
and increased susceptibility to atherogenic plaque development 
and coronary heart disease (CHD) as well as diabetes.54,55 While 
CDKN2A expression levels were reduced in 9p21 knockout hearts, 
there was no evidence for cardiac hypertrophy or cardiovascular 
pathology.56 Other studies also report ANRIL interactions with 
PcG proteins such as CBX7 and SUZ12 to regulate CDKN2B 
and CDKN2A gene expression.57,58 Overexpression of ANRIL 
in cultured cells significantly altered the expression of a large 
number of distant genes proposing ANRIL as a trans regulatory 
element.58 Ontology analysis has identified genes involved in the 
regulation of chromatin structure and function.58

Cardiac hypertrophy and heart failure are associated with 
changes in the expression of α- and β-MHC mRNAs and this 
shift in myosin-isoform distribution serves important roles in 
cardiac muscle fiber shortening.59 The silencing of α-MHC in the 
failing hearts has led renewed interest to restore expression of this 
gene in hypertrophic tissue.59 The MHC genes are clustered on 
chromosome 14 in humans and mice (chromosome 15 in rat) 
and the α- and β- MHC genes are separated by an intergenic 
sequence of ~4.5 kb in length (Fig. 1).60 The β-MHC gene is 
upstream of α-MHC and both transcribe mature mRNA 
approximately 7 kb in length.60 The complexity of MHC gene 
regulation presents interesting conceptual problems as well as 
experimental challenges, with the identification of transcripts 
on opposing DNA strands. This complementary sequence to the 
canonical mRNA represents the antisense or non-coding RNA.61 
The intergenic region of MHC is thought to contain a bdP that 
transcribes both AS β-MHC and α-MHC in opposite directions.61 
Transcription of AS β-MHC progresses in the direction of the 
β-MHC gene and is thought to regulate the expression of MHC 
genes in response to pressure overload.61,62

The regulation of MHC isoforms involves the coordinated 
actions of core machinery that include DNA-bound transcription 
factors, chromatin remodeling, and expression of antisense RNA 
transcripts. Perhaps the most interesting of recent experimental 
results highlights the complex regulation of the MHC genes 
includes both transcriptional and post-transcriptional changes. 
Recent experiments in EZH2 mutant mice reveal changes to 
MHC isoform regulation characteristic of the hypertrophic 

heart.10 In addition to H3K27me3 modification by EZH2 is 
the direct involvement of histone-modifying enzymes such as 
HDAC9, ASXL2, and chromatin remodeling enzymes, such as 
BRG1 and PARP1 which interact with the bdP (Fig. 1).11,63 DNase 
hypersensitive sites are also associated with MHC gene expression 
at various developmental stages of the heart.64 Whatever the 
role of EZH2, showing its involvement in chromatin dependent 
association with ncRNA is the first step in revealing how MHC 
isoform expression is regulated in heart disease.

Novel ncRNAs in the Heart

Long ncRNA expression recently described in the heart with 
regulatory roles involving chromatin modification and function 
is summarized in Table 3. RNA sequencing of the myocardium 
has revealed specific transcriptome profiles for coding and non-
coding transcripts that distinguish the stages of the failing 
heart.65 Recent studies have identified more than 1300 previously 
unannotated exons with altered expression levels in animal models 
of heart failure.65 Among these, almost 682 exons displayed 

Figure 1. interplay of chromatin modifications and non-coding RNAs 
regulate MHC genes in the heart. The expression of cardiac α- and 
β-MHC genes is regulated in (A) healthy and (B) diseased heart. The 
bi-directional promoter (bdP) of the α- and β-MHC intergenic region 
comprises binding sequences for GATA, CTF1/NF1, RAR, T3R, MeF-2 
transcription factors. Both the α- and β-MHC genes encode miRNA-208a 
and miRNA-208b that function in heart health and disease. The bdP is 
known to transcribe AS β-MHC which serves to regulate β-MHC sense 
(mRNA) transcription by chromatin interaction. The co-regulatory chro-
matin determinants BRG1, histone deacetylases (HDACs), and eZH2 are 
involved in the suppression of AS β-MHC and α-MHC genes in disease. 
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Table 3. Long ncRNA expression in the heart

Long ncRNA Cardiac function
Disease 

association

Expression 
in disease 

(↑/↓)

