
Vol. 30 no. 4 2014, pages 569–570
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btt699

Structural bioinformatics Advance Access publication November 30, 2013

GPU linear and non-linear Poisson–Boltzmann solver

module for DelPhi
José Colmenares1, Jesús Ortiz2 and Walter Rocchia1,*
1Drug Discovery and Development Department and 2Advanced Robotics Department, Istituto Italiano di Tecnologia (IIT),
via Morego, 30, 16163 Genova - Italy

Associate Editor: Anna Tramontano

ABSTRACT

Summary: In this work, we present a CUDA-based GPU implemen-

tation of a Poisson–Boltzmann equation solver, in both the linear and

non-linear versions, using double precision. A finite difference scheme

is adopted and made suitable for the GPU architecture. The resulting

code was interfaced with the electrostatics software for biomolecules

DelPhi, which is widely used in the computational biology community.

The algorithm has been implemented using CUDA and tested over a

few representative cases of biological interest. Details of the imple-

mentation and performance test results are illustrated. A speedup of

�10 times was achieved both in the linear and non-linear cases.

Availability and implementation: The module is open-source and

available at http://www.electrostaticszone.eu/index.php/downloads.

Contact: walter.rocchia@iit.it

Supplementary information: Supplementary data are available at

Bioinformatics online

Received on August 27, 2013; revised on November 2, 2013;

accepted on November 24, 2013

1 INTRODUCTION

The Poisson–Boltzmann equation (PBE) is a widely used tool to

estimate the electrostatic energy of molecular systems in ionic

solution. Given the continuously increasing size of structural

data for proteins and other macromolecules and the need to

deal with bigger and more complex structures, the availability

of tested and reliable algorithms on the most recent and afford-

able computational architectures, such as Graphical Processing

Units (GPUs), is highly desirable. In this context, we present an

implementation on a GPU architecture of both a linear and a

non-linear PBE solvers based on the finite difference (FD)

scheme. The first use of an FD approach to solve the PBE can

be ascribed to Warwicker and Watson (1982). Our implementa-

tion follows that adopted by the DelPhi solver and described in

Nicholls and Honig (1991), which exploits the checkerboard

structure of the FD discretization of the Laplace differential op-

erator and adopts successive over relaxation to converge to the

solution. To our knowledge, this is the first description of a GPU

implementation of the non-linear PBE, which follows the same

approach used by DelPhi and detailed in Rocchia et al. (2001).

Our implementation can be executed on any NVIDIA card with

Compute Unified Device Architecture (CUDA) capabilities.

2 SERIAL NUMERICAL SOLUTION

The PBE rules the electrostatic potential of a system where free

charges and dipoles react to fixed charges located on the solute.
This can be thought of as an extension of the Debye–Huckel

continuum electrostatic theory [see Debye and Huckel (1923)].
It is successfully used in biophysics to estimate the electrostatic

energy of biomolecular systems in ionic solution as shown by
Grochowski and Trylska (2007). From the mathematical stand-
point, the PBE is a second order, elliptical and non-linear partial

differential equation, which, in the case of a monovalent salt
dissolved in the solution, takes the following form:

r �
�
�ðxÞr�ðxÞ

�
¼
�1

�0
�fixedðxÞ þ �2ðxÞsinhð�ðxÞÞ ð1Þ

where � is the electrostatic potential, " is the local relative di-
electric constant, �0 is the permittivity of the vacuum and �ðxÞ is
null inside the solute and it equals the reciprocal of the Debye
length in the solution. This equation can be rewritten in a way

that isolates the non-linear dependence on the potential:

r � �ðxÞr�ðxÞ½ � � �2ðxÞ�ðxÞ ¼

�
�fixedðxÞ

�0
þ �2ðxÞ

�
sinhð�Þ ��

� ð2Þ

This form is particularly suitable for devising the non-linear

algorithm as an adaptation of the linear one, according to a
perturbative approach. The FD discretization of the PBE and

application of the successive over-relaxation method leads to the
following iteration stencil:

�
ðnþ1Þ
j ¼ !

X6
i¼1

�i�
ðnÞ
i þ

qj
�0h
þ �j

X6
i¼1

�i þ h�ð Þ2

0
BBBB@

1
CCCCA
þ 1� !ð Þ�

ðnÞ
j ð3Þ

where qj is the discretized fixed charge, h is the grid spacing,
� accounts for the non-linear correction, if present, and ! is

the over-relaxation factor. The best value for ! can be obtained,
in the linear case, from the highest eigenvalue of the iteration

matrix as seen in Stoer and Bulirsch (2002). This method is
stable, as the iteration matrix is diagonally dominant. In the

non-linear case, over-relaxation can lead to divergence and an
adaptive method to assign ! is used, as detailed in Rocchia et al.
(2001). Dirichlet boundary conditions are usually adopted based

on the analytical solution of the linearized PBE in spherical sym-
metry, a few considerations on possible alternatives can be found

in Rocchia (2005).*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com 569

http://www.electrostaticszone.eu/index.php/downloads
mailto:walter.rocchia@iit.it
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt699/-/DC1
-
,
F
-
D
S
O
R
 (SOR)
Poisson-Boltzmann equation
-
(
)
,
,
since


