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Abstract

Background: This paper describes the design and preliminary testing of FINGER (Finger Individuating Grasp
Exercise Robot), a device for assisting in finger rehabilitation after neurologic injury. We developed FINGER to assist
stroke patients in moving their fingers individually in a naturalistic curling motion while playing a game similar to
Guitar Hero®a. The goal was to make FINGER capable of assisting with motions where precise timing is important.

Methods: FINGER consists of a pair of stacked single degree-of-freedom 8-bar mechanisms, one for the index and one
for the middle finger. Each 8-bar mechanism was designed to control the angle and position of the proximal phalanx
and the position of the middle phalanx. Target positions for the mechanism optimization were determined from trajec-
tory data collected from 7 healthy subjects using color-based motion capture. The resulting robotic device was built to
accommodate multiple finger sizes and finger-to-finger widths. For initial evaluation, we asked individuals with a stroke
(n = 16) and without impairment (n = 4) to play a game similar to Guitar Hero® while connected to FINGER.

Results: Precision design, low friction bearings, and separate high speed linear actuators allowed FINGER to individually
actuate the fingers with a high bandwidth of control (−3 dB at approximately 8 Hz). During the tests, we were able to
modulate the subject’s success rate at the game by automatically adjusting the controller gains
of FINGER. We also used FINGER to measure subjects’ effort and finger individuation while playing the game.

Conclusions: Test results demonstrate the ability of FINGER to motivate subjects with an engaging game environment
that challenges individuated control of the fingers, automatically control assistance levels, and
quantify finger individuation after stroke.

Keywords: Robotic rehabilitation, Stroke, Motor control, Mechanism synthesis, Finger individuation, Color-based motion
capture
Background
Over the past several decades, researchers have developed
robotic devices for rehabilitation therapy after stroke. This
is in response to a sizable need, with nearly 800,000
people per year suffering a stroke in the United States
alone [1]. Of the survivors, approximately two-thirds ex-
perience long-term impairment of their affected upper-
extremity [2]. Robotic therapy devices can automate the
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repetitive and strenuous aspects of conventional physical
therapy. Furthermore, robotic therapy devices can serve as
scientific instruments for quantifying the recovery process,
and thus may provide insight that is not normally available
with conventional therapy alone.
Robot assisted therapy of the upper extremity following

stroke has been shown to be as effective as, and in some
cases modestly more effective than, conventional therapy
(for reviews see [3-7]). Research with robotic therapy
devices supports the contention that motor recovery
increases with therapy intensity [6], i.e. more practice is
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better. What remains unclear, however, is how a rehabili-
tation robot should interact with the patient in order to
optimize recovery during practice. One approach is to
help patients practice movements that they cannot
complete without assistance, which may foster somatosen-
sory stimulation that induces brain plasticity [8]. Indeed,
most rehabilitation robots are strong enough to complete
movements even when patients are completely impaired
and/or when tone and spasticity act in opposition. How-
ever, care must be taken so that the robot does not “take
over” the movement practice from the patient, which may
cause the patient to “slack” and reduce their effort at the
task being practiced [9,10]. Patient effort is considered
crucial to increasing motor-plasticity during rehabilitation
therapy [11,12]. Thus, it seems important for robotic re-
habilitation devices to simultaneously enable movement
practice and encourage patient effort during therapy.
Numerous control strategies for robotic therapy have

been successfully implemented and tested, as summa-
rized in [13]. Of specific interest are “assist-as-needed”
control strategies, which change assistance in response
to perceived effort, typically correlated in some way to
performance error (tracking error or similar). These
controllers alter the assistance level by modifying con-
troller parameters (e.g. feedback gains, desired trajectory
shape and/or timing, model based terms, etc.) [9,14-18].
Tests with these controllers suggest that increased error
encourages patient effort, and vice-versa, although the
relationship remains unclear. Additional experiments
may clarify this and other relationships affecting motor
recovery during rehabilitation therapy, although the ul-
timate validation clearly depends on therapeutic efficacy.
Effectively exploring the factors that promote func-