Methods of 
identification

Mechanism of 
regulation

Splice variants

ANRIL
Regulation of iNK4/ARF locus, 
genes involved in nuclear and 

chromatin architecture56

Cardiac 
hypertrophy, 

atherosclerosis
↑ RNA-ChiP, RACe-PCR, 

circRNA assays
Chromatin 
interaction

Reported

cTnI-AS Regulation of cTni mRNA72 Unknown Unknown RACe
RNA duplex 
formation

None reported

NPPA-AS1 Regulation of NPPA mRNA68 Unknown Unknown RACe
RNA duplex 
formation

Reported

AS-UCN
Regulation of sense 

transcription/translation124 Unknown Unknown RNase Protection Assay
Overlapping 

sense 
transcription

None reported

MIAT or 
Gomafu

Splicing, retinal cell fate 
specification125

Myocardial 
infarction ↑ Northern blot, RACe

Chromatin 
interaction/

Nanog TF 
binding

Reported

Fendrr Cardiac mesoderm formation17 Unknown Unknown RACe, RNA-ChiP, iSH
Chromatin 
interaction

None reported

MHM Cardiomyocyte Proliferation126
Cardiac 

hypertrophy, 
arrhythmia

Unknown
Northern blot,

in Situ hybridization
Chromatin 
interaction

Reported

H19 imprinting and Igf2 regulation65 Hypertrophy & 
heart failure ↑ RNA-ChiP, Strand-

specific PCR
Chromatin 
interaction

Reported

91H (AS-H19) Regulation of Igf2127 Unknown Unknown Strand-specific PCR Unknown None reported

Kcnq1ot1
embryonic heart formation, 

regulation of Cdkn1c, 
KvLQT1 genes91

Unknown Unknown RACe, FiSH, RNA-ChiP
Chromatin 
interaction

Reported

FMR1-AS1 
or FMR4 Cell proliferation128 Proposed Unknown RACe, Northern blot

Chromatin 
interaction 
proposed

Reported

Air
embryonic heart formation, 

imprinting of Igf2r in 
adult hearts129

Unknown Unknown
RNA-ChiP,

FiSH
Chromatin 
interaction

Reported

MLC-ALC-1 
antisense Regulation of MLC-1 mRNA130 ToF, HOCM ↑ Strand-specific PCR Unknown None reported

AS-TGFβ3 Hear chamber formation131 Unknown Unknown RNase protection assay
RiSC-mediated 

silencing 
proposed

None reported

sONE
(AS-eNOS) eNOS synthesis132 Unknown Unknown

Strand-specific PCR, 
in Situ hybridization

Unknown None reported

SRA
Myogenesis, SRA 

proteins synthesis133 DCM ↓
Strand-specific 

PCR, Splice variant 
assays, RNA-ChiP

Chromatin 
interaction

Reported

AS β-MHC β-MHC gene transcription61 Cardiac 
hypertrophy ↓ Strand-specific PCR

Chromatin 
interaction

None reported

Braveheart
Cardiovascular lineage 

commitment16 Unknown Unknown RACe, native RNA-iP
Chromatin 
interaction

Reported

ANRiL, antisense non-coding RNA in the iNK4 locus; cTni, cardiac troponin i; NPPA-AS1, natriuretic peptide precursor A-antisense transcript 1; AS-UCN, 
Urocortin antisense; MiAT, myocardial infarction associated transcript; MHM, male hypermethylated; MLC-ALC-1, myosin light chain-atrial light chain-
1;AS-TGFβ3, transforming growth factor β-3 antisense RNA; SRA, steroid receptor RNA activator; ToF, tetrology of fallot; HOCM, hypertrophic obstructive 
cardiomyopathy; DCM, dilated cardiomyopathy; RACe, rapid amplification of cDNA ends; FiSH, fluorescent in situ hybridization.
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differential expression and the majority (81%) of unannotated 
RNAs expressed were non-coding RNAs. For example, the 
expression of H19 lncRNA was highest in heart failure tissue 
when compared to cardiac hypertrophy. The function of 
H19 in the myocardium remains poorly characterized, as for 
human heart explants, transcriptome profiling has shown 
the expression of putative ncRNAs associated with the 
development of cardiomyopathy.66 These studies suggest that 
a large number of novel transcripts are dynamically expressed 
in the myocardium. Serial analysis of gene expression (SAGE) 
of different human tissue types has identified cardiac-specific 
expression of NCRNA00116.67 Despite the tremendous 
advances in technology used to identify novel RNA species, 
the physiological function of these molecules remains largely 
uncharted.68

