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A Statistical Framework to Guide
Sequencing Choices in Pedigrees

Charles Y.K. Cheung,1,2 Elizabeth Marchani Blue,1 and Ellen M. Wijsman1,2,3,*

The use of large pedigrees is an effective design for identifying rare functional variants affecting heritable traits. Cost-effective studies

using sequence data can be achieved via pedigree-based genotype imputation in which some subjects are sequenced and missing geno-

types are inferred on the remaining subjects. Because of high cost, it is important to carefully prioritize subjects for sequencing. Here, we

introduce a statistical framework that enables systematic comparison among subject-selection choices for sequencing. We introduce a

metric ‘‘local coverage,’’ which allows the use of inferred inheritance vectors to measure genotype-imputation ability specifically in a

region of interest, such as one with prior evidence of linkage. In the absence of linkage information, we can instead use a ‘‘genome-

wide coverage’’ metric computed with the pedigree structure. These metrics enable the development of a method that identifies efficient

selection choices for sequencing. As implemented in GIGI-Pick, this method also flexibly allows initial manual selection of subjects and

optimizes selections within the constraint that only some subjects might be available for sequencing. In the present study, we used sim-

ulations to compare GIGI-Pick with PRIMUS, ExomePicks, and common ad hoc methods of selecting subjects. In genotype imputation

of both common and rare alleles, GIGI-Pick substantially outperformed all other methods considered and had the added advantage of

incorporating prior linkage information. We also used a real pedigree to demonstrate the utility of our approach in identifying causal

mutations. Our work enables prioritization of subjects for sequencing to facilitate dissection of the genetic basis of heritable traits.
Introduction

A major goal in human genetics is the identification of

genetic variants responsible for heritable diseases. Study

designs based on pedigrees in which heritable diseases

segregate have successfully led to the identification of

over 4,500 relevant genes.1 Although genome-wide associ-

ation studies (GWASs) based primarily on unrelated sub-

jects have also become a widely used design in the search

for common risk alleles,2 the hypothesis that many herita-

ble diseases are influenced by rare risk alleles continues to

support the use of pedigrees as one efficient design for

identifying risk alleles.3,4 As part of the process of risk-allele

identification, the use of sequence data enables direct

evaluation of variants, possibly within candidate regions

already identified by linkage analysis.5–16 However,

sequencing large numbers of subjects is difficult for multi-

ple reasons, including high cost and the need for relatively

large amounts of high-quality DNA. A cost-effective way to

obtain genotypes on subjects who are not sequenced is to

infer missing genotypes via imputation17–19 by combining

existing sparse genotypes available on many subjects with

sequence data collected on only some subjects in pedi-

grees. Pedigree-based imputation is particularly effective

for rarer, segregating variants18 (and unpublished data).

Determining which subjects to sequence is an important

design decision. Because it could be infeasible or imprac-

tical to sequence all available subjects in a pedigree, this

constraint requires prioritization of a subset of subjects

for sequencing. These subjects can be selected all at one

time, or an initial small group of subjects can be selected
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for sequencing and any additional subjects can be selected

depending on the results from the initial sample. When

only a few subjects can be sequenced, the choice of subject

selection in either case is particularly critical. All of these

possibilities create challenges for the design of sequencing

studies in pedigrees and suggest the need for a flexible and

adaptive approach to subject selection.

It is worthwhile to consider two important issues. First,

subject selection should benefit subsequent genotype

imputation. Additional subjects with imputed genotypes

can form an integral part of downstream analyses and

have the potential to increase the statistical power to

detect causal variants19,20 (and unpublished data). Second,

subject selection should benefit from the incorporation of

prior knowledge of candidate regions when such informa-

tion is available from, e.g., linkage analyses or GWASs.21

This information allows us to prioritize subjects to opti-

mize genotype imputation in these regions.

Decisions related to subject selection should incorporate

relevant information in a systematic and quantitative

manner. A suitable metric is necessary for quantification

of the relative values of different sequencing choices. In

addition, an automated tool that systemically selects

subjects would be useful. In the absence of such a tool,

investigators need to use ad hoc methods to choose

subjects for sequencing. Furthermore, selecting subjects

manually for multiple pedigrees is tedious, so methods

that facilitate automated and efficient prioritization of

subjects would be helpful.

Existing tools that automate selection of subjects for

sequencing are limited. PRIMUS is a program that selects
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Figure 1. Sequencing Choices Affect the Percentage of Alleles
Called
Founder chromosomes and copies of those same founder chromo-
somes in descendants are labeled with numbers, and alleles of
genotypes are labeled with letters. Observed alleles are in bold
black, and imputed alleles are in nonbold blue. Vertical lines repre-
sent alleles that can be phased unambiguously to FGLs. Subjects
who were selected for sequencing are indicated by shading. Three
subject-selection choices are presented: (A) parent and child are
selected, and the child is homozygous for the marker, (B) founder
spouses are selected, and both are heterozygous for the marker,
and (C) parent and child are selected, and both are heterozygous
for the marker.
subjects for sequencing.22 However, because PRIMUS aims

to identify a set of maximally unrelated subjects, this

approach might not be ideal for subject selection in

pedigrees. ExomePicks is another program that selects

subjects for sequencing (see Web Resources). Its approach

is based on selecting units of related subjects from the old-

est to youngest generations, which is logical because this

encourages determination of haplotypes across loci. How-

ever, this algorithm does not leverage information about

the descent of chromosomes in a local region of interest,

nor does the program incorporate existing information

about subjects who might have already been sequenced.

Here, we introduce a general subject-selection frame-

work that facilitates the evaluation and comparison of

subject-selection choices in sequencing studies. We also

introduce ‘‘coverage’’ as one metric to naturally relate

pedigree-based genotype imputation to subject selection.