tional recovery during movement therapy and evaluating
“assist-as-needed” and other control strategies depends
on the control fidelity of the robotic platform. To quan-
tify baseline motor ability, ideally, the robot should be
able to appear both massless and frictionless to the pa-
tient, and should be highly compliant and backdriveable.
However, it is also important to have a high bandwidth
of force control, as to not limit the response of robot
during interaction with the patient. Improving the con-
trol and impedance characteristics of a rehabilitation
robot has the potential to make such devices better sci-
entific instruments as well as allowing more precise in-
vestigation of motor learning and the mechanisms of
neuroplasticity, as suggested by [13].
Another critical consideration for understanding the

mechanisms by which rehabilitation robots promote recov-
ery is the limb of application of the robot. As an integral
part of activities of daily living (ADLs), rehabilitation of the
hand is particularly important, and a significant need exists
for improved hand rehabilitation, as most of those who
have suffered a stroke experience some impairment in
hand function [19]. Furthermore, the hand and fingers
have a highly developed neuro-muscular system to which
the brain has dedicated a large portion of resources.
Designing a robot to actuate the hand or finger is a

significant challenge, as evidenced by the large variety of
robotic devices that have been developed for hand and
finger therapy. Previous work has focused often on re-
creating the complexity of hand and finger movements,
often at the expensive of actuation and control. These
hand robots typically fall into the category of end-effector
or exoskeleton (for review see [20]). End-effector devices
attach distally and do not attempt to align with the joint
axis of the patient, as exoskeleton devices typically do.
In the work presented here, we sought to maximize con-

troller fidelity and minimize the mechanical impedance of
the device, at the expense of the robot’s degrees-of-
freedom. Although each finger in the human hand has
multiple degrees-of-freedom, most ADLs incorporate a
simple finger curling motion, similar to a power grasp
[21]. Thus, an opportunity existed to create a finger-
curling robot with one degree-of-freedom, high control
fidelity, and low friction.
FINGER, the finger curling robot presented here, is

capable of individually assisting both the index and
middle fingers through a natural grasping motion
(Additional file 1). Each finger is individually guided
by an 8-bar mechanism that controls the orientation
and position of the proximal phalanx and the position
of the middle phalanx. Each 8-bar mechanism has a single
degree-of-freedom and is actuated by a high bandwidth
and low-friction linear electric actuator. Further fric-
tion reduction is achieved through feed-forward control
compensation.
In the sections that follow, we present the design, con-

troller development, and preliminary testing of FINGER.
We present the mechanism synthesis, which is based on
motion capture of finger grasping motion, first. We then
describe the mechanical design, including sizing ad-
justments and patient-robot interface. In the third
section, we describe the actuation including controller
development and friction compensation. Finally, we
present some results from pilot testing with several
subjects who have suffered a stroke. Portions of this
work have appeared previously in conference paper
format [22,23].

Methods
Mechanism design
Finger curling data acquisition and analysis
This section describes motion capture and data analysis
used to characterize a basic finger curling motion,
similar to a power grasp [21]. Although the human hand
can perform many differing grasps and grips in order to
manipulate objects, the basic curling motion is the most
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common and therefore we focused on it for administer-
ing and studying finger movement therapy.
Color-based motion tracking [24] was used to record

the path of the index finger as the hand performed a
curling motion. Subjects’ hands were filmed with a
single camera from above, where the index and middle
fingers curled in a plane perpendicular to the camera.
Any out-of-plane motion during curling was small and
treated as noise. The back of the hand was placed
against a rest aligning it with the x-axis. Four brightly
colored felt dots of differing colors were attached to the
index finger, two each on the center-lines of the proximal
and middle phalanges, which are the defined attachment
points for the 8-bar mechanism. Likewise, the colored
dots were attached using hook-and-loop straps that were
the same thickness as the planned mechanism straps. The
placement of the felt dots allowed the centerlines of the
proximal and middle phalanges to be recorded throughout
the curling motion. See Figure 1.
Seven healthy adult subjects were asked to curl their