Analysis of ncRNA Dependent-
Chromatin Interactions

Recent methodological developments in transcript analysis 
have seen a tremendous amount of information generated 
from massive parallel sequencing. While historically difficult 
to ascribe function to the large number of non-coding RNAs, 
these transcripts are readily identifiable using RNA sequencing 
approaches. A number of lncRNAs contain chromatin binding 
domains and other sequences involved in the interactions with 
proteins as well as regulating gene expression.41,43 In the next 
section, we discuss some of the methodological developments 
that have enabled the characterization of long ncRNA 
dependent-chromatin interactions.

Methods Used in the Detection and 
Characterization of lncRNAs

Important protein-coding genes including those implicated 
in heart disease have antisense transcription and ncRNA 
expression.69,70 Conventionally, in first-strand synthesis, 
complementary DNA (cDNA) is generated at low temperatures 
(37 °C) using random/oligo-dT primers that are non-specific 
to gene sequences as well as lacking strand-specific (5′ to 3′ 
orientation) information. To distinguish sense from antisense, 
strand-specific oligonucleotides are used to anneal either 
mRNA (sense) or ncRNA (antisense) at high temperatures (50–
60 oC) followed by first-strand cDNA synthesis. For example, 
strand-specific primers to cardiac MHC and troponin genes have 
been used to quantitatively assay sense (mRNA) and antisense 
(ncRNA) expression in the heart.71,72 Recently, several novel 
procedures have been developed to quantify strand-specific 
expression of the transcriptome (Table 4).73,74

Almost 90% of the human transcriptome is alternatively 
spliced in terminally differentiated cardiomyocytes and 
neurons.75 RNA splice variants greatly increase biodiversity 
of proteins.76 For example, distinct alternative splicing of the 
cardiac steroid receptor activator (SRA) transcript can generate 
SRA protein-coding transcript as well as non-coding regulatory 

SRA transcript.77 Consistent with this idea, splice variants in the 
heart are known to exist for ANRIL and regulate circularization 
of this transcript, whereby one variant type interacts with EZH2 
whilst the other is masked for the EZH2 binding domain.78 
Alternative splicing of ncRNA is perhaps key to understanding 
ncRNA dependent-chromatin interactions. Several strategies, 
such as exon-scanning and rapid amplification of cDNA ends 
(RACE) have successfully identified splice variants to cardiac 
troponin I- and NPPA- antisense transcripts (Table 4).68,79 
Other examples of lncRNAs identified include KCNQ1OT1 
and HOTTIP.50,80

RNA sequencing (RNA-Seq) approaches generate millions 
of reads that often fail to accurately identify gene structure as 
well as result in missing detection of low-abundant transcripts 
and non-polyadenylated ncRNAs.81 Transcript profiling can be 
studied using tiling arrays or targeted RNA CaptureSeq (RNA 
capture sequencing).82,83 For example, Mercer et al.82 used this 
approach because rare transcripts are thought to occur below 
the detection limits of conventional RNA-Seq. Surprisingly, the 
study reported complex ncRNA transcription and widespread 
expression of novel transcripts.82 The authors characterize 
alternative splice junctions to the HOTAIR transcript predicted 
to interfere with PcG binding.82 Taken together, these data 
suggest that post-transcriptional splicing can regulate ncRNA 
dependent-chromatin binding.

Protein expression may also be determined by RNA stability 
and recent experimental observations suggest dynamic regulation 
of ncRNA stability in response to specific environmental cues. 
Pulse labeling of RNA followed by sequencing or 5′-bromo-
uridine immunoprecipitation chase—deep sequencing analysis 
(BRIC-Seq) has identified novel and highly stable lncRNAs.32 
This technique is used to study RNA decay and has revealed 
that some lncRNAs in fact have short half-lives (t

