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Abstract
Purpose of review—In this review, we will highlight recent advances in identifying genes and
gene regions responsible for the variation in serum lipid levels. We will also consider the next
directions for research based on these advances.

Recent findings—Large-scale genome-wide association studies have successfully screened
common variants across the genome for association with serum lipids and have generated novel
hypotheses about the causes of serum lipid variation.

Summary—Deep sequencing of GWA signals promises to expand the catalog of variants
responsible for serum lipid variation and with a full catalog of variants, we may develop a panel of
polymorphisms with clinical utility. In parallel, functional exploration of the GWA signals should
expand our knowledge of lipoprotein metabolism and generate targets for pharmacologic
intervention.
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Introduction
Disorders of lipoprotein metabolism lead to atherosclerosis and cardiovascular disease
(CVD), including myocardial infarction and stroke. Sixteen million adults in the United
States alone live with coronary artery disease, which kills 450,000 people annually [1].
Because of the well-established relationship between serum lipid levels and CVD, serum
lipids have long been of clinical interest. In particular, LDL-C is recognized not only as a
biomarker of CVD risk, but also as a causal participant in the disease process.

Serum lipid levels including LDL-C, high-density lipoprotein cholesterol (HDL-C) and
triglycerides (TG) are highly heritable: studies consistently estimate that over 50% of the
total inter-individual variation in serum lipid levels can be explained by the genetic variation
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[2]. Therefore, there is substantial interest in discovering the genetic determinants of lipid
levels, particularly genes that alter both serum lipids and CVD risk.

Mendelian lipoprotein disorders
Most of the well-characterized disorders of lipoprotein metabolism are monogenic, familial
disorders with extreme phenotypes amenable to linkage analysis. For example, proprotein
convertase subtilisin/kexin type 9 (PCKS9) has recently been implicated in a form of
autosomal-dominant hypercholesterolemia (ADH). Its protein product normally associates
with hepatic and extrahepatic LDL receptors and appears to target them for endosomal
degradation [3]. Gain-of-function variants (such as D374Y) lead to a 10-fold reduction in
LDL receptor levels, causing increased LDL-C levels and resulting in ADH [4,5].

Various Mendelian disorders of lipoprotein metabolism have now been described for each of
the three lipoprotein traits, and up to now they have contributed the bulk of our knowledge
about lipoprotein genetics [6]. Although those who harbor such traits experience profound
phenotypes, the population-wide impact of the known Mendelian disorders is attenuated by
their rarity. The monogenic lipid disorders discovered thus far can explain little of overall
lipoprotein heritability. Indeed, the normal distribution of serum lipoprotein levels in the
population suggests a polygenic model of inheritance: LDL-C, HDL-C, and TG levels are
determined by the additive contribution of multiple loci.

Common variants
In contrast to the linkage studies that were well suited to identifying rare variants with
profound effects, genome-wide association (GWA) studies have been designed to ascertain
whether common genetic variants contribute to population-wide lipid variability. In such
studies, hundreds of thousands of single-nucleotide polymorphisms (SNPs) are interrogated
for association with serum lipid levels in large cohorts. GWA has become a viable technique
for studying lipoprotein genetics on a large scale because serum lipids are accurately
measured, lipid phenotypes are readily available in many cohorts, and genotyping hundreds
of thousands of polymorphisms has become relatively inexpensive.

Each GWA study has shared similar approaches. Hundreds of thousands of SNPs are
genotyped in a discovery cohort, with follow-up genotyping performed on a subset of those
SNPs in a replication cohort. With linear regression, each allele is correlated to the serum
level of each lipoprotein trait. Only genetic loci passing genome-wide significance (P < 5 ×
10−8) are reported; the success of this stringent criterion in minimizing false associations is
underscored by the fact that, in each successively larger GWA study, no previously-
significant loci have dropped from significance.

The first large-scale lipids GWA study, published in 2007, involved 2,800 individuals
genotyped at nearly 400,000 SNPs [7]. This study re-discovered associations known from
prior genetic studies: that of HDL-C with CETP, and of LDL-C with APOE, which
effectively served as positive controls that confirmed GWA as a valid approach to
identifying lipid-associated loci. Progressively larger studies have been conducted; the most
recent lipids GWA studies from 2009 involved up to 40,000 individuals of European descent
and identified more than 30 chromosomal loci with common variants associated with lipid
levels [8**,9**]. An in-progress study by the Global Lipids Genetics Consortium involving
over 100,000 individuals will likely identify still more loci.