3 GPU IMPLEMENTATION

The GPU implementation borrows from the algorithm originally
given by Nicholls and Honig (1991). All the calculations related

to the stencil are done on the GPU card (or equivalent device).
Interestingly, the stencil in Equation (3) shows a checkerboard
(‘odd and even’) structure, implying that updating a point

requires only the knowledge about its nearest neighbors, which
are of opposite parity. Therefore, the execution can be divided in
two segments, alternating the update of odd and even points.
Within each segment, the calculations are independent, so any

further parallelization is trivial. Therefore, the physical grid is
partitioned in two logical subgrids, odd and even. Our GPU
implementation further exploits this structure and loads alter-

nately odd and even points to the ‘texture’ memory of the
device to optimize the memory access. Dedicated data structures
separately address charged grid points, and those that are at the

boundary between regions with different dielectric. A thread
starts from every grid point of the bottom xy slice of each sub-
grid and then proceeds along the z direction. A single step along

z in a subgrid corresponds to an increment of two in the physical
grid. Nearby threads in a xy slice of a subgrid are gathered in
blocks and are given access to a common shared memory.
Basically, a thread does a loading step, followed by an updating

step and finally it moves to the upper slice in the same subgrid.
For example, before updating an odd point a thread loads to the
shared memory the even point having its same index. Because all

the threads of a block act in parallel, and thanks to a purposely
designed indexing scheme, an odd thread block in one step loads
simultaneously all the even grid points needed for the updating

task with the exception of the neighboring points that pertain to
the adjacent blocks and of those that are in the z direction. We
cope with the first problem by adding a suitable overlap between
blocks borders. The ‘z� 1’ and the ‘zþ 1’ points of the physical

grid are not present in the shared memory and therefore need
further accesses to the ‘texture’ memory. The number of these
accesses is halved by saving each ‘zþ 1’ point in a temporary

variable, which plays the role of the ‘z� 1’ point once the
thread has moved to the upper slice. In the Supplementary
Material, a graphical description of the algorithm is provided,

whereas a more detailed explanation in the case of the linear PBE
is given in Colmenares et al. (2013). Similarly to the DelPhi ap-
proach, the non-linearity is treated as an additive charge-like

term, which affects only the grid points that are located in solu-
tion and which is gradually inserted during the solution. Whether
to update the non-linear term is decided at the CPU level, based
on a heuristic approach as in the DelPhi code [Rocchia et al.

(2001)].

4 RESULTS

The results in Table 1 show the speedup between the serial code

executed on a CPU with an AMD Opteron (1.4GHz) chip and a

Tesla Kepler K20m. The solver was run on the fatty acid amide

hydrolase protein with 8325 atoms. A monovalent salt concen-

tration of 0.15M was used. The relative dielectric constant of the

molecule was taken as 2.0 and that of the solution as 80.0. The

Debye length is roughly 8 Å. The speedup of the non-linear

algorithm is comparable with that of the linear one. In fact,

the former benefits from a larger number of floating point oper-

ations but it suffers from a larger number of data transfers.

ACKNOWLEDGEMENT

The authors acknowledge the IIT platform Computation and

Dr Decherchi for help in linking the module to the DelPhi code.

Funding: National Institutes of Health (1R01GM093937-01).

Conflict of Interest: none declared.

REFERENCES

Colmenares,J. et al. (2013) Solving the linearized Poisson-Boltzmann equation on

GPUs using CUDA. In: 21st Euromicro International Conference on Parallel,

Distributed and Network-Based Processing (PDP). pp. 420–426.

Debye,P. and Huckel,E. (1923) Zur theorie der elektrolyte. Physik. Zeits., 24,

185–206.

Grochowski,P. and Trylska,J. (2007) Continuum molecular electrostatics, salt

effects, and counterion binding - Review of the Poisson-Boltzmann theory

and its modifications. Biopolymers, 89, 93–113.

Nicholls,A. and Honig,B. (1991) A rapid finite difference algorithm, utilizing

successive over-relaxation to solve the Poisson-Boltzmann equation.

J. Comput. Chem., 12, 435–445.

Rocchia,W. (2005) Poisson-Boltzmann equation boundary conditions for biological

applications. Math. Comput. Modell., 41, 1109–1118.

Rocchia,W. et al. (2001) Extending the applicability of the nonlinear poisson-

boltzmann equation: multiple dielectric constants and multivalent ions.

J. Phys. Chem. B, 105, 6507–6514.

Stoer,J. and Bulirsch,R. (2002) Numerical Mathematics. Springer, Berlin Heidelberg

New York.

Warwicker,J. and Watson,H. (1982) Calculation of the electric potential in the

active site cleft due to -helix dipoles. J. Mol. Biol., 157, 671–679.

Table 1. Fatty acid amide hydrolase protein—8325 atoms—297� 297�

297 grid points

Computing

step

Linear solver Non-linear solver

GPU (CPU, speedup) GPU (CPU, speedup)

Boltzmann 9.060 s (1min 31 s, �10.05) 8.83 s (1min 28 s, �9.96)

Iteration 0.015 s (0.18 s, �10.60) 0.035 s (0.44 s, �12.57)

Total 10.250 s (1min 38 s, �9.61) 10.14 s (1min 37 s, �9.55)

Note: The execution time is reported per computing step: ‘Boltzmann’ includes the

overall time spent for Laplace and Boltzmann updates. ‘Iteration’ is the time spent

in a single iterative step. ‘Total’ includes all the iterations and the initialization of the

GPU card.

570

J.Colmenares et al.

''
''
T
 therefore
-
''
''
-
2
-
,
-
Since
''
-
''
''
''
''
''
''
''
''
-
''
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt699/-/DC1
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt699/-/DC1
i
nformation
ile
or not 
n
)
F
A
A
H
 (FAAH)
to