hand, meeting the thumb in a circle, for a minimum of
10 times. They were not given any further instructions
regarding how to curl their hand, in order to produce
the most natural motion. Dimensions of the index and
middle fingers and hand were recorded for each subject
using calipers. The lengths of the proximal and middle
phalanges for the index and middle fingers were recor-
ded in a similar fashion as [25]. The distances between
creases for both the index and middle fingers were also
recorded in the same manner as [26].
Figure 1 The setup and dimensions collected from motion
capture and regression.
The path of the four felt dots was regressed against a
planar, two revolute joint model, shown in Figure 1. The
regression model determines 5 dimensions using the
system of equations given below in (1). These equations
are defined for each frame of the motion capture.
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where

cp ¼ p2ð Þx− p1ð Þx
� �

=dp sp ¼ p2ð Þy− p1ð Þy
� �

=dp

cm ¼ m2ð Þx− m1ð Þx
� �

=dm sm ¼ m2ð Þy− m1ð Þy
� �

=dm

dp ¼ p2−p1k k dm ¼ m2−m1k k:

In (1) above, m1, m2, p1 and p2 are the positions of
the four markers, and Ox and Oy define the location of
the metacarpophalangeal (MCP) joint of the index fin-
ger. During mechanism design, this point is assumed to
be the origin. The length of the proximal phalanx is
denoted lp and the final two parameters are the distances
to the proximal and middle strap attachment from the
previous joint, referred to as the proximal, rp, and mid-
dle, rm, radii. It may seem that these radii should center
the straps along the proximal and middle phalanges, but
in practice the position along the proximal phalanges
that is most comfortable for a strap is significantly
forward of the center of the phalanx. For example, in
Figure 1 it can be seen that the hook and loop strap
holding the felt dots to the proximal phalanx sits com-
fortably at more than half the distance along the prox-
imal phalanx from the MCP joint. The same relationship
is true for the middle phalanx.
The mean length of the index finger proximal phalanx

determined by the motion capture and regression ana-
lysis was 42 mm, with a standard deviation of 3 mm.
This mean value was compared to [25] which contains a
statistical analysis of 4000 hand samples. The ratio of
this mean proximal length to the mean proximal length
reported in [26] was multiplied by the standard deviation
also reported in [26], producing a scaled standard devi-
ation 3 mm, which is close to the standard deviation of
the small data sample used.
Following the approach in [27], the length change of the

proximal phalanx between successive mechanism sizes
was chosen to be two standard deviations. By scaling the



Figure 2 The angular relationship between the middle and
proximal phalanges during finger curling. The red points were
collected from motion capture, and the black line is the regressed
quadratic curve-fit.
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other variables accordingly, the complete dimensions for
the other finger sizes may be found, as given in Table 1.
This range of finger sizes provides an acceptable coverage
of the population of hand sizes.
This approach to regression has the advantage of

determining the dimensions of the finger independent of
the motion type. Thus, the angular relationship between
the phalanges can be used independently to define the
finger motion. Specifically, regression is used to deter-
mine the middle phalanx angle, θm, as a function of the
proximal phalanx angle, θp, using a second-order poly-
nomial equation.
Figure 2 shows the relationship between the middle

phalanx angle and the proximal phalanx angle for the
curling motion collected from all 7 motion capture sub-
jects. The black line is a quadratic curve-fit. With signifi-
cant variance in hand sizes, the relationship between the
two angles appears uncorrelated to hand size.
The 2nd order equation used to fit the data as shown

in Figure 2 is:

θm ¼ 0:77660232θp
2 þ 1:37397306θp þ 0:07324267:

ð2Þ

This equation and finger dimensions given in Table 1
were used to generate the 15 target points for each
mechanism size, consisting of 15 desired points and
angles of the proximal phalanx and 15 desired points of
the middle phalanx, repeated for each of three sizes: extra-
small, small, medium, and large. This number of points
was chosen in order to maintain a good spatial resolution
while keeping computational complexity of the design
reasonable. The target points were created using the 2
revolute joint planar model with the angle of proximal
phalanx, θp, varied from 0° to 60° discretized into 15
evenly spaced target angles. The angle of the middle
phalanx, θm, was determined from (2) and the target
points for both the proximal and middle phalanges were
defined at 19 mm behind the center-line of the finger to
allow for a means of connecting the robot to the hand.