This metric enables the use of inferred inheritance vectors

(IVs)23 to optimize imputation of alleles in candidate re-

gions when such information is available. Our approach

can incorporate information about IVs to guide subject

selection for sequencing. If a candidate region is not avail-

able, a variant of this metric can be used for optimizing

selection genome-wide. This approach also provides

options for manual selection of some subjects before

deciding on the remaining subjects to sequence, and it

optimizes choices (within realistic constraints) only

among subjects who are available for sequencing. In our

study, we used simulation to compare our approach with

existing methods and used a real-pedigree example to

demonstrate the utility of our approach. We implemented

our approach in the program GIGI-Pick.
Subjects and Methods

Overview
We describe here the primary scenario that motivates our work.

Linkage analysis might have already identified a candidate region

that potentially contains a risk allele in a gene influencing the

phenotype. For identifying the risk allele(s), sequence data are

collected for directly evaluating variants in a candidate region. A

limited budget is available for sequencing a maximum number

of subjects. Therefore, the plan is to select a few subjects for

sequencing and then impute missing genotypes for further evalu-

ation to reduce the need for follow-up genotyping. For brevity,

here we refer to the selection of subjects for sequencing as ‘‘subject

selection.’’

Our framework focuses on genotype imputation. In pedigrees,

genotypes are imputed with information from either inferred

inheritance or external population data, such as population allele

frequencies.18 When information from inheritance is used, alleles

are imputed with very high accuracy, even for rare alleles, and are

referred to as ‘‘practically’’ determined18 (and unpublished data).

Using imputed genotypes, we can then perform desired down-

stream analyses, ranging from exploratory analyses to formal

statistical tests, such as family-based association tests of variants,

including those for single variants24–26 or regional associa-

tions.20,27
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Statistical Framework
Inheritance Vectors

Our framework for subject selection capitalizes on the concept of

IVs. IVs23 represent the descent of chromosomes in a pedigree at

specified positions. Using IVs, we can also represent independent

founder chromosomes with founder genome labels (FGLs)28

(Figure S1, available online). Each subject has a pair of FGLs

because he or she has two copies of chromosomes originally

descended from founder chromosomes. Identity-by-descent

(IBD) graphs partition FGLs into distinct components.29,30 In an

IBD graph, the nodes are the FGLs and the edges are the subjects

who are sequenced and observed for the genotypes at the locus

of interest. By connecting FGLs to observed subjects who have

these FGLs, we can construct one or multiple disjoint IBD graphs

(Figure S1). Because of meiotic recombination, IBD graphs can be

different at different positions on the chromosome.

The program gl_auto31 from the MORGAN v.3 software package

uses genotypes of relatively sparse markers, marker map positions,

pedigree structure, and population allele frequencies to sample IVs

that are consistent with the observed data. Here, we define these

sparse markers as framework markers, which can be markers

from linkage panels that consist of short tandem repeats (STRs)

or sparse SNPs. Similar to many pedigree-based linkage-analysis

methods,29,32 gl_auto uses the Lander-Green framework23 for

small pedigrees. To handle large pedigrees, gl_auto uses a hybrid

Markov-chain Monte-Carlo (MCMC) sampler33,34 that is based

on both the Elston-Stewart35 and the Lander-Green algorithms.

Connection between Genotype Imputation and Subject Selection

In pedigrees, subject selection can affect genotype imputation. For

illustration, we assume that the IV at a position of interest in the

sequence data is known. If all observed alleles at that position

can be unambiguously assigned to FGLs at some point in the

pedigree, alleles from all unobserved subjects who share copies

of these FGLs can be imputed (Figure 1A). We refer to the ability
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to unambiguously assign marker alleles to FGLs as the ability to

phase the observed genotypes with respect to the FGLs, or for

brevity, the ability to phase the observed genotypes. If the

observed genotypes cannot be phased, alleles from subjects who

share copies of these FGLs cannot be imputed (Figure 1B), except

from subjects who share the same pair of FGLs with observed

subjects (Figure 1C). Thus, the choice of subject selection affects

the percentage of alleles called, defined as the percentage of alleles

that are either observed or imputed with the IV in pedigree-based

genotype imputation.

Metric: Coverage

We introduce coverage as a metric to compare subject-selection

choices. At this point, we continue to assume that the IV at a

locus on the chromosome is known, but we will relax this

assumption later. Conditional on a fixed IV for a particular choice

of subject selection, coverage is the expected percentage of the

copies of alleles called for a variant at a random locus. Because

genotypes are not observed before sequencing, coverage is an

expected value integrated over all potential genotype configura-

tions in subjects intended for sequencing for the particular

subject-selection choice. This expectation accounts for the prob-

ability of phasing genotypes, given that the probability of

phasing affects the number of alleles that can be called. If no

subjects are sequenced, the coverage is 0. If all subjects are

sequenced or if all alleles from subjects who are not sequenced

can be imputed, the coverage is 1.

