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Abstract

Graft-versus-host disease (GVHD) is a common complication of allogeneic bone marrow transplantation (BMT). Upregulation
of inflammatory cytokines precedes the clinical presentation of GVHD and predicts its severity. In this report, thiol/redox
metabolomics was used to identify metabolic perturbations associated with early preclinical (Day+4) and clinical (Day+10)
stages of GVHD by comparing effects in Syngeneic (Syn; major histocompatibility complex- identical) and allogeneic
transplant recipients (Allo BMT) in experimental models. While most metabolic changes were similar in both groups, plasma
glutathione (GSH) was significantly decreased, and GSH disulfide (GSSG) was increased after allogeneic compared to
syngeneic recipient and non-transplant controls. The early oxidation of the plasma GSH/GSSG redox couple was also
observed irrespective of radiation conditioning treatment and was accompanied by significant rise in hepatic protein
oxidative damage and ROS generation. Despite a significant rise in oxidative stress, compensatory increase in hepatic GSH
synthesis was absent following Allo BMT. Early shifts in hepatic oxidative stress and plasma GSH loss preceded a statistically
significant rise in TNF-o.. To identify metabolomic biomarkers of hepatic GVHD injury, plasma metabolite concentrations
analyzed at Day+10 were correlated with hepatic organ injury. GSSG (oxidized GSH) and f-alanine, were positively
correlated, and plasma GSH cysteinylglycine, and branched chain amino acids were inversely correlated with hepatic injury.
Although changes in plasma concentrations of cysteine, cystathionine (GSH precursors) and cysteinylglycine (a GSH
catabolite) were not significant by univariate analysis, principal component analysis (PCA) indicated that accumulation of
these metabolites after Allo BMT contributed significantly to early GVHD in contrast to Syn BMT. In conclusion, thiol/redox
metabolomic profiling implicates that early dysregulation of host hepatic GSH metabolism and oxidative stress in sub-
clinical GVHD before elevated TNF-a. levels is associated with GVHD pathogenesis. Future studies will probe the mechanisms
for these changes and examine the potential of antioxidant intervention strategies to modulate GVHD.
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immunological mediators of GVHD have been investigated
extensively, however biochemical and sub-cellular changes that
precede and are mechanistically linked to T cell activation and
cytokine dysregulation are not well characterized.

Introduction

Graft-versus-host disease (GVHD) is an important complication
of allogeneic hematopoietic stem cell transplantation (HSCT), and
it limits the wider application of this curative treatment option
[1,2]. The pathogenesis of GVHD classically occurs in 4 distinct
phases: 1) a first phase initiated by tissue injury that accompanies
pre-transplant conditioning, 2) employment of host antigen
presenting cells (APC) during an activation phase, 3) a donor T
cell activation phase culminating in a cytokine storm, and 4) an
effector phase during which activated effector T cells, natural killer

Oxidative stress is an unavoidable consequence of HSC'T and
may be an important exacerbating factor in GVHD. Owing to the
contributions of pre-existing disease conditions and the require-
ment for conditioning regimens that increase cellular reactive
oxygen species (ROS), oxidative stress is elevated in all HSCT
recipients [1,2,7,8]. Oxidatively modified membrane lipids,
proteins and nucleic acids are known ligands for innate immune

(NK) cells, macrophages, and cytokines cause end-organ damage
[1,2]. Inflammatory cytokines, such as IL-1 [3], IL-2 [4], TNF-a
[4] and IFN-y [5], are elevated after allogeneic HSCT and
perpetuate GVHD through direct cytotoxic effects on host tissues
and by priming and activating immune effector cells [6]. The
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cell activation. Triggering damage-associated molecular pattern
(DAMP) receptors may facilitate alloantigen presentation and
donor T-cell activation required for GVHD initiation [1,2].
Conditions that increase oxidative stress, such as iron-overload,
are associated with increased risk for complications of HSCT,
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including GVHD [3,9,10]. Furthermore, in a study of Allo BMT
recipients, there was a significant correlation between urinary Fo-
isoprostanes (an i viwo biomarker of lipid oxidation) and activation
status of nuclear factor-kappa B (NFyB), a key transcription factor
controlling the expression of inflammatory mediators and cyto-
kines [4,11,12].

Allogeneic BMT is associated with increased oxidative stress
during the active effector phase of GVHD [4,5,13-16]. Excess NO
production was previously observed in both clinical GVHD
[4,13,14] and experimental models [5,15,16]. Interestingly, two
case studies reported that increases In serum nitrate/nitrite
concentration indicative of inducible nitric oxide synthase
activation, preceded clinical onset of GVHD [13,14]. Alloanti-
gen-activated T cells exhibit higher cellular mitochondrial ROS
generation and contain less glutathione (GSH) than their
syngeneic counterparts [6,17]. Alloreactive T cells also induce
epithelial genomic instability through generation of oxidative stress
in vitro, which could explain why GVHD is associated with
increased epithelial genomic instability in patients [18].

In addition to increased ROS generation, impaired antioxidant
defense capacity following Allo BMT could also contribute to
oxidative stress. Glutathione (GSH) is an endogenously synthe-
sized sulfur amino acid (SAA)-containing tripeptide, which plays a
principal role in cellular redox regulation. GSH synthesis is
coordinately regulated through four sequentially interconnected
pathways: transmethylation (TM); transsulfuration (TS); glutathi-
one synthesis (GS); and glutathione recycling (GR) [5,19]. These
pathways generate homocysteine (Hcey), cysteine (Cys), GSH, and
cysteinylglycine (Cysgly), all of which have labile sulfhydryl groups.
Cys and GSH are the two most abundant plasma SAA compounds
and are reversibly oxidized and reduced in cells by NADPH-
driven processes [6,20]. Thus, quantification of Cys/CySS and
GSH/GSSG redox potentials provides accurate measures of
balance between oxidative and anti-oxidative processes in
biological systems [20,21].

The redox state of the GSH/GSSG redox couple is normally
tightly regulated (£7%) but it decreases in response to tissue
injury, inflammation, and exposures to toxicants [20]. For
example, in humans, plasma GSH/GSSG redox potentials decline
by ~15-20% following chemotherapy, and also in smokers, and
patients suffering from diabetes and sepsis [20,22]. In mouse
models, similar oxidation of plasma GSH occurs during acute
endotoxin-mediated lung injury [22,23]. Independent of their
cellular antioxidant effects, altered extracellular GSH oxidation
states have been shown to enhance expression of adhesion
molecules (VCAM, ICAM), mitochondrial and NADPH oxi-
dase—dependent ROS generation, and IL-1B-mediated inflamma-
tory signaling [24-26].

Although the importance of GSH in modulating inflammation
has been established, it is not clear how GSH metabolism changes
carly after GVHD initiation and might mediate tissue injury.
Clinical studies have shown that plasma and erythrocyte GSH and
antioxidant enzymes activities decline after HSCT [7,8], but how
the plasma antioxidant defense system might relate to GVHD
progression is not known. In experimental rodent models,
pulmonary and hepatic GSH loss was observed in Allo BMT
models of idiopathic pneumonia syndrome (IPS) [27]. A more
recent study of experimental GVHD reported that GVHD
increases erythrocyte oxidant generation and intracellular GSH
relative to normal controls [28]. However, the absence of Syn
controls, and single time point design together makes it difficult to
ascertain the role of GSH perturbation in early GVHD
pathogenesis.
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Given the multidimensional roles of SAA and other amino acid
metabolites in processes directly related to GVHD pathology, we
hypothesized that comprehensive profiling of these compounds
during the development of GVHD would provide new mechanis-
tic insights into its complex pathobiology, particularly in its early
phases. In this report, a thiol/redox metabolomics assay [29,30]
was used to simultaneously quantify redox states of SAAs and
other amino acid metabolites in plasma and target organs during
the development of experimental GVHD. These SAA-derived
metabolites have an important regulatory function during
inflammation by acting as ROS-scavenging antioxidants and by
modulating redox states of protein thiols [3,25,31]. Depletion of
tissue and systemic SAA-derived metabolites may promote cellular
injury and apoptosis and also trigger a series of events that up-
regulate inflammatory pathways [4,32]. The possible involvement
of SAA redox metabolism in GVHD has not been investigated,
but the important role that it plays in early inflammatory signaling
in other disease models [4,32-34] suggests that it could play a
critical role in the early stages of GVHD.