1/2
 < 4 h) such 

as the cardiac ANRIL transcript, HOTAIR, TUG1, and GAS5. 
Other intriguing observations from the study highlighted 
that hundreds of short-lived regulatory RNAs designated as 
short-lived non-coding transcripts (SLiTs) have putative roles 
in nuclear function.32 An alternative method of studying 
RNA stability is transcriptional inhibition by Actinomycin 
D (ActD).84 Mouse neuroblastoma cells exposed to ActD 
over a 32 h period identified over 800 lncRNAs and 12 000 
mRNAs that were classified highly stable with a half-life > 
16 h or low stability with a half-life < 2 h.85 The regulatory 
RNA, NEAT1 was identified as one of the least stable ncRNAs 
which is thought to be dynamically regulated. Similarly, 
global run-on sequencing (GRO-Seq) and native elongating 
transcript sequencing (NET-Seq) techniques have been be used 
to assay nascent RNA transcripts.86,87 These studies identified 
immediate transcriptional response to estrogen signaling 
demonstrating that lncRNAs are dynamically regulated.86 
The most obvious conclusion is that low stability lncRNAs are 
non-functional, but this argument is perhaps overly simplistic, 
when interpreted slightly differently, long non-coding RNAs 
may act immediately after transcription to mediate chromatin-
dependent interactions.
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Long ncRNA-Chromatin Interaction Assays

Long ncRNAs that stably interact with chromatin at specific 
genomic sites can be detected by fluorescent in situ hybridization 
(FISH) of the target RNA using antisense probes.88 FISH has 
traditionally been the method of choice to study long ncRNA 
dependent-chromatin interactions.89,90 More recently, FISH 
was employed to assay changes in chromatin architecture for 

KCNQ1OT1 a lncRNA that regulates KCNQ1 expression in 
the developing heart.91 Alternatively, locus-specific lncRNA 
interactions can be examined using formaldehyde fixation 
and chromatin immunoprecipitation methods (RNA-ChIP) 
that use antibodies that recognize RNA-binding proteins such 
as EZH2 and G9A.80 Alternatively, native RNA-ChIP using 
MNase digestion have also been successfully applied to the 
study of chromatin associated RNAs.92 In striking contrast 

Table 4. Methodologies for the detection, characterization and structural analysis of lncRNA. ncRNA-chromatin interaction assays are highlighted with 
grey background

Method Advantage

Strand-specific qRT-PCR Sense and antisense RNA quantification71,72

ASSAGe Reveals transcript direction73

RNA ligation using distinct adaptors Reveals transcript direction74

NeT-Seq Transcriptional pausing87

GRO-Seq immediate, transient changes to transcriptome86

exon-scanning Splice variant detection68,79

RACe Splice variant detection, Obtain full-length transcript sequence50,80

RNA CaptureSeq Detection of transcripts of low abundance, Novel splice variant detection82

BRiC-Seq Transcript stability, RNA decay32

SAGe (SuperSAGe) Novel, tissue-specific lncRNA detection67

PolyA- RNA-Seq identification of bimorphic transcripts and circular RNAs104

RNA bisulfite conversion RNA methylation, RNA folding, footprint sequences73

PTeS identification Splice variants, circular RNA prediction109

FragSeq intra- and inter- RNA base pairing112

RNaseR assay Circular transcriptome studies104,107

Native chromatin preparation Purifies CARs, PolyA- ncRNAs134

RNA-FiSH Cellular compartmentalization of transcripts, chromatin interaction89,90

RNA-ChiP Protein-dependent RNA interaction with chromatin80

Native RNA-ChiP Protein-dependent RNA interaction with chromatin92

ChiRP RNA-dependent chromatin interaction95

CHART RNA-dependent chromatin interaction96

HiTS-CLiP Cross-linking of directly interacting RNA-protein complexes97

PAR-CLiP Cross-linking of directly interacting RNA-protein complexes98

ASSAGe, asymmetric strand specific analysis of gene expression; GRO-Seq, global run-on sequencing; NeT-Seq, native elongating transcript sequencing; 
RACe, rapid amplification of cDNA ends; BRiC-Seq, 5’-bromo-uridine immunoprecipitation chase-deep sequencing; SAGe, serial analysis of gene expres-
sion; PTeS, post-transcriptional exon scrambling; CARs, chromatin associated RNAs; FiSH, fluorescent in situ Hybridization; ChiP, chromatin immunopre-
cipitation; ChiRP, chromatin isolation by RNA purification; CHART, capture hybridization analysis of RNA targets; HiTS-CLiP, high-throughput sequencing of 
RNA isolated by crosslinking immunoprecipitation; PAR-CLiP, photoactivatable-ribonucleoside-enhanced crosslinking and immunoprecipitation.
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to formaldehyde crosslinking, immunoprecipitation of native 
soluble chromatin allows for direct mapping of mono-, di- and 
tri-nucleosomal structures.93