Coverage is easily computed. The calculation first translates the

known IV into I disjoint IBD graphs,28,30 as denoted by ibdgi,

where i ¼ 1, 2, ., I (Figure S1). N is defined as the number of

subjects in the pedigree, so 2N is the total number of alleles in

the pedigree at a locus and is the denominator for the computa-

tion of coverage. In each ibdgi, there is a probability, pi, that the

observed genotypes can be phased and a remaining probability,

qi ¼ 1 � pi, that the observed genotypes cannot be phased. If the

observed genotypes can be phased, a total of Fi alleles in the pedi-

gree can be called. If the observed genotypes cannot be phased, a

total of Gi alleles can be called, where 0%Gi % Fi. Then, the calcu-

lation combines the number of alleles expected to be called from

all ibdgi partitions. Thus, coverage is expressed as

coverage ¼
X�

Fi pi þ Gi qi
��

2N: (Equation 1)

The terms Fi andGi in Equation 1 are easily calculated. Each term

has two components: (1) Fi ¼ wi þ xi, where wi is the number of

copies of alleles that are directly genotyped and xi is the number

of copies of alleles that can additionally be imputed because we

can infer alleles in unobserved subjects who share FGLs with

some observed subjects from ibdgi; and (2) Gi ¼ wi þ yi, where wi

is defined above and yi is twice the number of unobserved subjects

who have both alleles identical by descent with those of some

observed subjects from ibdgi (see Figure 1C).

It is also simple to calculate qi in Equation 1. The probability qi is

equal to the probability that alleles from ibdgi display a pattern of

alternating allelic types for two alleles, because such genotype con-

figurations are the only configurations for which the genotypes

cannot be phased in ibdgi. For instance, if an ibdgi is a linear graph,

i.e., 1-3-5, then qi ¼ PAPaPA þ PaPAPa ¼ PAPa (where Pa is the pop-

ulation minor allele frequency [MAF] and PA ¼ 1 � Pa) for diallelic

variants, which include the majority of SNPs or sequence variants.

Estimating Coverage

Although coverage is a conceptual quantity defined for an arbi-

trary known IV, we need to estimate coverage for practical use
The Americ
without having the known IV. Here, we extend the concept of

coverage. First, we define local coverage as the estimated coverage

in a region of interest. The use of local coverage can optimize

genotype imputation in a specific chromosomal region and is ideal

for targeting subject selection in a region with positive evidence of

linkage. We sample a set of n IVs at the beginning and end points

of the region of interest as previously described.18,36 To reduce the

amount of computation and to select representative MCMC-based

samples, we alternatively select IVs between the beginning and

end points of the region of interest so that coverage is computed

on a total of n instead of 2n IVs. (Although in our evaluation

here we only sampled IVs at the beginning and end points of a

region, our implementation allows selecting sampled IVs at multi-

ple points, which could be desired for use in a large candidate

region of interest.) After sampling IVs, we calculate coverage on

each sampled IV. Finally, we take the average of the coverages

to get the final estimate of the expected coverage. Second, we

propose genome-wide coverage as a local-coverage variant estimated

from the expected coverage at a random locus in the genome. This

metric is useful if prior information about a candidate chromo-

somal region is not available or if multiple trait phenotypes are

collected on the pedigree, so identifying rare variants related to

many different genomic regions might be of interest. In this

case, it might not be obvious which subjects or region to focus

on. Genome-wide coverage is estimated by calculation of the

average coverage across a large set of randomly sampled IVs

compatible with the pedigree structure. To randomly sample an

IV at a locus while conditioning on the pedigree structure, the

method simulates each meiotic event corresponding to the trans-

mission of a chromosome from a nonfounder’s parent to the

nonfounder with an equal chance of maternal or paternal trans-

mission. For example, to sample a random IV in the pedigree of

Figure 1, the method simulates a total of ten meiotic events

belonging to the three siblings in the second generation and the

two siblings in the third generation, in which each meiotic event

has a 50% chance of inheriting the maternal chromosome and a

50% chance of inheriting the paternal chromosome. Thus, a

collection of these randomly simulated IVs (generated by condi-

tioning on the pedigree structure) is used for estimating coverage

at a random locus in the genome.

Joint-Prioritized Selection Algorithm

Using estimated coverage, we use a ‘‘joint-prioritized’’ algorithm

for sequential selection of subjects. This method aims to select m

subjects from n subjects available for sequencing (Figure 2). First,

the algorithm selects the first subject by iterating through the

entire list of subjects available for sequencing and computes the

estimated coverage on each subject. The desired estimated

coverage, which is either the local or the genome-wide coverage,

is calculated with the method described above. Second, the

method ranks the estimated coverages among the choices, retains

the ranked top g choices with the highest estimated coverages,

and discards all other choices. These top choices are called

templates for the next step. Third, the algorithm selects a second

subject by using each template one by one in turn. For each

template, the algorithm loops through the subjects not in the

template, temporarily adds an unselected subject to the template,

and calculates the estimated coverage on each temporary selec-

tion. Thus, with g templates and n � 1 unselected subjects avail-

able for sequencing, a total of g (n � 1) estimated coverage scores

are calculated. Fourth, the algorithm retains g unique combina-

tions of selected subjects with the highest estimated coverage

among these g (n � 1) temporary coverages. These top g selections
an Journal of Human Genetics 94, 257–267, February 6, 2014 259
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Figure 2. Joint-Prioritized Subject-Selection Method
In this example, the number of templates to keep (g) is 2. In the
first selection, the method computes coverage for each subject
(a–h). Subject e has the highest coverage, and subject c has the
second-highest coverage, so they are kept as templates. In the
second selection, the method considers adding another subject
to each template, e.g., (e, a), (e, b), (e, c), (e, d), (e, f), (e, g),
(e, h), (c, a), (c, b), (c, d), (c, f), (c, g), and (c, h). Set (e, g) gives
the highest coverage, and set (e, h) gives the second-highest
coverage, so they are kept as templates for the third selection.
This scheme repeats until the desired number of subjects is
selected. After the third step, sets (e, g, d) and (e, h, d) give the
highest and second-highest coverages, respectively. If a total of
three subjects are desired, set (e, g, d) becomes the final selection.
now become the new templates for the next step. The fifth step

repeats steps 1–4 but replaces n � 1 unselected subjects with

n � x, where x is the number of subjects already selected at the

beginning of each step, until m subjects are selected. After m

subjects are selected, the top template becomes the final subject-

selection choice.