Our results demonstrate that oxidation of the host GSH-
regulated redox system and failure of compensatory upregulation
of GSH-synthesis enzymes occur prior to any evidence of change
in amino acids known to be sensitive to inflammation. These
results also indicate that this early shift in redox regulation
precedes GVHD initiation as established by rise in circulating
TNF-o. Lastly, the utility of plasma metabolomics to identify
biomarkers of hepatic injury during the early clinical phase of
GVHD is demonstrated.

Materials and Methods

Ethics Statement

All procedures were performed in compliance with the
recommendations in the Guide and the US Government Principles for
the Utilization and Care of Vertebrate Animals Used in Testing, Research,
and Traiming. The protocol was approved by the CHORI
Institutional Animal Care and Use Committee (IACUC Assurance
No: A3631-01). All invasive procedures were performed under
isofurane anesthesia, and efforts were made to minimize suffering
at all times. Sacrifice procedures were performed in the morning
following overnight fasting. Animals were sacrificed in their home
cage by COy inhalation to effect and followed by exsanguination
by cardiac puncture to obtain blood. All other tissues were
harvested in sterile hood following cardiac puncture.

Mice

Female mice C57BL/6 (B6: H-2"/CD45.2*, Thyl.2), BALB/c
(H-2d/CD45.2%), B6D2F1 (H-2"¢ CD45.27, Thyl.2"), and
B6.PL-Thyla (B6. Thyl.l: H-2, CD45.2", Thyl.1") were
purchased from The Jackson Laboratories (Bar Harbor, ME,
USA) and/or inbred at the animal facility of Children’s Hospital
Oakland Research Institute (CHORI) (Oakland, CA, USA). All
animals were 8-12 weeks of age at the time of transplantation.
Following transplantation, animals were fed standard fat-chow and
maintained in micro-isolator cages in pathogen free environment.
Animals were given Pen/Strep antibiotic water at a dose of 100
units/ml following lethal-radiation.

Bone Marrow Transplantation and GVHD Assessment
Mice underwent transplantation in accordance with the
protocol described previously [17,35,36]. Briefly, recipient mice
received lethal (1100 c¢Gy) x-ray irradiation using RS-2000 x-ray
biological irradiator (160 kV, 4.2 kW, radiation dose of 96 rads/
mt) (RadSource Technologies, Inc., Alpharetta, GA, USA).
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Figure 1. Survival and clinical course following major histocompatibility complex mismatched bone marrow transplantation (BMT).
A) Survival analysis of C57BL/6 mice following lethal radiation (XRT) alone, allogeneic (Allo) BMT (BALB/c H-24/CP45:20_, C57B| /g (Thy12: H-2b/CD45.29))
and syngeneic (Syn) BMT (C57BL/6 ThY!-1: H-2b/CDa5.24_, 57p) /g (Thy12: H-2b/CD4524)) By A time course of GVHD score changes in Allo and Syn BMT
mice. Based on this time course, we chose post-transplant Day+4 (pre-clinical) and Day +10 (clinical onset) time-points (arrows) for metabolomic

analysis in subsequent experiments.
doi:10.1371/journal.pone.0088868.g001

Radiation was administered as two fractions, 4 hours apart, to
minimize gastrointestinal toxicity. T cell-depleted (TCD) bone
marrow (BM) cells (10x10°%) plus either CD90* (5x10°% or CD4*
(3%10°% T cells from respective allogencic (BALB/c) or syngencic
(B6. Thyl.1) donors were injected intravenously into recipient
animals on day 0. To induce GVHD in unirradiated host, 50 x10°
whole splenocytes from B6 Thyl.1 donor mice were infused into
allogeneic (B6D2F1) and syngeneic (B6) mice. Survival was
monitored daily, and body weights and GVHD clinical scores of
recipients were measured thrice weekly, up to 30 days post-
transplantation and then weekly for 6 months. The degree of
systemic acute GVHD was assessed by a scoring system that
incorporates 5 clinical parameters—weight loss, posture (hunching),
activity, fur texture, and skin integrity, as described previously
[37]. The mice exhibiting signs of severe GVHD (>6) were
euthanized and the gut, liver, lungs and skin were harvested.

Histologic Analysis

Representative samples from the liver, gut and lungs were
placed in 10% phosphate buffered formalin, embedded in paraffin,
cut into 5 um sections and stained with hematoxylin and eosin for
histopathological examination. A pathologist reviewed histopa-
thology sections in a blinded manner to assess for GVHD. A semi-

quantitative system of scoring was used as previously described
[5,19,37]. This scoring evaluated apoptosis, portal infiltrates,
lobular infiltrates, bile duct damage and vascular endothelialitis.
The scoring system for each of these parameters denoted 0 as
normal, 1 as mild, 2 as moderate and 3 as severe. The percentage
of mice suffering from moderate to severe GVHD at the time of
euthanasia was noted.

Cytokine Analysis

Plasma samples from transplanted animals were aliquoted and
batched analysis was performed using FlowCytomix bead based
immunoassay (eBioscience, San Diego, CA) in 96 well microplate
format, in accordance with manufacturer’s instructions. The
standard curves were created using 5-fold dilution of appropriate
standard in culture medium and serum samples were analyzed
using mouse Th1/Th2 10 plex kit flowcytomix.

Protein Carbonyl Analysis

Protein carbonyls were measured as a biomarker of hepatic
protein oxidation by using the OxiSelect™ Protein Carbonyl
ELISA Kit (Cell Biolabs Inc, San Diego, CA). Briefly, flash-frozen
liver tissues (25 mg) were homogenized in 1 ml of phosphate-
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Table 1. Description of Experimental BMT Model.
Mismatch Conditioning Major T-cell

Donor Strain Recipient Strain Type Regimen Type Cell Type & Dosage
Model 1. GVHD with Conditioning Regimen
Syngeneic C57/Bl6 C57/Bl6 1100 cGy CD4+ and TCD-BM cells (10x106) with CD4+
(Syn) (Thy1.1: H-2b) (Thy1.2: H-2b/CD45.2+) CD8+
Allogeneic Balb/C C57/Bl6 MHC-, Il 1100 cGy CD4+ and TCD-BM cells (10x106) with CD4+
(Allo) (H-2d/CD45.2+) (Thy1.2: H-2b/CD45.2+) and miHAs CD8+
Model 2. GVHD without Conditioning Regimen
Syngeneic C57/Bl6 C57/Bl6 None Whole Splenocytes (50x106 cells)
(Syn) (Thy1.1: H-2b/ (Thy1.2: H-2b/CD45.2+)

CD45.24)
Allogeneic C57/Bl6 B6D2F1 MHC-, I, None CD4+ and Whole Splenocytes (50x106 cells)
(Allo) (Thy1.1: H-2b/ (H-2bxd, CD45.2+, and miHAs CD8+

CD45.2+) Thy1.2+)
MHC - Major histocompatibility complex.
MiHAs - Minor histocompatibility antigens.
doi:10.1371/journal.pone.0088868.t001
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buffered saline solution by using the Fastprep FP120 centrifuge
homogenizer (Qbiogene, Inc, Carlsbad, CA). Homogenized
samples were subsequently centrifuged at 20,000 x g to obtain
cytosolic protein fraction. Protein carbonyls in hepatic cytosolic
fraction (100 ug protein/ml) were quantified by dinitrophenylhy-
drazine (DNPH) derivatization followed by specific detection by
anti-DNP antibody in accordance with manufacturer’s instruc-
tions.

