
Vol. 30 no. 4 2014, pages 576–577
BIOINFORMATICS APPLICATIONS NOTE doi:10.1093/bioinformatics/btt712

Genetics and population analysis Advance Access publication December 10, 2013

forqs: forward-in-time simulation of recombination, quantitative

traits and selection
Darren Kessner1 and John Novembre2,*
1Bioinformatics Interdepartmental Program, University of California, Los Angeles, CA 90095 and 2Department of Human
Genetics, University of Chicago, Chicago, IL 60637, USA

Associate Editor: Martin Bishop

ABSTRACT

Summary: forqs is a forward-in-time simulation of recombination,

quantitative traits and selection. It was designed to investigate haplo-

type patterns resulting from scenarios where substantial evolutionary

change has taken place in a small number of generations due to

recombination and/or selection on polygenic quantitative traits.

Availability and implementation: forqs is implemented as a com-

mand-line Cþþ program. Source code and binary executables for

Linux, OSX and Windows are freely available under a permissive

BSD license: https://bitbucket.org/dkessner/forqs.

Contact: jnovembre@uchicago.edu

Supplementary information: Supplementary data are available at

Bioinformatics online.

Received on October 14, 2013; revised on November 20, 2013;

accepted on December 4, 2013

1 INTRODUCTION

Simulations have a long history in population genetics, both for

verifying analytical results and for exploring population models

that are mathematically intractable. Population genetics
simulations can be broadly classified as forward-in-time

(e.g. Wright–Fisher) or backward-in-time (e.g. coalescent).

Coalescent simulations [e.g. ms (Hudson, 2002), MaCS (Chen

et al., 2009), fastsimcoal (Excoffier and Foll, 2011)] are effi-

cient for simulating neutral sequence data because they only need
to track lineages that are ancestral to the sample. Although it is

possible to simulate certain selection scenarios within the coales-

cent framework (Ewing and Hermisson, 2010; Hudson and

Kaplan, 1988), one must turn to forward-in-time simulations

to model selection in a flexible way.
Many forward-in-time simulators are currently available.

Most of these simulators use a mutation-centric approach, im-
plemented by storing the mutations carried by individuals in an

array. To handle selection, the majority of these simulators

assign selection coefficients to individual mutations [e.g.

ForwSim (Padhukasahasram et al., 2008), Fregene
(Chadeau–Hyam et al., 2008), GENOMEPOP (Carvajal–
Rodriguez, 2008), SFS_CODE (Hernandez, 2008), TreesimJ
(O’Fallon, 2010), SLiM (Messer, 2013)], although a few also in-

clude support for quantitative traits [e.g. ForSim (Lambert

et al., 2008), quantiNemo (Neuenschwander et al., 2008),

simuPOP (Peng and Kimmel, 2005)]. Hoban et al. (2011) and

Yuan et al. (2012) are recent reviews providing a comprehensive

comparison of these and other simulators.
In many scenarios of biological interest, substantial evolution-

ary change has taken place in a small number of generations due
to recombination and/or selection on standing variation, rather

than mutational input. For example, one may be interested in the

genome-wide haplotype patterns that emerge from admixture be-
tween historically isolated populations (Wegmann et al., 2011) or

from artificial selection on a quantitative trait. Studying these

haplotype patterns can be difficult with existing forward-in-time
simulators because detailed information about the mosaic haplo-

type structure of individuals is not readily available, and must be
inferred from the output sequences of the simulation and/or stored

recombination event data. In addition, forward-in-time simulators

that store entire sequences incur a severe trade-off between the size
of the genomic regions and the size of the populations simulated.

Motivated by such examples, we have implemented a new
forward-in-time simulation approach that, instead of tracking

single-site variants, tracks individual haplotype chunks as they
recombine over multiple generations. Further, we have designed

the simulator for fast simulation of quantitative traits under se-

lection. We have labeled this software forqs (Forward-in-time
simulation of Recombination, Quantitative Traits and Selection).