The joint-prioritized subject-selection algorithm has a few

features. First, this algorithm is a forward-selection extension

that allows exploration of more selection choices. When g ¼ 1,

this algorithm reduces to forward selection, and when g > 1, the

algorithm has a higher chance of finding a better choice after

multiple selection steps. Second, unlike forward selection, the

joint-prioritized selection algorithm does not make permanent

selection after each step but instead continues to refine selection

choices on the basis of current templates to maintain flexibility.

Third, the algorithm considers multiple first choices so that

different starting choices can be explored. Fourth, the algorithm

keeps computation costs low by focusing only on templates with

high potential for an improved selection outcome, under the

assumption that only top templates are likely to be high quality.

Fifth, this algorithm enables efficient computation, given that

the number of calculations is only g times more than forward

selection, where g is much smaller than n.

In computing the estimated coverage, Pa is assumed to be a fixed

value and is treated as a tuning parameter. Because there are

multiple variants in a chromosomal region, the use of coverage

must assume one fixed value of Pa. To avoid confusion between

the fixed value of Pa used for computing coverage and the popula-

tionMAFs of different variants in a chromosome, we denote Pa as a

when it is used as the fixed value tuning parameter for computing
260 The American Journal of Human Genetics 94, 257–267, February
coverage. When a is high (e.g., a ¼ 0.5), the probability of expect-

ing heterozygous genotypes is also high, so the predicted probabil-

ity of phasing alleles in the IBD graph would be lower than if a

were low.

A high value of a is used for optimizing genotype imputation of

rare alleles. A low value of a assumes that most founder alleles of a

marker have copies of the common allele, so most genotypes are

expected to be trivially phased because they would be homo-

zygous for the common alleles. When genotypes are expected to

be trivially phased with high probability, the method achieves

maximizing coverage by selecting subjects who provide indepen-

dent unobserved FGLs instead of selecting subjects who are

more closely related to encourage phasing of existing observed

genotypes. Thus, to instead encourage phasing of genotypes that

contain rare alleles, the method needs to use a high value of a. Un-

less otherwise specified, the default value of a is 0.5.

Evaluation
Implementation in GIGI-Pick

We implemented our approach in the program GIGI-Pick. This

program provides both batch and interactive modes that allow

users to easily explore and compare selection choices. To compute

genome-wide coverage, the program only requires a pedigree file,

whereas to compute local coverage, the program further requires

IVs at the positions of framework markers. These IVs can be ob-

tained via the program gl_auto.31

Simulated Data

To evaluate and compare results from GIGI-Pick with those from

alternative approaches, we simulated data on a 52-member five-

generation pedigree also used in previous studies18,37 (Figure S2).

To resemble a realistic scenario in which subjects in the upper

generations would typically be deceased, we defined only the 46

subjects from the lowest three generations as available for

sequencing. Because of the size of this pedigree, it was computa-

tionally infeasible to evaluate all sequencing choices. For instance,

there are over 53 million combinations of selecting seven subjects

among 46 available subjects.

On a 100 cM chromosome, we simulated three types of markers.

First, we simulated diallelic framework markers to infer IVs. These

markers were simulated in a previous study at a density of one

marker per 0.5 cM and had a MAF of 0.5.18 We retained genotypes

of framework markers on 36 subjects (Figure S2) to resemble a

common scenario that genotypes from an existing panel of

genome-scan markers are available on most subjects. Second, we

simulated dense SNPs to specifically evaluate the performance of

imputing genotypes across the full range of possible allele fre-

quencies. Within the 48–52 cM region of the chromosome, we

used a total of 1,000 simulated SNPs at a density of one marker

per 0.004 cM and MAF uniformly distributed between 0 and

0.5.18 Third, we simulated 5,000 rare variants in the same 4 cM

region of the chromosome to evaluate the performance of

imputing rare alleles, which might be more likely to represent

the variants of interest in sequence data. For each rare variant,

we selected a single random FGL to contain the rare allele. For

all types of markers, we simulated alleles in founders and propa-

gated founder alleles through the pedigree by using previously

simulated descent patterns18,37 to create the original marker data

sets. This implies that multiple subjects who have copies of the

randomly selected FGL with the rare variant contain copies of

the rare allele. To ensure consistency in our interpretations, we

repeated the simulation for a total of ten independent data sets

with different patterns of chromosomal descent. The variability
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of the results among data sets was low, so these data sets were suf-

ficient for our purpose (see Results).

Comparing Subject-Selection Choices in Simulated Data

We compared selected subjects obtained with GIGI-Pick to those

obtained with five other methods of subject selection (Figures S3

and S4). The first category of methods selects subjects via

automated programs GIGI-Pick, PRIMUS, and ExomePicks. Details

on program use are given further below. We obtained results from

GIGI-Pick by using either local (GIGI (local)) or genome-wide

(GIGI (GW)) coverage. We obtained results from PRIMUS22 with

an option to select a set of maximally unrelated subjects. This

addresses the efficacy of maximizing the number of ascertained

independent chromosomes for pedigree-based genotype imputa-

tion. We also obtained results from ExomePicks. The second

category of methods chooses subjects manually via defined selec-

tion schemes. Inspired by designs in which distantly related

affected subjects from the bottom generations are selected,6,38

the ‘‘bottom-only’’ scheme selects affected subjects from the

lowest generation of the pedigree. The ‘‘bottom and parents’’

scheme is a variant of the ‘‘bottom-only’’ scheme and replaces

some bottom subjects with their parents (descended from the

central branch of the pedigree) to facilitate phasing. The final

category of selection method selects subjects randomly. We per-

formed this random selection a total of 200 times to characterize

the spectrum of imputation performance and to create a bench-

mark for comparison.