Fluorescence Activated Cell Sorter (FACS) Analysis

Hepatocytes were stained with CellROX™ (5 uM) and Thiol
Tracker Violet (T'TV; 20 uM) (Invitrogen) per manufacturers
mstructions. FACS analysis was performed using LSR Fortessa
(BD Biosciences). Data was analyzed using Flowjo software
(Treestar, Ashland, OR).

Redox Metabolomics
Plasma and hepatic SAA and other amino acid metabolites

were quantified using a liquid chromatography linked tandem
mass-spectrometry (LC/MS/MS) assay [6,20,29,30].
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Table 2. Change in metabolite concentrations following allogeneic and syngeneic bone marrow transplantation.
Syngeneic Syngeneic Allogeneic Allogeneic

Metabolite Control Day+4 Day +10 Day+4 Day+10 p FDR®

Metabolites that are differentially changed in Allo versus Syn BMT

F.GSH' 47.3+4.6° 4171147 429+1.2° 15.2+4.6° 15.6+4.0° 0.001 0.005

GSSG? 34*1.7° 5.7+0.6" 53*1.5% 18.9+8° 8.1x6.7% 0.000 0.003

GSH/GSSG (mV)? —148.0£5.3% —158.0+6.7° —160.6+2.8° —116.7£5.8° —128.9+11.3*¢ 0.000 0.000

Metabolites that are differentially changed relative to baseline control in Allo and in Syn BMT

Ergothioneine 03+0.2° 6.2+15° 87+1.1° 56+1.0° 8.2+3.6° 0.000 0.000

T. Homocysteine" 6.3+3.2° 19.2+6.4° 6.9+3.4° 17.8+5.7° 10.8+2.17 0.001 0.005

Phenylalanine 38.9+15.1° 100.8+30.7° 147.7+23.9° 87.0+17.3%° 98.7+38.2° 0.001 0.005

Tryptophan 73.7+21.0% 107.6+26.8° 159.3+38.6° 123.7+26.4° 160.224.5° 0.001 0.006

Glutamate 41.3+5.0° 51.7+18.2% 107.1%£22.7° 48.7+15.2° 100.2+37.7° 0.001 0.006

Isoleucine 86.5+48.8° 248.3+89.7° 263.6+1.0° 219.2+27.4° 225.2+90.3° 0.003 0.011

Beta-alanine 1.1+0.8° 1.9+0.3° 3.4+0.2° 1.8+0.4° 26+0.8° 0.009 0.026

Citrulline 55.1%22.2° 17.4+7.3° 103=5.6° 16.2%7.5° 31.9+324° 0.009 0.026

Aspartate 3.0+0.7° 1.820.4° 24+0,1%P 1.9%0.2° 2.0+0.5° 0.010 0.029

Histidine 62.9+27.0° 33.9+7.9° 38.3+10.3° 283+5.2° 39.2+9.7° 0.019 0.049

Ornithine 43.5+12.5° 19.8+8.7° 40.9+10.5° 30.5+13.3%P 4134%13.5° 0.026 0.063

Valine 112.1+24.9° 130.4=40.3° 234.1+26.3° 151.1£41.2°° 160.5+67.8%° 0.037 0.079

Tyrosine 58.5+30.5 113.5+32.9° 102.5+7.5*° 101.6+19.6° 80.1+23.5%° 0.035 0.079

T. Cysteine® 167.5+57.6° 233.0£92.1° 251.7£52.7>° 223.4+63.0*° 305.3+14.4° 0.049 0.098

Lethally irradiated B6 recipients (Irradiated) were transplanted with 5x10° T-cell depleted bone marrow cells (TCD-BM) and 3 x10° CD90* T-cells from B6 Thy1.1

(Syngeneic) or Balb/C (Allogeneic) donor mice.

All units are umol/L unless otherwise noted and values are expressed as Mean=*SD.

Statistical Analysis of Microarray with Tukey’s post hoc test was used to determine statistical differences between groups.

Different letters denote significant differences among treatment groups (e.g. ® versus ).

'F. GSH - non-protein bound Free GSH.

2GSSG - glutathione disulfide.

3GSH/GSSG (mV) — GSH/GSSG redox potential was calculated using the Nernst Equation as described in methods.

“T. Homocysteine — Total Homocysteine concentration obtained following plasma reduction with dithiothreitol (DTT).

SCysteine — Total Cysteine concentration obtained following plasma reduction with dithiothreitol (DTT).

SFDR- False discovery rate.

doi:10.1371/journal.pone.0088868.t002

Redox Calculation

The plasma redox potential for glutathione (GSH) was
calculated using the Nernst equation [20,21]; Eh = (redox poten-
tial at pH 7.4) +30 log ([oxidized disulfide]/[reduced thiol]?). The
standard redox potential used was —264 mV.

Quantitative Real Time PCR of Phase Il Genes

A portion of each liver was excised, flash frozen in liquid
nitrogen, stored at —80°C and homogenized using a Fast Prep
system (MP Biomedicals). Total RNA was isolated from mouse
livers using an RNeasy Mini Kit (Qiagen, Valencia, CA). cDNA
was prepared from 1 ug of total RNA per group using QuantiTect
Reverse Transcription Kit (Qiagen). Relative transcript amounts
of y-Glutamylcysteine Ligase Catalytic Subunit (GCLC) was
quantified using the [delta][delta] Ct method with 18S rRNA as
a control. PCR reactions were carried out using the ABI 7900
Real Time qPCR system (Life Technologies, Fredrick, MD) under
following cycling conditions: 95°C for 10 mins, and 40 cycles at
95°C for 10 mins and 60°C for 1 min. The primers used for
GCLC were: FP 5'CCACTGAGCTGGGAAGAGAC-3' and RP
5'-TCATGATCGAAGGACACCAA-3" and for 18S ribosomal
RNA were: FP5'-GTAACCCGTTGAACCCCATT-3" and RP
5-CCATCCAATCGGTAGTAGCG-3'.
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Table 3. Metabolomic Changes in the liver following syngeneic and allogeneic bone marrow transplantation.