Long ncRNAs can interact in a locus-specific manner using 
homologous complementary sequences.94 The applicability 
of biotinylated RNA tiling probes complementary to target 
lncRNA was recently used to immunoprecipitate interacting 
DNA sequences and proteins. Examples of these methods include 
ChIRP (chromatin isolation by RNA purification) and CHART 
(chromatin hybridization analysis of RNA targets) which have 
identified novel genome-wide interactions for HOTAIR and 
ROX2.95,96 In fact, with the advent of high-throughput sequencing 
it has been possible to identify novel RNAs using crosslinking 
immunoprecipitation (HITS-CLIP) and photoactivatable 
ribonucleoside enhanced crosslinking and immunoprecipitation 
(PAR-CLIP).97,98 These methodologies were recently used to 
identify the interaction of EZH2 with several ncRNAs, including 
ANRIL which has been associated with many diseases including 
coronary artery disease, diabetes and cancer.99

Structural Analysis of lncRNAs

Besides sequence-based chromatin recognition, RNA folding 
can also influence ncRNA dependent-chromatin interactions.100 
For example, genes that code for DMD, P450, MLL, and 
ETS-1 produce circular transcripts with diverse functions.101-104 
The hypertrophy responsive NCX1 gene is thought to produce 
circular poly(A-) transcripts in the human heart, however the 
biological significance of circular RNAs has remained elusive.105 
Recent evidence now suggests that circular RNAs function as 
miRNA sponges that compete with RNA binding proteins to 
form a class of post-transcriptional regulators.106,107 Accordingly, 
circular antisense RNAs are targeted by RISC components for 
gene regulation.108 The mechanism of RNA circularization is a 
result of non-canonical post-transcriptional exon scrambling 
(PTES). Non-canonical PTES appears to be a predominant 
event in human liver as well as the heart.109 Because of their 
low abundance, the majority of circular transcripts are largely 
undetectable by conventional RNA-sequencing. To investigate 
the circular component of the transcriptome, protocols employ 
RNaseR, an enzyme that degrades linear but not circular 
transcripts.104 Coupled with RNaseR, next generation sequencing 
has identified PTES mediated circular RNA transcripts to 
hundreds of human genes, the majority of which were not 
polyadenylated.104 In fact, circular and linear forms of cardiac 
antisense RNA, ANRIL have been reported.78 The expression of 
circular ANRIL might be associated with atherosclerotic vascular 

disease. Thousands of human mRNA and ncRNA transcripts 
are extensively methylated110 and these RNA modifications are 
thought to alter Argonaute binding as well as transcript folding.111 
Moreover, recent identification of specific ncRNA structures such 
as the TINCR boxes regulate the interaction of these transcripts 
with regulatory proteins.100 FragSeq or fragmentation sequencing 
is a novel method that integrates RNA structure analysis with 
genome-wide sequencing.112 The Nuclease P1 enzyme is used 
to cleave single-stranded nucleic acids thereby preserving the 
intra- and inter-molecular RNA interactions. The development 
of these methodologies has revolutionized genome-wide analysis 
of cellular RNAs, which will be critical in defining regulatory 
networks at the genomic scale.113

Conclusions and Future Considerations

Recent experimental observations show lncRNAs regulate 
cardiac gene expression. This is probably best exemplified at the 
bidirectional promoter of the MHC genes which involves the 
interaction of EZH2 with the antisense β-MHC transcript to 
regulate MHC isoform shift (Fig. 1). While always considered 
to be integral elements in the post-transcriptional control of gene 
expression it is the recent technological developments that have 
been critical to understand the role of ncRNAs in the heart. The 
advent of massive parallel sequencing has brought improved 
understanding of the regulatory mechanisms underlying cardiac 
pathology and developmental growth as well as integrating 
functional genomics. Although the relevance of the non-coding 
genome to cardiac disease has mainly been studied in the context 
of the widespread disruption of expression, studies now show that 
ncRNAs are also critical determinants of gene regulation. Taken 
together with their emerging role with chromatin modification, 
the non-coding genome should provide new strategies and specific 
targets to prevent, restore or reverse the effects of pathological 
hypertrophy in the failing heart.
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