For each selectionmethod, the experiment followed three steps.

First, we used the method to select subjects for genotyping.

Second, we retained genotypes on the chosen subjects. Third, we

performed pedigree-based genotype imputation by using GIGI

v.1.02, which is a program that can handle genotype imputation

in large pedigrees.18

We performed three evaluations. First, we compared imputation

performance (described below) among various selection methods

and among random subject selections for five, seven, or ten

selected subjects. Second, we computed the correlation between

the estimated coverage and the actual imputation performance

to evaluate the usefulness of estimated coverage for predicting

imputation performance. Third, we varied the values of a (0.01,

0.1, 0.3, and 0.5) for GIGI-Pick (local) to evaluate how changing

the values of the tuning parameter affects subject selection

(Figure S5).

Given different choices for selecting subjects, we used different

performance measures to evaluate genotype imputation for SNPs

and rare variants. For SNPs, we computed accuracy, defined as the

percentage of genotypes correctly called with the most likely

genotype configuration, and averaged it over all SNPs. The reason

for calling the most likely genotypes was to ensure that all alleles

were called in every subject-selection choice in order to establish

a common basis for comparison. For rare variants, computing the

genotype accuracy on the basis of the most likely genotype

configuration was less relevant because we were mainly inter-

ested in determining which subjects had the rare alleles and

less interested in the large number of genotypes that were homo-

zygous for the common alleles. Therefore, we computed sensi-

tivity for calling rare alleles as the percentage of rare alleles called

correctly after genotype imputation and averaged it over all var-

iants. We computed sensitivity by using high-confidence calling,

which calls both alleles of a genotype if the estimated probability

of a genotype configuration is over 90% or calls one of the two

alleles if the estimated probability of a specific allele is over

95%.18 For any alleles not called, the common allele was filled
The Americ
in. We also calculated specificity as the percentage of common

alleles called correctly and averaged it over all variants. Because

the specificity was always high (>99.7%) under all subject-selec-

tion choices, our comparison focused on sensitivity. We called ge-

notypes strictly for the purpose of evaluation. Unless otherwise

specified, all results were further averaged across the ten simu-

lated data sets.

Program-Use Details

GIGI-Pick (local) uses a set of sampled IVs at the positions of

interest. Using a set of framework markers as described in the

text, we inferred IVs at the positions of framework markers via

gl_auto.31 Then, using a previously described method18 imple-

mented in GIGI-Pick, we sampled 1,000 IVs at the bounding

positions 48 and 52 cM. GIGI-Pick (GW) uses a set of sampled

IVs based on the pedigree structure. On the basis of the pedigree

structure, we simulated 500 IVs with random descent patterns.

GIGI-Pick was run for ten selection steps with g ¼ 8. Using the

final ten subject selections, we retained the appropriate number

of subjects as specified in the analysis plan (e.g., seven subjects

selected) according to the order of these subjects selected in

GIGI-Pick.

PRIMUS selected a set of maximally unrelated subjects, and this

set corresponded to a set of founders in the pedigree. Because

PRIMUS does not have an option to ignore certain subjects, it

selected founders who were actually not available for sequencing

from the top two generations. Given that we could not include

subjects from the upper two generations, we instead manually

selected relatives of these upper founders before other subjects

were selected. To be consistent with the PRIMUS scheme for

selecting the maximally unrelated subjects, we first selected the

leftmost child from each of the two branches in the third gen-

eration. We then selected subjects from the top to the bottom

generations among the maximum independent sets determined

by PRIMUS.

In ExomePicks, we selected subjects by using the ‘‘per family’’

output as recommended. Groups of subjects who yielded the

highest expected gain were selected.

Real Data

Weevaluated the use ofGIGI-Pick on a large real pedigree (Figure 3)

in which a causal, dominant disease mutation was previously

discovered.39 This pedigree contains strong evidence of linkage

in a region on chromosome 1,39 thus providing a candidate

region. It also contains 26 affected subjects scattered across three

branches, but the disease has reduced penetrance. Thirty-nine

subjects were typed for the causal variant, and copies of the causal

mutation were observed in 14 subjects. Here, the causal variant

represents a variant that would be detected from sequencing and

is the variant that we would hope to rediscover through statistical

testing using the imputed genotypes and the phenotype of inter-

est. Among the 39 subjects typed for the causal variant, 32 subjects

were also typed for SNP genotypes. These 32 subjects were

assumed to be the subjects available for sequencing. All subjects

or their representatives gave written informed consent, and the

study was approved by the University of Washington Human Sub-

ject Review Board.

Our use of this example resembles a realistic scenario. First, we

manually selected two affected subjects available for sequencing

from two different branches of the pedigree. It is practical to use

information about disease status to first target subjects who poten-

tially have copies of the causal mutation, and selecting two

affected subjects is a common strategy in which some distantly

related affected subjects in the pedigree are sequenced.6,11,16,38,40
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Figure 3. Real Pedigree Used for Subject Selection
Affected subjects are shaded, and subjects available for sequencing
are underlined. Only subjects with some genotype data or descen-
dants with genotype data were included. Some subjects were
omitted from this figure for the protection of confidentiality.
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Figure 4. Sensitivity of Calling Rare Alleles as a Function of the
Number of Subjects Selected
Programs (solid lines) are as follows: (A) GIGI (local), (B) GIGI
(GW), (C) PRIMUS, and (D) ExomePicks. Ad hoc schemes (dashed
lines) are as follows: (E) bottom only and (F) bottom and parents.
Refer to Figures S3 and S4 for the actual subjects selected. The ‘‘bot-
tom and parents’’ and ‘‘bottom-only’’ designs had the same sensi-
tivity in the first six selected subjects because the subjects selected
were the same until the seventh choice.
Second, we selected three additional subjects for genotyping by