Syngeneic Syngeneic Allogeneic Allogeneic
Metabolite Control Day+4 Day +10 Day+4 Day+10 p FDR*
Metabolites that are differentially changed in Allo versus Syn BMT
T.GSH' 403+14.12 68.0+16.3° 32.3+4.9° 432+12.6° 25.6+6.8° 1.2E-02 1.8E-02
F.GSH? 25.9+5,6° 28.1+12.8° 12.9+3.0*P 29.2+11.6° 49+4,0° 4.9E-04 1.1E-03
GSH/GSSG ratio 25.4+56° 9.6+8.9° 1.7+0.6° 3.8+1.6° 0.5+0.5° 1.1E-04 3.3E-04
AdoHcy 58+24° 0.1£0.04° 0.1£0.02° 0.2+0.1° 0.7%0.03¢ 3.5E-09 1.5€-07
Metabolites that are differentially changed relative to baseline control in Allo and in Syn BMT
AdoMet 84+7.4° 46+2.7°¢ 0.3+0.04° 2l5==k]acd 0.1+0.1° 1.2E-08 2.7E-07
Thiaproline 0.03+0.02° 0.7+0.3° 0.6+0.2° 0.6+0.2° 0.6+0.1° 1.2E-07 1.7E-06
g-aminoadipate 0.5+0.3" 47+17° 0.4+0.2° 43+25P 0.3+0.1° 4.9E-07 5.4E-06
Aspartate 3.7+25° 29.8+10.8° 31.0+15.0° 227+7.0° 283+27° 7.8E-06 6.8E-05
Cystine 0.03+0.0° 0.2+0.1° 0.08+0.05° 0.3+0.2° 0.1%0.0° 1.3E-05 7.6E-05
Ophthalmate 0.04%0.0 0.6+0.2° 0.5+0.4P 0.7%0.2° 0.40.4%P 1.4E-05 7.6E-05
Methionine 2.1%0.5° 3.2+0.8° 6.0%1.5° 3.9+0.6° 6.1%:1.2° 2.1E-05 9.3E-05
3-methylhistidine 0.02+0.00° 0.2+0.1° 0.26+0.1° 0.3+0.2° 0.3+0.1° 2.1E-05 9.3E-05
Cys/CySS ratio 13.0+3.1° 5.1+2.8° 25+1.4° 48+33° 1.0+0.4° 2.8E-05 1.1E-04
T.Homocysteine® 0.3%0.1° 25+1.6° 0.3%0.0° 41+27° 0.3%0.1° 2.9E-05 1.1E-04
Proline 28+1.5° 14.9+5,5° 21.6+7.1° 14.2+2.4° 21.1+36° 3.3E-05 1.1E-04
Glutamine 10.2+9.22 42.0+13.9° 29.0+1.4%F 39.8+7.0° 30.8+13.7° 4.7E-05 1.5E-04
Cysteine 0.4+0.12 23+1.2° 0.3+—0.04° 3.5+4.2° 0.2+0.1° 3.1E-04 8.4E-04
Serine 12.8+6.7 32.9+10.0° 53.6+9.4° 41.7+57° 543+87° 3.7E-04 9.5E-04
Spermine 19.9+7.2 72+1.1° 6.0+2.4° 10.0+3.3° 8.9+3.7° 4.3E-04 1.1E-03
Asparagine 57+25° 16.6+6.0° 19.5+55P 20.5+2.8° 22.1+54° 5.9E-04 1.2E-03
Ergothioneine 0.1%0.1° 1.28+0.5%¢ 3.1£0.0°¢ 3.0£2.5°¢ 5.0%0.4° 5.5E-04 1.2E-03
Alanine 32.8+14.9° 75.2+253° 81.5+15.8° 822+9.7° 742+11.2° 1.4E-03 2.8E-03
Threonine 6.0+2.6° 25+0.6™° 14.2+6.5%° 8.5+6.2>4 17.9+4.9° 1.6E-03 3.0E-03
Glutamate 25.4+9.8° 78.5+29° 68.1+37.1° 66.3+15.7° 59.4+11.7° 2.3E-03 4.3E-03
GSSG® 1.0+0.2° 25+1.6"° 42+2.4*° 42+27%F 5.8+2.0° 5.0E-03 8.8E-03
Ornithine 6.3+1.5° 15.2+6.0° 14.2+4.2° 12.9+25° 15.4+3.8° 6.1E-03 1.0E-02
Valine 86+0.8° 17.4+7.0° 16.6+3.0*° 14.6+3.9%P 16.9+2.1° 1.1E-02 1.7E-02
Arginine 0.1+0.0% 1.2+0.4° 0.2+0.2% 0.8+0.3° 1.1+0.5° 1.4E-02 2.1E-02
Tryptophan 34+1.7° 2.5+0.5%° 1.6+0.4° 1.9+1.0%° 1.5+0.3° 1.5E-02 2.2E-02
Phenylalanine 6.4+1.6 13.8+4.5° 11.4+1.7%P 10.5+3.8%° 10.9+2.1%P 3.3E-02 4.3E-02
Lysine 16.9+3.3° 35.6+15.4%° 31.9£106™ 2524537 33.9+7.4° 3.3E-02 4.3E-02
Sarcosine 04+03° 1.0%0.5° 0.8+0.7*° 0.8+0.3>° 0.6+0.4*° 4.0E-02 5.0E-02

(Syngeneic) or Balb/C (Allogeneic) donor mice.

differences among treatment groups (e.g. ? versus °).
'T. GSH - Total GSH (non-protein bound Free GSH +2GSSG+GSH-mixed disulfides).
2F. GSH - non-protein bound Free GSH.

“FDR - False Discovery Rate.
doi:10.1371/journal.pone.0088868.t003

Survival, Clinical GVHD Score and Serum Cytokine
Analysis

Survival data in each group were generated using Kaplan—
Meier lifetime survival probability methodology and the log-rank
(Mantel-Cox) test. GVHD scores and serum cytokine concentra-
tions were analyzed by ANOVA with Tukey’s Honest Significance
Test (HSD) post-hoc tests. PRISM software (SAS Institute, Cary,
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All units are pmol/L unless otherwise noted and values are expressed as Mean=£SD.
Statistical analysis of microarray with Tukey’s post hoc tests was used to determine statistical differences between the groups. Different letters denote significant

Lethally irradiated B6 recipients (Irradiated) were transplanted with 5x10° T-cell depleted bone marrow cells (TCD-BM) and 3 x10° CD90" T-cells from B6 Thy1.1

3T. Homocysteine - Total Homocysteine concentration obtained following plasma reduction with dithiothreitol (DTT).

NC, USA) was used for these tests and a p value <0.05 was
considered statistically significant.

Statistical Analysis of Metabolomic Data

All of the metabolomic statistical tests described below were
performed using the Metaboanalyst software platform [20,38].
Metabolite concentrations were normalized by the median
concentration quantified from untreated control samples (N =5).
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Table 4. Plasma and liver GSH Changes following syngeneic and allogeneic bone marrow transplantation without conditioning

regimen.

Syngeneic Syngeneic Allogeneic Allogeneic
Metabolite Control Day+4 Day +10 Day+4 Day+10 p FDR*
Plasma GSH, GSSG and redox potential
F.GSH' 473+4.6° 46.2+0.4° 39.4+5.8% 21.7+6.7° 21.4+10.7° 0.001 0.004
GSSG? 34+1.7° 73x1.0° 7.7%+3.5° 7.7+1.4° 14.9+11.3¢ 0.008 0.01
GSH/GSSG (mV)? —148.0+5.37 —158.0+2.2° —154.1+7.8° —136.8+6.3*¢ —127.9+£9.4%¢ 0.04 0.05
Liver GSH, GSSG and GSH/GSSG ratio
F.GSH 25.9+5.6" 36.3+4.5° 29.3+5.3% 24.7+19.5° 14.2+12.9° 0.001 0.006
GSSG 1.04+0.2° 45+37° 1.320.9° 12.2+9.9° 1.5+1.0° 0.001 0.006
GSH/GSSG Ratio 249+1.2% 8.2+0.7° 22.6+4.7% 2.1£4.3¢ 9.5+4.8° 0.003 0.011

"F.GSH - non-protein bound Free GSH.
2GSSG - glutathione disulfide.

“FDR - False Discovery Rate.
doi:10.1371/journal.pone.0088868.t004

Normalized values were cube root transformed, Pareto scaled and
mean-centered prior to statistical testing.

Univariate Analysis

For univariate analysis of data obtained from baseline controls,
Syn, Allo BMT at Day+4 and +10 time points, statistical analysis
of microarray (SAM) was performed with Delta values adjusted to
minimize false discovery rate below 10%. Tukey’s Honestly
Significant (Tukey’s HSD) was used to further quantify the
differences between the groups.

Principal Component Analysis (PCA)

PCA is an unsupervised classification method that projects high-
density data to new coordinated system with much smaller sets of
variables (principal components; PC), which describe the variabil-
ity in the data. Each principal component is orthogonal to each
other and each PC explains the greatest source of variance
remaining after previous PCs have been established. PCA
produces two plots; 1) scores plot: projects each sample on a
new coordinate system composed of PCs and are used to reveal the
intrinsic structure of data set in terms of variance, 2) loading plot:
displays variables that contributes to the group separation.