The lipids GWA studies have led to the observation that genes with rare Mendelian
mutations of large effect size also harbor common variants of more modest effect sizes [8**,
9**] (Table 1). These findings prompt the reciprocal hypothesis: many lipid-associated loci
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mapped using common variants will also harbor novel low-frequency (1% to 5% frequency)
and rare (<1% frequency) variants with more pronounced effects.

Already, 30 common lipid-associated variants have explained 9.3%, 7.7%, and 7.4% of
inter-individual variability for HDL-C, LDL-C, and TG, respectively [8**]. These variants,
therefore, explain ~15–18% of heritability – a proportion that likely will increase with
publication of the 100,000-individual lipids GWA study. Much of the remaining heritability
may ultimately be attributable to low-frequency and rare variants.

Next steps after genetic mapping using common variants
GWA has provided a flood of common genetic variants that are strongly associated with
lipoprotein levels and have begun to explain substantial fractions of heritability. The tasks
now at hand are to narrow the scope of localization from the chromosomal region to the
level of the functional element (gene or regulatory element) and to explain the molecular
mechanisms that ultimately lead to the observed lipid phenotypes. DNA sequencing and
functional biology will be instrumental to these ends.

Sequencing
Sequencing offers the promise of identifying the variants driving the GWA signals. Because
of the underlying patterns of linkage disequilibrium, a GWA SNP may only narrow the
search to a several-hundred-kilobase region. Targeted, large-scale sequencing in unrelated
individuals should ascertain all of the variants in the region and, therefore, to reduce the
scope of the functional search down to a focused assortment of dozens of specific variants,
one or more of which is likely to have functional consequences.

In some cases, sequencing may even identify smoking-gun variants, such as early
truncations, that strongly indicate causation. Studies of PCSK9 are suggestive in this regard.
The gene harbors a common variant (19% minor allele frequency) identified in a 40,000-
person lipids GWA study [10]. PCSK9 has also been shown to contain low-frequency
nonsense variants that lead to a 15–28 percent reduction in LDL-C and a 47–88 percent
decrease in lifetime risk of CVD [11]. Additionally, the rare gain of function variants,
discussed above, implicate PCSK9 in a form of ADH. If this pattern of common, low-
frequency, and rare variants being present at a lipid locus is typical, then sequencing near
GWA loci may not only identify the source of the GWA hit, but also a trove of causal low-
frequency and rare variants. Nevertheless, even variants that appear likely to be causal
(truncations, nonconservative substitutions) will require functional validation.

As the efficiency of sequencing increases and the cost falls, targeted sequencing will give
way to whole-exome sequencing, and, in turn, to whole-genome sequencing – far exceeding
the association boundaries of the regions initially highlighted by GWA studies. Such
enhancement of our catalogue of lipid variants by sequencing may also prove fruitful for
improved risk prediction and for the identification of a set of genes enriched for plausible
pharmacological targets.

Functional validation
GWA and deep resequencing are highly informative, but fall short of elucidating a
functional link between DNA sequence variant and lipoprotein phenotype. To provide
convincing evidence of causality, functional studies will be required. Many GWA-identified
loci are in linkage disequilibrium blocks spanning one or more genes; such loci immediately
suggest protein targets to interrogate, whether through animal models, molecular biology, or
emerging techniques. More difficult to study will be the loci that harbor no known genes,
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though many will ultimately be discovered to harbor regulatory elements important for
modulating the expression of genes in lipoprotein metabolic pathways.

Ultimately, the fulfillment of a genetic Koch’s postulates would provide the most
convincing evidence of causality, requiring: (a) identification of the SNP that,
presumptively, causes variation in a lipid trait; (b) development of a valid model, such as
that from induced pluripotent stem cells (iPS) from individuals with and without the variant;
(c) highly targeted manipulation of the DNA to replace the common allele with the variant;
and (d) observation of a change in phenotype consistent with the proposed directionality and
degree of variation (i.e., substituting the variant allele for the common allele and observing a
phenotype consistent with that found in those natively harboring the variant allele). Such an
approach would be particularly useful in confirming the causality of variants that appear to
reside in intergenic “deserts.”

Clinical applications
In parallel to the work being done on elucidating the biology underlying the GWA signals,
efforts are underway to take advantage of the presently available data for clinical risk
prediction and personalized pharmacology.

Genetic risk stratification
There are advantageous theoretical properties to a genetic screen for plasma lipoproteins.
Genetic scores are immutable within an individual, which may reduce costs due to decreased
repeat testing, and allow for very early detection of individuals at increased risk for CVD.
Such scores may better represent the cumulative lifetime burden of exposure to lipids than
point-estimates of fasting lipid levels [12].