Similar approaches have been implemented recently by
Haiminen et al. (2013) and by Aberer and Stamatakis (2013)

for the simple selection models with per-mutation fitness effects.
The haplotype-based design allows for fast simulation of whole

genomes, with efficient memory usage. For example, forqs can

easily simulate two populations (size 10000 each) selected for dif-
ferent optimal trait values, where individuals have human-sized

genomes (23 chromosome pairs, 100Mb each), taking �2 s/gen-
eration. For comparison, existing forward simulators are limited

by the amount of sequence that can be stored in arrays in

memory: for the aforementioned 20000 individuals, 16 GB of
memory would permit the storage of only 3.2 million base pairs

of sequence per individual, which is an order of magnitude smaller

than the smallest human chromosome. The forqs’ design also
preserves information about the haplotype structure of individ-

uals, which allows for immediate identification of genomic regions
where individuals share identical-by-descent haplotype tracts.

Our simulator uses a modular architecture to allow the user to
flexibly specify recombination maps, mutation rates, demo-

graphic models, quantitative traits and fitness functions. This

modular approach facilitates simulation of complicated scenarios
and investigation of the resulting haplotype patterns. forqs is

currently under active development to support ongoing projects.*To whom correspondence should be addressed.

� The Author 2013. Published by Oxford University Press.

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/3.0/), which

permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://bitbucket.org/dkessner/forqs
mailto:jnovembre@uchicago.edu
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt712/-/DC1
-
(
)) 
very 
While
;Ewing and Hermisson,
2010
(
 and
)
while
(
)). 
,
,
,
,
very 
,
m
p
ec
onds
eration
above
,


2 DESIGN AND IMPLEMENTATION

forqs begins with a set of founding haplotypes carried by the individuals

in the initial generation. Individuals are diploid and carry a user-specified

number of chromosome pairs. By assigning a unique identifier to each

founding haplotype, individual haplotype chunks are tracked as they re-

combine over subsequent generations (Fig. 1). For the purposes of simu-

lation, any existing neutral variation on the haplotype chunks can be

ignored, and only those loci with fitness effects need to be tracked.

forqs performs the following actions during a single cycle of the

simulation: (i) generation of new populations, (ii) genotyping, (iii) quan-

titative trait evaluation, (iv) fitness evaluation and (v) reporting. forqs

has a flexible design in which the simulator delegates specific tasks or

calculations to configurable modules. The user specifies which modules to

instantiate in a configuration file.

In addition to the primary modules that are used to specify demog-

raphy, mutation, recombination, quantitative traits, fitness and reported

output, there are several building block modules that provide basic func-

tionality to the primary modules. For example, Trajectory modules

provide a unified method for specifying values that change over time,

such as population sizes or migration rates. Similarly, Distribution

modules can be used to specify how to draw particular random values

[e.g. quantitative trait loci (QTL) positions or allele frequencies).

As an illustration of forqs configuration, suppose that a user wanted

to simulate populations undergoing neutral admixture. The user would

specify a PopulationConfigGenerator module representing a step-

ping stone or island model with the desired population size and migration

rate trajectories. However, the user would not specify any quantitative

trait modules and would use the default FitnessFunction module

that assigns identical fitness values to all individuals. On the other

hand, to simulate an artificial selection experiment with truncation selec-

tion on a single quantitative trait, the user would specify the trait with

QTLs and effect sizes, and choose a FitnessFunction module that

selects the desired proportion of individuals to produce the next gener-

ation. Alternatively, the user could indicate that the QTLs and effect sizes

should be drawn randomly from user-specified distributions.

The representation of chromosomes as haplotype chunks in forqs

makes efficient use of memory, independent of the size of the chromo-

somes. On a typical laptop computer, for a population size of 1 million,

simulations take �1.5 s/generation for neutral simulations and �3 s/gen-

eration with selection at a single locus. Decreasing the population size

allows the simulation of a greater number of generations in a reasonable

amount of time: a population size of 10000 takes �3 s/100 generations

(without selection, with a slight increase with selection). However,

forqs’ design comes with the trade-off that memory usage grows lin-

early with the number of generations simulated due to recombination.

Thus, for investigations focusing on mutational input over a large

number of generations (e.g. studies involving demographic changes

taking place over thousands of generations), forqs’ design is not as

efficient as array-based implementations (e.g. SLiM or SFS_CODE) that

were designed specifically for these scenarios. Similarly, we recommend

that forqs be used in conjunction with a coalescent simulator to gener-

ate neutral variation, rather than running forqs for a long burn-in

period to reach mutation-drift equilibrium.

forqs has been extensively tested for correctness, both at the level of

individual code units and in its large-scale behavior in comparison with

theoretical predictions from population genetics and quantitative gen-

etics. Validation results, tutorials and documentation can be found in

the Supplementary Information. Configuration files for all simulations

mentioned in this article are included in the forqs software packages.