using GIGI-Pick initially running with a total of 15 selection steps

and g ¼ 8. This corresponds to sequencing a total of fewer than

10% of subjects in this pedigree. To incorporate linkage informa-

tion, we estimated local coverage with inheritance vectors inferred

by the program gl_auto31 by using 31 STRs supplemented with 70

SNPs near the region with evidence of linkage. Third, we used

GIGI18 to impute genotypes at the causal variant and performed

an association test correcting for relatedness25 on the called

imputed genotypes to evaluate whether the subjects selected for

sequencing would provide evidence of association after genotype

imputation. For this purpose, we used the pedigree-based kinship

matrix and a corrected chi-square test24 with a p value derived

from the theoretical distribution of the test statistic. For imputa-

tion, we used a MAF of 0.2 for the variant because it was a more

conservative specification of the MAF than a low MAF and

minimized the chance of false-positive conclusions.41 We also

evaluated a lower allele frequency such as might be used in the

context of strong outside prior information. Fourth, because the

result from this analysis might be sensitive to the original choice

of which of the two initial subjects was manually selected, we

repeated the analysis above on all of the 23 pairs of affected sub-

jects from different branches.
Results

Simulations

There was a clear relationship between the number of

subjects selected and the sensitivity in calling rare alleles,

as well as a generally consistent ranking of the selection

methods (Figure 4). Among all subject-selection methods,

GIGI-Pick (local) yielded the highest sensitivity over the

entire range of numbers of subjects selected. GIGI-Pick

(GW) yielded lower sensitivity than did GIGI-Pick (local),

suggesting that incorporating a candidate region identified

by linkage analysis can further improve subject selection

toward the goal of identifying causal variants. However,

GIGI-Pick (GW) still substantially outperformed other

methods. ExomePicks yielded the third-highest sensitivity

at seven or fewer subjects selected, but the ‘‘bottom and

parents’’ design yielded higher sensitivity than did Exome-

Picks at seven or more subjects selected. In this ‘‘bottom
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and parents’’ design, the first six subjects selected were

identical to those in the ‘‘bottom-only’’ design, so the

sensitivity values from the two methods were identical in

this range. However, at seven to ten subjects selected,

typing parents in the ‘‘bottom and parents’’ design led

to higher sensitivity than did typing siblings in the

‘‘bottom-only’’ design. Finally, PRIMUS performed poorly

in comparison to all other subject-selection methods,

and its relative performance decreased with increasing

numbers of selected subjects.

Differences in imputation performance among selection

methods were substantial. Here, we focus the results on

seven subjects selected (Figure 5 and Table 1). GIGI-Pick

(local) yielded the highest sensitivity (58.4%) and was

better than all random choices (100th percentile relative

to the distribution of random selections of subjects).

GIGI-Pick (GW) was the second-best selection method

(54.2% sensitivity; 99.5th percentile) but had 4.2% lower

sensitivity than did GIGI-Pick (local). GIGI-Pick (local)

yielded a markedly 14.4% absolute difference in sensitivity

over the ‘‘bottom and parents’’ design and had a 38.8%

absolute difference in sensitivity in comparison to the least

effective selection method, PRIMUS (19.6% sensitivity;

<1st percentile). For imputing more common SNPs, GIGI-

Pick also yielded better accuracy than did other selection

methods (Table 1), although the absolute differences in

accuracy among methods were less dramatic than those

for the rare variants. Nevertheless, the rank order of impu-

tation performance was the same for rare variants and SNPs

(Table 1). In addition, the qualitative findings above were

similar for five or ten subjects selected (Tables S1 and S2),
6, 2014



Figure 5. Sensitivity Computed for Different Selection Methods
against the Distribution from 200 Samples of Random Subject
Selection for Seven Subjects Selected
The histogram describes the distribution of sensitivity values from
samples of random subject selection. Subject-selection methods
are compared against random subject selection, and the locations
of the lines indicate the sensitivity of the methods. Programs are
depicted by solid lines, and ad hoc schemes are represented by
dashed lines.
and summaries per data set also suggested similar inter-

pretations (Table S3).

Results from other methods for subject selection also

have interesting features. First, sensitivity varied substan-

tially across random choices (~25% to ~58%) (Figure 5),

which further illustrates that the choice of subject selec-

tion can strongly affect imputation of rare alleles. Second,

PRIMUS had substantially lower sensitivity than did all

other subject-selection methods and was considerably

worse than random selection for subsequent pedigree-

based imputation (19.6%; <1st percentile) (Table 1). Third,

by focusing on selecting subgroups of related subjects,

ExomePicks (41.3%; 39.5th percentile) yielded markedly

higher sensitivity than did PRIMUS. Interestingly, Exome-

Picks was less effective in imputing SNPs (29th percentile)

than in imputing rare variants (39.5th percentile) relative

to random choices, but it still underperformed random

selections (<50th percentile) even for rare variants.

High estimated coverage is a strong indicator of high

genotype-imputation performance. The correlation be-

tween the accuracy and local coverage was strong (e.g.,

0.90 in data set 1), suggesting that coverage is useful for

comparing selection choices (Figure 6). In particular, the
Table 1. Methods of Subject Selection for Seven Selected Subjects Aff

Method of
Subject Selectiona

Rare Variants

Sensitivity (%) Percentile (%)b

GIGI-Pick (local) 58.4 100

GIGI-Pick (GW) 54.2 99.5

PRIMUS 19.6 <1

ExomePicks 41.3 39.5

Bottom only 35.0 10.5

Bottom and parents 44.4 65.0

aResults were averaged across all ten simulated data sets. Refer to Figures S3 and
bRelative to 200 random selections of subjects for sequencing.