Partial-Least-Squares Discriminant Analysis (PLS-DA)

PLS-DA is a supervised technique where the discriminant
model is built with a prior knowledge of the group membership of
set of samples and is created to best explain the group
memberships of individual samples. PLS-DA has two outputs: 1)
score plot shows the sample distribution in the coordinate system
composed to the components selected, 2) Variable importance in
Projection (VIP) values which is a computation of influence of
every x term in the model on the group classification and larger
VIP values indicate a greater influence of x on group discrimi-
nation and generally, a VIP value of = 1 are considered
significant. Because PLS-DA is prone to over-fitting errors, the
significance of group discrimination by multivariate models was
cross-validated with the use of “leave-one-out” and permutation
testing.

PLOS ONE | www.plosone.org 6

GVHD was induced without conditioning in paternal in F1 hydrid (C57BL/6 — B6DBA2F1) model.

SAM analysis with Tukey’s HSD post hoc analysis was used to determine statistical differences among group.
All units are umol/L unless otherwise noted and values are expressed as Mean=*SD.

Different letters denote significant differences among treatment groups (e.g. ® versus 5.

3GSH/GSSG (mV) - GSH/GSSG redox potential was calculated using the Nernst Equation as described in methods.

Hierarchical Clustering Analysis (HCA) and Heat-map
Generation

Variables that were found to contribute most to the group
discrimination were used for hierarchical clustering analysis (HCA)
using Pearson’s test for distance measures and Ward’s minimum
variance method was used for clustering. Samples are in rows and
variables are in columns. The colors vary from deep blue to dark
brown to indicate data values change from very low to extremely
high.

Results

Establishment of the GVHD Time Course

GVHD was induced in the fully MHC-mismatched model
consisting of BALB/c — B6 following lethal irradiation (Table 1,
Model 1). The survival time course (Figure 1; Panel A) monitored
over 60 days shows that mice receiving the lethal radiation
conditioning regimen alone (XRT; N = 8) had a median survival of
11.5 days (100% mortality at 18 days), while 87.5% of Syn BMT
recipients (Syn; N = 8) survived during the first 60 days following
transplantation. Allo BMT recipients (N=8) had a median
survival of 23.5 days. The clinical GVHD score in the Allo group
started to increase significantly at post-transplant Day 7 (Figure 1,
Panel B). Based on this time course, post-transplant Day+4 (pre-
clinical) and Day +10 (clinical GVHD expressed) time points were
chosen for metabolomic analysis.

Amino Acid Metabolite Profiles Following Allo
Transplantation Indicate Early Failure of the GSH
Antioxidant Defense System

Plasma amino acid metabolomic changes following Syn and
Allo BMT at post-transplantation Days +4 and +10 were
compared to baseline wild-type (WT) controls. Of the 40
metabolites measured, 16 metabolites changed significantly
compared to baseline and are shown in Table 2. The most
striking change occurred at Day+4 in the GSH concentrations
where the Syn mice maintained adequate levels even after lethal
irradiation, but levels were severely depleted in the Allo mice. This
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Figure 2. Decreased expression of the y-glutamylcysteine
ligase and increased hepatic oxidant generation and protein
oxidative damage at Day+4 in Allo BMT. Panel A: At post-
transplant day 4, hepatocytes from Syn (B6—B6) and Allo (Balb/C—B6)
mice (N=4 per group) were freshly isolated and the mRNA transcripta
of the catalytic sub-unit of y-glutamylcysteine ligase (GCLC; Green, left
axis), were quantified by RT-PCR and normalized to 185 mRNA levels.
Cellular reactive oxygen species (ROS) levels were estimated by flow-
cytometric detection of CellRox Deep Red Reagent (CDRR) fluorescence.
Results are Mean=*SD. *=p<0.05. Panel B: Hepatic protein oxidative
damage levels in non-transplanted controls (Day 0; N=4), Syn (B6—B6;
N=3 per time point; Gray bar) and Allo (Balb/C—B6; N=5 per time
point; Black bar) BMT mice were measured by protein carbonyl ELISA
assay as described in methods. Results are mean=*SD. *=p<0.05 and
**=p<0.01.

doi:10.1371/journal.pone.0088868.9g002

result suggests that the antioxidant response mechanism is
impaired in Allo but not Syn animals during this early phase.
Consequences of these changes were reflected in the more
oxidized GSH/GSSG redox potential (more positive = more
oxidized) (Table 2).

The liver is the major site for GSH synthesis and is also a target
organ of GVHD [20,22,39]. As in the plasma, GSH was the only
metabolite in liver homogenates in which the concentration
significantly decreased in Allo BMT mice compared to Syn mice
at Day+4 (Table 3). As shown, hepatic total GSH in Syn BMT
was initially elevated at Day +4 and subsequently decreased to
baseline WT values. In contrast, the hepatic GSH did not increase
in Allo BMT mice relative to baseline at Day +4 (Table 3). By
Day+10, the liver GSH concentration had decreased to values
significantly lower than baseline (Table 3). These results suggest
that failure of Allo BMT hosts to increase hepatic GSH synthesis
during early GVHD is the cause of the depletion of plasma GSH
and a higher GSSG level.

PLOS ONE | www.plosone.org
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To determine whether the observed decline in GSH is due to
GVHD rather than to the conditioning regimen, GVHD was
induced in unirradiated recipients using a paternal to F1 hybrid
(B6 — B6D2F1) transplantation model (Table 1; Model 2). The
B6 — B6D2F1 is a well-established model where lethal GVHD
develops over the course of several months [22,23,40]. It has been
noted that 33% of the B6D2F1 recipients challenged with B6
splenocytes develop bone marrow failure induced by acute
GVHD. The remaining animals exhibited signs of subclinical
GVHD with protracted immune system insufficiency [24-26,41].

Comparison of plasma GSH and GSSG concentrations in
controls, Syn and Allo BMT recipients at days +4 and +10 post
T cell infusion showed significant alterations (Table 4). Despite
the lack of radiation injury, adoptively transferred Allo splenocytes
caused a significant decrease in plasma GSH concentration at
Days +4 and +10 compared to both baseline controls and the Syn
group. GSSG levels were significantly increased in Allo compared
to Syn recipients, but only at Day+10. The plasma GSH/GSSG
redox state as calculated by the Nernst equation showed a
significant loss in antioxidant capacity at both Days +4 and +10
(Table 4). However, the extent of plasma GSH/GSSG redox
potential loss was more modest than in the BALB/c —B6 model
following lethal radiation (Table 2). Interestingly, analysis of
hepatic GSH showed significant 40% increase in Syn mice while
the levels in Allo did not change relative to baseline controls
(Table 4). Hepatic GSSG levels in Allo mice were also
significantly higher at Day+4. In the Syn group, hepatic GSH
and GSSG levels had returned to baseline levels by Day+10
(Table 4). However, in the Allo group, hepatic GSH levels were
significantly lower compared to Syn and to untreated controls
(Table 4). These results suggest that a compensatory increase in
hepatic GSH is impaired in the Allo group, irrespective of whether
a conditioning regimen was applied.

A Blunted GSH Antioxidant Defense System Response
Involves Impaired Transcriptional Upregulation of y-
glutamylcysteine Ligase (GCL), the Rate-Limiting Enzyme
in GSH Biosynthesis

Due to the central role of GSH in cellular antioxidant protective
mechanisms, the induction of enzymes responsible for its synthesis
represents a key adaptive response to oxidative injury. The
synthesis of GSH from precursor amino acids requires Y-
glutamylcysteine ligase (GCL) and GSH synthetase. GCL cata-
lyzes the rate-limiting step. It is a heterodimer composed of
catalytic (GCLC) and regulatory (GCLM) subunits. GCLC
transcription is upregulated in response to increased oxidative
stress or xenobiotic exposure. An inadequate GCLC transcrip-
tional induction in response to a cellular ROS burden would result
in oxidative stress. At post-transplant Day+4, hepatocytes from
Allo BMT mice were freshly isolated and the cellular oxidant
burden and relative abundance of GCLC mRNA were estimated
by CellROX™ Deep Red reagent (CDRR) flow cytometric and
RT-PCR assay, respectively. As shown in Figure 2A, cellular
ROS levels increased by ~4-fold at post-transplant Day+4 in Allo
mice compared to the Syn BMT group, and the relative GCLC
RNA transcript abundance was decreased by ~50%. These results
strongly suggest that transcriptional responses required for
maintaining adequate cellular GSH levels, as occurred in the
Syn BMT mice, are impaired early following Allo transplantation
and before clinical GVHD develops.