ACKNOWLEDGEMENTS

The authors would like to thank Alex Platt, Charleston Chiang,
Eunjung Han and Diego Ortega Del Vecchyo for helpful com-
ments on features, usability and documentation of the software.

Funding: National Institutes of Health (Training Grant in

Genomic Analysis and Interpretation T32 HG002536 to D.K.,

R01 HG007089 to J.N.), the NSF (EF-0928690 to J.N.) and

UCLA (Dissertation Year Fellowship to D.K.).

Conflict of Interest: none declared.

REFERENCES

Aberer,A.J. and Stamatakis,A. (2013) Rapid forward-in-time simulation at the

chromosome and genome level. BMC Bioinformatics, 14, 216.

Carvajal-Rodriguez,A. (2008) GENOMEPOP: a program to simulate genomes in

populations. BMC Bioinformatics, 9, 223.

Chadeau-Hyam,M. et al. (2008) Fregene: simulation of realistic sequence-level data

in populations and ascertained samples. BMC Bioinformatics, 9, 364.

Chen,G.K. et al. (2009) Fast and flexible simulation of DNA sequence data.

Genome Res., 19, 136–142.

Ewing,G. and Hermisson,J. (2010) MSMS: a coalescent simulation program includ-

ing recombination, demographic structure and selection at a single locus.

Bioinformatics, 26, 2064–2065.

Excoffier,L. and Foll,M. (2011) Fastsimcoal: a continuous-time coalescent simula-

tor of genomic diversity under arbitrarily complex evolutionary scenarios.

Bioinformatics, 27, 1332–1334.

Haiminen,N. et al. (2013) Efficient in silico chromosomal representation of popu-

lations via indexing ancestral genomes. Algorithms, 6, 430–441.

Hernandez,R.D. (2008) A flexible forward simulator for populations subject to

selection and demography. Bioinformatics, 24, 2786–2787.

Hoban,S. et al. (2011) Computer simulations: tools for population and evolutionary

genetics. Nat. Rev. Genet., 13, 110–122.

Hudson,R.R. (2002) Generating samples under a wright-fisher neutral model of

genetic variation. Bioinformatics, 18, 337–338.

Hudson,R.R. and Kaplan,N.L. (1988) The coalescent process in models with selec-

tion and recombination. Genetics, 120, 831–840.

Lambert,B.W. et al. (2008) ForSim: a tool for exploring the genetic architecture of

complex traits with controlled truth. Bioinformatics, 24, 1821–1822.

Messer,P.W. (2013) SLiM: simulating evolution with selection and linkage.

Genetics, 194, 1037–1039.

Neuenschwander,S. et al. (2008) QuantiNemo: an individual-based program to

simulate quantitative traits with explicit genetic architecture in a dynamic meta-

population. Bioinformatics, 24, 1552–1553.

O’Fallon,B. (2010) TreesimJ: a flexible, forward time population genetic simulator.

Bioinformatics, 26, 2200–2201.

Padhukasahasram,B. et al. (2008) Exploring population genetic models with recom-

bination using efficient forward-time simulations. Genetics, 178, 2417–2427.

Peng,B. and Kimmel,M. (2005) simuPOP: a forward-time population genetics simu-

lation environment. Bioinformatics, 21, 3686–3687.

Wegmann,D. et al. (2011) Recombination rates in admixed individuals identified by

ancestry-based inference. Nat. Genet., 43, 847–853.

Yuan,X. et al. (2012) An overview of population genetic data simulation.

J. Comput. Biol., 19, 42–54.

Fig. 1. forqs chromosome representation. An individual chromosome

is represented by a list of haplotype chunks. Each haplotype chunk is

represented by two numbers (position, id): the position where it begins

and the identifier of the founding haplotype from which it is derived. This

cartoon depicts a chromosome with three haplotype chunks as the result

of recombination (double crossover) between two founder chromosomes

577

forqs

,
1
2
3
4
,
5
,
(
s
,
quantitative trait loci (
)
very 
ec
ec
,
ec
 per 
,
,
to
http://bioinformatics.oxfordjournals.org/lookup/suppl/doi:10.1093/bioinformatics/btt712/-/DC1
manuscr
ipt