The Americ
observations in which the local-coverage values were

high generally corresponded to high accuracy values.

This result was consistent across data sets (data not

shown). The correlation between sensitivity and local

coverage was weaker (0.72 in data set 1) than the correla-

tion between accuracy and local coverage, but high

coverage values were still correlated with high sensitivity

values (Figure 6). As would be expected, genome-wide

coverage was less indicative of the per-run imputation

performance in the particular region evaluated (correla-

tions of 0.57 for accuracy and 0.46 for sensitivity in data

set 1). However, genome-wide coverage was still highly

predictive of the average imputation performance across

data sets (correlations of 0.88 for accuracy and 0.74 for

sensitivity across data sets; Figure 6). Thus, the selection

of subjects who optimize the estimated coverage is ex-

pected to yield high imputation performance.

The performance was relatively insensitive to the specific

choice of a (Table S4). Among the considered values of a,

GIGI-Pick (local) had the highest sensitivity (58.4%;

100th percentile) and accuracy (81.9%; 100th percentile)

for a ¼ 0.5. As a decreased, both sensitivity and accuracy

decreased. The changes were small for a ¼ 0.3, but sensi-

tivity decreased sharply for a ¼ 0.1, although the accuracy

remained high relative to random selections. For a ¼ 0.01,

both sensitivity and accuracy were low. This was because

GIGI-Pick selected more distantly related subjects or mar-

ried-ins at a low value of a (Figure S5), as was predicted

in the Subjects and Methods.
Real Data

The real-pedigree example demonstrates that GIGI-Pick

can provide useful guidance regarding which subjects

to select for genotyping (Table 2). When using genotypes

from only a selected pair of affected subjects, GIGI was

unable to impute the causal mutation in other subjects

with high confidence, and after imputing genotypes,

there was no evidence of association between the causal

variant and the disease (c2 ¼ 2.06; p ¼ 0.152). Because

the causal mutation is rare, the two selected subjects

both had heterozygous genotypes, so their genotypes
ect the Performance of Genotype Imputation

SNPs

Rank Accuracy (%) Percentile (%) Rank

1 81.9 100 1

2 80.4 99.5 2

6 75.1 0.5 6

4 77.4 29.0 4

5 77.3 27.5 5

3 79.1 84.5 3

S4 for actual subjects selected.
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Figure 6. Correlation between Imputa-
tion Performance and Estimated
Coverage for Seven Subjects Selected
Per-data-set accuracy (A) and sensitivity (B)
versus local coverage computed for data
set 1 and average accuracy (C) and sensi-
tivity (D) versus genome-wide coverage
computed across ten data sets.
could not be phased. After adding the three subjects sug-

gested by GIGI-Pick, GIGI was able to impute the presence

of the causal mutation in 22 other subjects. Among the 12

confirmed subjects who had known copies of the causal

mutation, GIGI was able to impute copies of the causal

mutation in 11 subjects. For the single subject in which

the causal mutation was not imputed with high confi-

dence (the ‘‘missed’’ subject), the estimated probability

that the genotype contained the causal mutation was still

63%. Moreover, GIGI-Pick imputed copies of the causal

mutation in 13 subjects who were originally not typed

and thus could not be confirmed. Among these subjects,

ten were affected, so these subjects were highly likely to

indeed have copies of the causal mutation. Using these

imputed genotypes, we observed strong evidence that

this causal mutation is associated with the disease (c2 ¼
16.85; p ¼ 4.05 3 10�5). Even though this analysis started

with only five observed subjects, the results match closely

with what could be obtained from the use of all 39 origi-

nally observed subjects for imputing additional genotypes

and then performing the same association test (c2 ¼ 18.19;

p ¼ 2.00 3 10�5).

Analysis of other initial pairs of affected subjects gave

similar results. In any pairs of affected subjects, GIGI also

could not impute causal mutations in the relatives, most

often because genotypes at the causal locus in both of

these subjects were heterozygous. In each of these pairs,

the addition of three subjects suggested by GIGI-Pick

enabled imputation of copies of the causal mutation: the

same 25 copies of the causal mutation were always called.
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In the pairs that contained the

‘‘missed’’ subject as one of the five

sequenced subjects, GIGI called an

extra copy of the causal mutation

because the causal mutation from

the ‘‘missed’’ subject was then directly

genotyped. We note that in our

primary analysis with a MAF of 0.2,

GIGI could not impute the causal

mutation into other subjects unless

additional subjects were added, but

with a lowMAF of 0.01, GIGI imputed

the causal mutation even with only

two affected subjects in 17 out of 23

pairs of subjects. This is because of

the strong prior information provided

by the low frequency. However, in

most cases, such allele frequency in-
formation would not be initially available, or for more

complex traits, the causal allele(s) might not be so rare.
Discussion

The framework that we describe here effectively guides

subject selection for sequencing in pedigrees. The results

from our simulations show that relative to other methods

considered, GIGI-Pick yields superior genotype imputation

performance, especially for rare alleles. Comparisons

between GIGI-Pick (local) and GIGI-Pick (GW) also show

that leveraging inferred IVs further improves genotype

imputation within a focused region with prior evidence

of linkage. In addition, high local and genome-wide esti-

mated coverages are indicative of high subsequent geno-

type-imputation performance, so the use of estimated

coverage is a beneficial metric for determining final selec-

tion choices. Using a real pedigree with a knownmutation,

we also demonstrated that GIGI-Pick can flexibly accom-

modate preselected subjects who are affected by the disease

to suggest additional subjects to sequence; thus, it can lead

to accurate and extensive imputation of the causal muta-

tion and demonstrates the value of such imputed data in

association testing.