Protein carbonyls are formed as a consequence of ROS-
dependent protein oxidative modification and are stable biomark-
ers of oxidative stress. As shown in Figure 2B, hepatic protein
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Figure 3. Temporal change in GSH oxidation and loss precedes the rise in TNF-o. Lethally irradiated B6 recipients (Irradiated) were
transplanted with 5x10° T-cell depleted bone marrow cells (TCD-BM) and 3 x10° CD90" T-cells from B6 Thy1.1 (Syngeneic) or Balb/C (Allogeneic)
donor mice (N=4 per group). Serum TNF-a, plasma GSH and GSSG concentrations were normalized to average control values. Panel A shows the
temporal patterns of mean Allo/Syn ratios of control-normalized serum TNF- (left axis; circle dotted line), plasma GSH (open triangle, right y axis) and
GSSG (open diamond right axis). Panel B shows the temporal changes in serum TNF-a, plasma GSH and GSSG for Allo and Syn groups separately and
values are expressed as fold-change over baseline control mean. *Denotes significant differences between Allo and Syn BMT mice. Data represents
mean * SD.

doi:10.1371/journal.pone.0088868.g003

carbonyl concentrations were significantly (p<<0.05) higher in Allo
BMT (15.5%2.5 ng/ml) as compared to both baseline controls
(Day 0; 1.3%0.5 ng/ml) and Syn BMT (8.9%£4.3 ng/ml) at Day +
4 and was remained elevated at Day +10.

Plasma and Hepatic Glutathione Depletion Precede Up-
regulation of Inflammatory Cytokines

To establish the temporal relationship between plasma GSH/
GSSG redox potential change and inflammatory cytokine
upregulation characteristic of GVHD, serum concentrations of
IL-2, IFN-v, and TNF-a were measured at post-transplant Days +
4 and +10. Figure 3A shows the Allo/Syn ratios of baseline
normalized values for the different end-points measured, whereas
Figure 3B shows the fold-change from baseline values for Syn and
Allo groups plotted separately for each of the endpoints measured.
As shown in Figure 3, the control-normalized serum IFN-y Allo/

PLOS ONE | www.plosone.org

Syn ratio was not significantly different at the time points. Serum
TNF-a concentrations were increased relative to baseline levels to
a similar extent in both Syn and Allo mice at Day+4 (Figure 3A
and B). However, at post-transplant Day+10, serum TNF-o in Allo
was significantly elevated relative to both non-transplant control
and Syn mice (Figure 3A and B). Divergent changes in plasma
GSH and GSSG were observed at Day+4 post-transplant
(Figure 3A and B). Mean plasma GSH decreased by approxi-
mately 60% from baseline values in the Allo mice group at Day+4
and was maintained at this reduced level at Day+10 (Figure 3B).
In the Syn group, mean plasma GSH concentrations were
maintained at levels similar to controls at both time points.
Plasma GSSG concentrations in the Allo group increased by ~6
fold at Day+4 and while it decreased by Day+10, the level was still
significantly higher than in the Syn and non-transplant controls
(Figure 3A and B). In contrast, GSSG levels were only slightly
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Figure 4. Significant correlations between hepatic GVHD scores and changes in plasma metabolite concentrations at Day +10. GVHD
was induced without conditioning in paternal in the F1 hybrid (C57BL/6 — B6DBA2F1) model. Pearson correlation coefficient analysis was used to
calculate the correlation between plasma metabolite concentrations and hepatic GVHD histopathological severity scoring obtained at Day+10.
*Denotes metabolites that showed significant correlations to hepatic GVHD severity scores. Abbreviations: Leu - Leucine, lle - Isoleucine, T. cysgly-
Total cysteinylglycine, GSH-Free GSH, T.GSH- Total GSH, Gly-Glycine, Arg-Arginine, Met-Methionine, Ser-Serine, Cit-Citrulline, T.Cys-Total cysteine,
MetSO-Methionine sulfoxide, T. Hcy-Total homocysteine, Cysgly-Cysteinylglycine, Sar-Sarcosine, Thr-Threonine, His-Histidine, Tyr-Tyrosine, Glu-
Glutamate, CySS-Cystine, Orn-Ornithine, Lys-Lysine, Cys Redox-Cysteine redox potential (mV), Cys-Cysteine, 3MH-3-Methylhistidine, Asp-Aspartate,
Phe-Phenylanine, Trp-Tryptophan, Asn-Asparagine, Ala-Alanine, Pro-Proline, Erg-Ergothioneine, B.Ala-p-Alanine, GSH Redox -GSH/GSSG redox
potential (mV), AdoHcy - S-adenosylhomocysteine, GSSG - GSH disulfide.

doi:10.1371/journal.pone.0088868.g004

elevated in the Syn group at Days +4 and +10. However, it should Several metabolites unrelated to GSH metabolism also were
be noted that even with this small decline in GSSG, the plasma significantly correlated with histopathological changes in the liver
GSH/GSSG redox potential remained low (Table 2), primarily (Figure 4). These metabolites include: (a) f-alanine, a degradation

because plasma GSH is the major determinant of the GSH/GSSG product of dipeptides, carnosine, anserine, and pantothenic acid
redox potential. These data suggest that impaired GSH antiox- (vitamin B5); (b) S-adenosylhomocysteine (AdoHcy), a product of
idant defense compensation in Allo mice occurs before TNF-o S-adenosylmethionine (AdoMet) methylation; (c) Leucine/isoleu-
upregulation at Day+10. cine, branched chain amino acids.

Interestingly, plasma Arg, a requisite precursor for NO
Plasma GSH Depletion at Day+10 Correlates with Hepatic ~ synthesis, and Cit, also generated by iNOS enzymes, failed to
GVHD Severity correlate with liver histopathology. Plasma Trp, which is a
substrate of IDO enzymes previously implicated in GVHD, also

The correlation between plasma GSH and hepatic GVHD
did not correlate with liver histopathology.

severity was determined using the paternal to F1 hybrid model
(Table 1, model 2). This model was chosen because inter-animal

variations in GSH and hepatic GVHD were greater than in model Increased GSH Metabolic Precursors and Catabolites in
1, and thus this model provided an opportunity to examine Allo BMT Mice Suggest Both Impaired GSH Synthesis and
potential correlations between plasma metabolites and the severity Enhanced Turnover

of GVHD in the liver. As shown (Figure 4), histopathological Supervised Principle Component Analysis (PCA) and unsuper-
scores and plasma GSSG were strongly and positively correlated vised (PLS-DA) modeling permit identification of subtle metabolic
(*=0.65; p=0.002). Significant positive correlations were also shifts that may not achieve statistical significance in univariate
were observed in the GSH/GSSG redox potential (more analyses. These techniques were used to examine the metabolomic
positive =more oxidized). Significant inverse correlations were separation of the Allo and Syn BMT and baseline control groups.