Because CVD is the ultimate outcome of interest, not lipoprotein levels per se, genetic
screens may be particularly helpful if not all causes of lipid variation confer equal CVD risk
(for example, if certain causes of increased HDL-C are protective, whereas others are not).
Such a possibility was brought to the fore by the failure of torcetrapib, the CETP inhibitor,
to reduce cardiovascular mortality or intermediate endpoints, despite increasing HDL
(though this result should not be overinterpreted, as torcetrapib has molecule-specific off-
target effects that trigger mineralocorticoid excess) [13–15]. On the other hand, persons with
null mutations in APOC3 experience increased HDL-C, reduced TG, and a reduction in
coronary calcification [16*]. This suggests that not all causes of elevated HDL-C carry the
same consequences for CVD. Specific variants contributing to the observed serum
lipoprotein levels may convey substantial information beyond that encoded by the scalar
lipid levels themselves.

Nevertheless, genetic scores have not proven superior to lipoprotein levels and family
history for CVD risk discrimination. For example, the use of one risk allele in the well-
known 9p21 locus in white women did not improve discrimination or reclassification
beyond that achievable using serum lipids, C-reactive protein (CRP), and family history
[17*]. In contrast, we have demonstrated a lipid genetic panel using SNPs identified in the
pre-GWA era; the panel did not improve risk discrimination but did improve risk
reclassification [12]. As more variants are identified through GWA studies and sequencing,
expanded panels will be developed that may achieve the goal of improved discrimination. At
that point, the clinical utility of such panel should be examined in the context of a clinical
trial.
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Pharmacogenetics
Whereas genetic risk profiling is used to rule-in those who would ordinarily not be
considered for therapy, pharmacogenetics may be used to exclude patients from what would
otherwise be the default treatment. Here we will split the subject of lipid pharmacogenetics
into two topics: efficacy-oriented pharmacogenetics and toxicity-oriented pharmacogenetics.

Trials have now demonstrated proof-of-principle for efficacy-oriented pharmacogenetic
approaches to predicting statin response [18*,19*]. For example, the PROVE-IT TIMI 22
trial examined the effect of SNPs from genes in LDL-C metabolism pathways and statin
pharmacokinetics pathways on the response to atorvastatin or pravastatin [18*]. Carriers
with apolipoprotein E (APOE) isoform ε2 demonstrated greater reduction in LDL-C did than
ε4 carriers, and were more likely to reach target LDL-C levels [18*]. In this study, APOE
isoforms explained 3.8% of the residual variance in response to statin therapy. Nevertheless,
statin therapy can already be titrated based on lipid levels at follow-up. Perhaps a
pharmacogenetic panel could be built to address whether a failure to reduce LDL-C despite
statin therapy was due to nonadherence or, instead, to genetically-encoded resistance, but the
clinical utility of such a tool is unclear. Efficacy-oriented pharmacogenetic approaches are
unlikely to be clinically compelling in the absence of a trial that demonstrates that an
interaction between statin choice and genotype can lead to differential outcomes, even after
controlling for lipoprotein levels.

Toxicity-oriented pharmacogenetic approaches may be of clinical use if the consequences of
an adverse event are severe – e.g., cause harm per se or, indirectly, by inducing reluctance to
try any drug in the same class, even one with reduced likelihood of causing a future adverse
event. Clinical trials have now examined the association between genotype and statin-
induced myopathy. In the SEARCH trial, a SLCO1B1 allele (SLCO1B1*5) raised the risk for
myopathy in an allelic dose-dependent fashion (OR = 4.5 for CT heterozygotes vs TT
homozygotes, and OR = 16.9 for CC homozygotes vs TT homozygotes) [20**]. Roughly
60% of the population risk of myopathy from taking 80mg simvastatin daily was attributed
to this allele; nevertheless, the absolute risk of simvastatin-induced myopathy was modest
(0.6% in TT homozygotes, 3% in CT heterozygotes, and 18% in CC homozygotes). Another
group found similar relative effect sizes of allelic dose on risk of myopathy in simvastatin
users, but not in those taking pravastatin [21*]. Therefore, knowledge of such allelic variants
may help guide initial statin therapy in order to reduce the risk of harm and to increase the
likelihood of adherence.

Conclusion
GWA studies have successfully screened common variants across the genome for
association with serum lipids and have generated novel hypotheses about the causes of lipid
variation. Deep sequencing of GWA signals promises to expand the catalog of variants
responsible for serum lipid variation and with a full catalog of variants, we may develop a
panel of polymorphisms with clinical utility. In parallel, functional exploration of the GWA
signals should expand our knowledge of lipoprotein metabolism and generate targets for
pharmacologic intervention.
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