Our results also provide valuable insight into how

various subject-selection programs perform with regard

to subsequent genotype imputation. At one extreme,

PRIMUS selected mostly founders. At the other extreme,

ExomePicks selected groups of closely related subjects



Table 2. Analysis of a Real Pedigree

No. of Subjects
Observed

No. of Subjects
Imputed

No. of Causal
Mutations
Calleda c2 (p value)b

2c 63 2 2.06 (0.152)

5c,d 60 25 16.85 (4.05 3 10�5)

39 26 26 18.19 (2.00 3 10�5)

aEither observed or imputed with high-confidence threshold by GIGI with t1 ¼
0.9 and t2 ¼ 0.95.
bComputed at the causal variant.
cAll choices of the initial chosen pair of affected subjects gave the same numer-
ical values.
dUsing the two preselected affected subjects, we used GIGI-Pick to suggest
three more subjects for sequencing, giving a total of five subjects.
from the top to the bottom generations of the pedigree.

GIGI-Pick fell between these extremes and balanced

between selecting closely related subjects to increase the

chance of phasing genotypes and selecting distantly

related subjects to increase the number of copies of inde-

pendent founder chromosomes. The results from our study

illustrate that such an approach can substantially improve

imputation performance. Along with the use of inferred

IVs to target selection for a specific region, GIGI-Pick en-

ables efficient selection of subjects for genotype imputa-

tion.

The coverage metric accounts for phasing genotypes

relative to IVs and focuses on using information from IVs

to impute genotypes. When genotypes are imputed with

IVs, the accuracy is well controlled,18 so maximizing

coverage essentially maximizes the average percentage of

alleles that can be called. The estimation of local and

genome-wide coverage extends the theoretical measure

of coverage to two realistic situations: where linkage infor-

mation is and is not already available. Even though

coverage is not specifically designed for imputing rare

alleles, our results from simulated and real pedigrees

demonstrate that this metric works well in practice.

Finally, we anticipate that the use of imputed results

from subject-selection choices based on maximizing

coverage will improve the power of association tests of

rare variants segregating in individual pedigrees over the

use of imputed results from less ideal selection choices

because the validity of the association test ultimately de-

pends on high sensitivity and specificity of calling such

rare alleles.

Variant prioritization based on linkage evidence and

subsequent causal-variant search using imputed genotypes

are together an effective approach to screening sequence

variation. Because linkage information is derived from

the transmission of alleles in pedigrees, it offers strong

prior information to narrow the search space of causal

variants.5,7,14 We have shown here that making use of

this information in selecting sequencing subjects is both

possible and also useful. In a focused region, the use of

statistical tests with imputed genotypes can formally quan-
The Americ
tify scientific evidence, and the use of imputed genotypes

canmarkedly improve the power of statistical testing while

negligibly increasing cost19,20 (and unpublished data). In

addition, because the use of arbitrary bioinformatics filters

is not always regarded as safe,7,15 performing statistical

tests on sequenced variants might be needed prior to

more expensive direct genotyping of variants. This might

be the case especially in studies that involve complex

diseases with reduced penetrance and genetic heterogene-

ity and in which the use of bioinformatics filters is less

effective.42 Recently, the use of a comprehensive evalua-

tion of imputed genotypes along with statistical tests has

been shown to be an effective strategy for nominating

causal variants from sequence data in a study of a complex

trait (triglyceride levels) in a large human pedigree43 and

in a study of an outbred rat cross to identify causal muta-

tions in multiple phenotypes.44 GIGI-Pick can facilitate

such an approach by optimizing the selection of subjects.

Of course, other options, including direct genotyping,

can also be used for following up on the sequencing

results. More generally, prioritizing variants for sequencing

studies and subsequent analyses is important in both

GWASs and pedigree-based studies. Other aspects perti-

nent to the design of the studies are worth considering

but are beyond the scope of the current paper.21

In addition to the incorporation of existing genotypes,

the incorporation of phenotype information could be

beneficial if it is available. In our example with real anal-

ysis, we leveraged phenotype information by first selecting

two affected subjects. Alternatively, potential extensions to

our framework could allow phenotype information to be

leveraged explicitly, both in cases when IVs are available

and in cases when only the pedigree structure is available.

With inferred IVs, further incorporation of phenotypes

might provide additional information to inform which

affected subjects with rare alleles should be sequenced,

and this could be particularly useful when the inferred

IVs are not perfectly informative regarding the transmis-

sion of chromosomes in pedigrees. This future direction

would be interesting to pursue, given that in a large popu-

lation with many related subjects, leveraging phenotype

information with kinship coefficients even without

leveraging inferred IVs to select subjects suggests the

potential to improve power to detect association (M.

Wang et. al, 2013, IGES, abstract). Future investigation

would enable us to understand the power to incorporate

phenotype information to our flexible framework.

We have introduced a quantitative framework to address

the issue of subject selection for sequencing in pedigrees.

The metric used here for evaluating selection choices

relates to genotype imputation. However, other metrics

are also possible and could be developed for the incorpora-

tion of intended analyses and other sources of informa-

tion, including trait phenotypes. Future work will be

needed for evaluating other such options. With this frame-

work, we have implemented the computer program GIGI-

Pick to facilitate efficient and informed decision of subject
an Journal of Human Genetics 94, 257–267, February 6, 2014 265



selection for sequencing; this will be immediately useful in

view of the large number of sequencing projects now being

carried out in existing pedigree samples.
Supplemental Data

Supplemental Data include five figures and four tables and can be

found with this article online at http://www.cell.com/AJHG.
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