also observed between liver histopathological damage and plasma The PCA scores plot (Figure 5: Panel A) displays each mouse
total cysteinylglycine (T. Cysgly; GSH catabolite), GSH, and total sample as a point on the plot (Figure 5A) and shows the intrinsic
GSH (T. GSH), suggesting that concurrent plasma GSH/GSSG segregation patterns of individual samples and group variances. An
oxidation state reflects the extent of GVHD injury in the liver. overview of the PCA score matrix using the first five principal

components indicated that the best separation of Allo and Syn
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Figure 5. Plasma metabolome discriminates Allo from Syn BMT and untreated controls at Day+4. Lethally irradiated B6 recipients were
transplanted with 5x10° T-cell depleted bone marrow cells and 3 x10°® CD90* T-cells from B6 Thy1.1 (Syngeneic) or Balb/C (Allogeneic) donor mice
(N=4 per group). Principal component analysis (PCA) and partial-least squares discriminant analysis (PLS-DA) was performed using plasma
metabolite concentrations quantified at Day+4. Panel A shows the PCA scores plot. The different colors and letters signify the five groups in the
study: Healthy controls (A; red), Syn Day+4 (B; Green), Syn Day+10 (C; Blue), Allo Day+4 (D; Cyan), and Allo Day+10 (E; Purple). Untreated controls and
the BMT groups are separated along the PC1 axis whereas Allo are separated from the Syn group along the PC 3 y-axis. Solid line shows the direction
of Allo separation from Syn. Panel B shows the corresponding PCA loading plot for PC1 and PC3 shown in panel A. Total Cysgly, GSH, Cys, Trp and
Cysth were variables that contributed the most to the separation of groups identified by the PCA analysis. Panel C shows the PLS-DA scores plot. The
group IDs are represented by letters and colors described in Panel A. Panel D shows the heat-map generated from the top 10 metabolites
contributing to group discrimination as identified by PLS-DA analysis. Each metabolite is arranged in columns and the individual concentrations
within a column are normalized by respective median concentrations. Rows represent different mice and their group ID is shown on the right side of
each row. These group IDs are represented by different colors on the left side that correspond to the same color codes in Panels A and C.
Concentrations that are two fold above or below the mean are highlighted in amber or in blue, respectively. Dendogram and the 3 nodes (1-3)
classified by hierarchical clustering analysis are shown on the left.

doi:10.1371/journal.pone.0088868.g005

BMT mice was achieved when principal components 1 and 3 were
used (data not shown). The first PC (PC 1, x-axis), which explained
26% of the variability in the data, separated the controls (A) from
the other 4 groups: Syn BMT Day+4 (B) and +10 (C) and Allo
BMT Day+4 (D) and +10 (E). The separation of Syn and Allo
BMT groups at different time points is seen along the y-axis (PC

In the PCI versus PC3 loading plot (Figure 5), Panel B
illustrates that the plasma levels of Total Cys, Cysgly, GSH, Trp
and Cysth were key segregating features that discriminated Allo
D+10 from Syn groups. Accumulation of plasma GSH precursors
(Cysth, Cys) and its catabolite (Cysgly) implicate impaired GSH
synthesis in early GVHD. This is further supported by the GCL

3), which is marked by the solid line (Figure 5: Panel A). As
shown, Syn D+4 (B) and D+10 (C) had similar metabolomic
compositions and closely overlapped with each other. Allo D+4
samples (D) segregated below the two Syn groups with a more
significant separation being achieved with Allo D+10 (E) samples.

PLOS ONE | www.plosone.org
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mRNA data shown in Figure 2. Although Total Cys, Cysgly, Trp
and Cysth were not significantly different by univariate analysis,
the PCA results suggest that these variables collectively discrim-
mate between Allo and Syn groups, and demonstrate that early
GVHD is associated with broad perturbations in sulfur amino acid
metabolism in Allo mice.
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Figure 6. GVHD associated shifts in GSH metabolism in Allo relative to Syn BMT at Day+4. The pathway map of GSH-synthesis related
metabolites are shown. The significance (p value) and the trends for the mean concentration differences between Allo and Syn mice are denoted by
different colors. Green represents metabolites with mean concentrations in Allo mice that are significantly (p>0.5) increased (>25%) over syn mice.
Yellow represents metabolites that are increased (>25%) in Allo, but was not statistically significant (p>0.05). White denotes metabolites that did not
change greater £25%. Orange represents metabolites whose mean concentration in Allo decreased by more than 25%, but did not reach significance
(p>0.05). Red identifies metabolites that decreased in Allo by more than 25% and was also significant (p<<0.05).

doi:10.1371/journal.pone.0088868.g006

Supervised PLS-DA analysis (Figure 5C and D) was performed
to confirm the class separation revealed by the PCA modeling. A
five-class model was built to differentiate the five groups defined in
Panel A: baseline controls (A), Syn (Day+4 (B), Day+10 (C)) and
Allo (Day+4) (D), Day+10 (E)). As with results of the PCA analysis,
segregation of the different BM'T groups from the baseline controls
occurred in the direction of Component 1, which explained 25%
of the variance in the data set (Figure 5C). Syn Day+4 and +10
showed overlapping metabolomic profiles and no separation was
observed within the Syn group. Significant separation of Allo
groups 1s evident in Day +4 and +10 groups with +10 groups
showing a more profound separation from Syn groups. In PLS-DA
analysis, both R? and Q? are used to test the predictive power of
the model. A “Leave-One-Out” cross-validation test using a 3
component model gave an R*Y)=0.98 and Q7cum)=0.8,
indicating that the PLS-DA model explains 98% of response
variability. Q7 is an estimate of the predictive ability of the model
and a value greater than 0.5 is regarded as good [42]. A
permutation test with 2000 permutations and separation distance
as a test statistic was significant (p = 0.025) and confirmed that this
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model had greater Q7 and R? values than distributions calculated
from permuted data.

To investigate additional group segregation, the top variables
identified by PLS-DA analysis were subjected to hierarchical
cluster analysis (HCA) to generate a heat-map shown in
Figure 5D. As shown, all the metabolites used in the HCA
analysis had Variable Importance in Projection (VIP) values >1.
The VIP is a computation of influence of every x term in the
model on the group classification and larger VIP values indicate a
greater influence of x on group discrimination; a VIP value of = 1
is considered significant. In Figure 4D, the rows represent each
sample and the columns show the respective metabolite concen-
trations. The colors in each cell range from dark blue to brown
and represent concentration changes from extreme low to high.
The dendogram tree shown on the left (Figure 5D) reveals three
main clusters composed of baseline controls (Cluster 1; A), Allo
(Cluster 2; D and E) and Syn (Cluster 3; B and C). Note that GSH
and GSSG cells from Allo mice have a very distinct distribution
compared to the Syn group. PLS-DA analysis also identified His,
Cit and branched chain amino acids (Ile, Val), and aromatic

February 2014 | Volume 9 | Issue 2 | 88868



amino acids (Phe, Tyr) but as shown in Figure 5D, these variables
were useful in discriminating the baseline controls from BMT
recipients but not for segregating Allo from Syn BMT group.

A summary of changes in the GSH metabolic pathway on Day+
4 is presented in Figure 6. The significant decline in plasma GSH
and rise in GSSG is noted by red and green respectively. Despite
low GSH in Allo mice, the concentrations of its rate-limiting
substrate, Cys, trended upward (p=0.3), suggesting it was not
limiting. Intermediates (S-adenosylmethionine, Cysth, Ser) that
lead to endogenous Cys production were all elevated in Allo mice,
which suggests that Allo perturbations specifically impair GSH
homeostasis without altering the upstream pathways that supply
Cys required for its synthesis (Figure 6).

Discussion

The major aims of the current work were to identify metabolic
pathways and metabolites that are perturbed early in the course of
developing GVHD after Allo BMT transplantation. Additionally,
we aimed to identify plasma metabolic correlates of hepatic
GVHD injury during the early clinical stages of GVHD. Using
both conditioning-dependent and independent models of GVHD,
rapid loss of plasma GSH and accumulation of its oxidized form
occurs in early stages (Day +4) (Tables 2, 4). These effects on the
plasma GSH/GSSG redox state preceded the TNF-o induction
that is associated with clinical GVHD (Figure 3), suggesting that
oxidative stress is an upstream-event in the pathogenesis of
GVHD. This was further confirmed by our data that showed early
(Day +4) rise in hepatic oxidant production and protein carbonyl
formation in Allo relative to Syn mice (Figure 2.). Despite
significant increase in liver oxidative stress, cellular GSH synthesis
enzyme expression was lower in Allo when compared to Syn group
(Figure 2). Decreased hepatic GSH synthetic activity during early
GVHD was further corroborated by our observation of lowered
hepatic GSH and increased accumulation of its precursor
metabolites in Allo animals (Table 3 and 4). Collectively, these
data establish that a compensatory GSH antioxidant defense
response observed in the Syn group (Table 3 and 4) is largely
absent in Allo mice and is apparent very early in GVHD
pathogenesis. Correlation analysis of hepatic histopathological
scores with plasma metabolites at Day+10 in the paternal into F1
GVHD model also showed that the severity of hepatic injury is
correlated with increased oxidation of plasma GSH. The
implications of these results are discussed below.

Sensitive Plasma and Hepatic GSH Depletion during Early
GVHD

Comprehensive analysis of the major plasma amino acids and
secondary metabolites of arginine catabolism allowed us to
establish the relative sensitivity of plasma and hepatic GSH
changes compared to other amino acid catabolic pathways. The
panel of 40 analytes quantified included the 20 major amino acids,
secondary metabolites produced from Arg catabolism and SAA-
derived metabolites. Arg catabolism to citrulline and ornithine is
increased during inflammation and we have shown previously in
RAW macrophage cells that Arg loss and increased formation of
its products are most sensitive biomarkers of macrophage
activation [30]. Increases in wurinary kynurenine which is
synthesized from Trp by the enzyme indoleamine 2,3-dioxygenase
(IDO) has been implicated as early biomarker of GVHD [43].
Despite their known involvement in GVHD, our data suggest that
plasma and hepatic GSH and GSSG are more sensitive than Arg
or Trp-related metabolites in detecting early hepatic oxidative
stress injury.
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To the best of our knowledge, acute changes in plasma and liver
GSH metabolism following Allo and Syn BMT and during the
early GVHD period have not been systematically examined. Sari
and co-workers reported decreases in plasma antioxidant enzyme
activities and increases in plasma lipid oxidation in Allo BMT
patients 30 days post-HSC'T [44]. Using a murine model of
GVHD, Amer and co-workers reported an increased cellular
oxidant burden and decreased GSH status in erythrocytes and in
lymphocytes in GVHD mice 5 weeks following transplantation
[28]. While results of these studies [3,25,28,31,44] are consistent
with findings reported here, because these earlier studies do not
focus on the early GVHD initiation period, it was unclear whether
GSH depletion and oxidation are secondary consequences of
inflammation or are preceding events that are involved in the
initiation of alloreactivity. By comprehensively measuring GSH
pathway metabolites and GSSG, our results establishes that
depletion of GSH occurs prior to TNF-a induction and implicate
them in the GVHD initiation process. Studies using a murine
model of transplant associated Idiopathic Pneumonia Syndrome
IPS) [4,27,32], found that Allo BMT caused early depletion of
lung and hepatic GSH. Because assessments of inflammation and
histopathology were not performed in this report, the temporal
relationship between GSH depletion, cytokine upregulation, and
subsequent tissue damage was not established.

Hepatic Oxidative Stress is an Early Event that Precede
systemic Rise in TNF-a

Liver has one of the highest tissue concentrations of GSH.
Plasma GSH concentrations are primarily determined by hepatic
GSH biosynthesis and efflux [39,45]. Hepatic GSH efflux into the
plasma decreases proportionally when liver GSH declines [46].
GSSG efflux also increases in accordance with intrahepatic
concentrations [47]. Oxidative stress increases liver GSSG, leading
to its increased export through multi-drug resistant protein (MRP)
transporters [48-50]. A previous study has shown that initial signal
for T-cell infiltration can be detected as early as Day+3 following
transplantation [51]. Consistent with this finding, evidence for
significant rise in hepatic oxidative stress was obtained as early as
Day +4 following Allo BMT. As presented in figure 2, hepatocytes
isolated from Allo hosts at Day+4 exhibited a significantly higher
ROS burden and accumulated more protein oxidation than those
from Syn mice. GSSG concentrations in livers of Allo mice were
significantly higher than livers of both baseline and Syn mice
(Figure 3 and Table 2). Thus, increased plasma GSSG may in
part be due to increases in hepatic GSSG export. Protein carbonyl
concentrations that are formed as a consequence of protein
oxidation also increased in Allo BMT at Day+4 and clearly
establish that liver oxidative stress and damage occurs prior to the
rise in circulating TNF- a.

Despite an early increase in hepatic oxidative stress, mRNA
abundance of GCLC, the rate-limiting enzyme in GSH synthesis,
and total GSH were significantly lower in Allo mice in comparison
to the Syn group. Total hepatic GSH concentrations in Syn mice
were increased by ~70% relative to baseline (Table 4), suggesting
that transcriptional upregulation of the GSH antioxidant defense
system may be responsible for decreased ROS in Syn hepatocytes.
The mechanism underlying an Allo-specific dysregulation of the
cellular antioxidant response remains unclear. It is possible that
alloreactive 'T' cells secrete cytokines or factors that dysregulate
GSH homeostasis. Changes in localized cytokine levels within
tissues such as the liver may not be detected in plasma, whereas,
acute changes in liver GSH metabolism may be more sensitively
reflected in the plasma compartment during early GVHD.
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Early GSH/GSSG Redox Dysregulation may Increase
Severity of Inflammation and GVHD Through NFkB

Dependent and Independent Mechanisms

Key findings in this study are that the GVHD-associated plasma
GSH/GSSG ratio declines at Day+4 before TNF-o induction, and
that plasma GSH depletion and oxidation at Day+10 correlates
with hepatic GVHD severity. Though potential cause-and-effect
relationships between early plasma GSH loss and subsequent
cytokine elevation or GVHD severity were not addressed in this
study, several precedents suggest such a causal relationship is
plausible. (a) Host GSH/GSSG redox potential change may
impact NFkB-dependent inflammatory signaling [52-54]. Cellular
GSH depletion leads to sensitization of peroxide or reactive
nitrogen species-dependent activation of NFxB [53,54]. Although
cellular mechanisms are incompletely understood, GSH depletion
may potentiate NF«B activation through potentiating oxidation of
tyrosine phosphatases such as Map Kinase Phosphatase-1 (MKP-
1) [55] and Dynein light chain (LC8) [56]. (b) In addition to direct
involvement in NFxB, accumulation of extracellular GSSG and
protein oxidation may enhance Damage-Associated Molecular
Pattern (DAMP)-mediated inflammatory signaling through S-
glutathionylation of DAMP molecules such as high mobility group
protein Bl (HMGBI) [57,58]. (c) GSSG has been shown to
enhance activities of cell surface leukocyte adhesion molecules,
such as vascular adhesion molecule-1 (VCGAM-1) and Intercellular
adhesion molecule —1 (ICAM-1) [59-61] resulting in increased

inflammation.

Addressing the Impaired GSH Biosynthetic Pathway: A
Therapeutic Target for GVHD Prevention?

These results emphasize the importance of understanding the
mechanisms that lead to increased oxidative stress during GVHD
pathogenesis, and also point to GSH biosynthesis as a potential
target for GVHD prevention. How this might be accomplished
depends on which component of the GSH homeostatic system is
impaired in the early stages after transplantation. GSH is an
endogenously synthesized compound, which is poorly taken up
through diet. Clinical approaches to raise GSH have predomi-
nantly been focused on N-acetylcysteine (NAC) as a cysteine pro-
drug to boost cellular GSH synthesis. However, the metabolic data
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