Linkage selection
Designing a mechanism to reach multiple end-effector
configurations, known as mechanism synthesis, is a well-
Table 1 Dimensions determined for different hand sizes

lp (mm) rp (mm) rm (mm)

Extra-small 28.68 16.28 10.78

Small 35.13 20.32 13.21

Medium 41.58 24.57 15.63

Large 48.03 28.40 18.06

The dimension lp is the proximal length, rp is the proximal radius, and rm is the
middle radius.
studied research area [28]. This particular application,
however, has a unique twist. In this case, there is not a
single desired configuration but rather two that are
correlated; one for the proximal phalanx (position and
angle), and one for the middle phalanx (position only).
Furthermore, the design specifies a planar grasping motion
with a single DOF for each finger. Planar mechanisms, with
their multiple varieties of single DOF configurations, pro-
vide an adequate solution base for this design problem.
Initial mechanism synthesis attempts explored multiple

configurations of Watt type six-bar chains [29], but were
ultimately unsuccessful in reproducing the desired output
configuration. The final design uses an eight-bar mechan-
ism (Chain 1 from [29]) with revolute joints (see Figure 3).
The goal configurations consist of the position (PG) and
angle (μP) of the proximal phalanx and the position of the
middle phalanx (MG). The mechanism is made up of 10
revolute joints (G, G1, W, W1, W2, H, H2, Y, Y1, and Y2)
and 7 links defined by the kinematic chains GW, WHW1,
G1W1W2, HPYH2, W2H2Y2, Y1Y2, and YMY1. These
links are defined by seven structural angles (α, α2, δ, δ2, γ,
γ2, and μ) and 13 structural lengths (d1-11, m, and m2).
Figure 3 also shows the seven configuration angles (θ, θ1,
ϕ, ϕ1, ϕ2, ψ, and ψ1) that changes as the mechanism
moves. The mechanism has 1 DOF so that specifying one
of these configuration angles specifies the complete con-
figuration of the mechanism.
The preliminary optimization of this mechanism was

presented in [23]. The approach here is similar, but here
the mechanism configuration has changed so that the



Figure 3 Structural dimensions and configuration angles of the 8-bar mechanism. Reproduced from [23] with permission from IEEE. Goal
positions for the proximal and middle phalanges are shown as PG and MG, respectively. The goal angle of the proximal phalanx is μp.
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middle phalanx end-effector is connected to link Y1Y2

rather than YY1. This change improved the ability of the
optimization process to reach desired middle phalanx
target points, and also made the resulting mechanism
easier to manufacture.

Mechanism design equations
The design equations that define the 8-bar mechan-
ism consist of both path and loop equations. The
path equations consist of three separate kinematic
paths through the mechanism from one of the fixed
pivots to the each of the end effectors (P and M).
The path equations are similar to those presented in
[23] but have changed to improve optimization and
manufacturability, based on a trial and error design
process. For the proximal phalanx, the shortest path
equation is:

Gþ d1
cθ
sθ

� �
þ d2

c αþ ϕð Þ
s αþ ϕð Þ

� �
þm

c ψ þ α2 þ δð Þ
s ψ þ α2 þ δð Þ

� �
¼ P;

ð3Þ

where c and s stand for cosine and sine, respectively,
and the other parameters are previously defined and
shown in Figure 3. The other two path equations for
the proximal phalanx are defined by the kinematic
chains G1W2H2HP and G1W2Y2Y1YHP. As previously
mentioned, the middle phalanx path equations have
changed more significantly. Using the same notation,
the shortest path to the middle phalanx is

G1 þ d6
cθ1
sθ1

� �
þ d11

c φ1−γ2ð Þ
s φ1−γ2ð Þ

� �
þm2

c φ2−δ2ð Þ
s φ2−δ2ð Þ

� �
¼ M;

ð4Þ

The other two kinematic paths to the middle phalanx
are defined by the kinematic chains G1W2Y2M and
GWHYY1Y2M. The design equations also include 3
internal loop constraint equations which must be satisfied
to keep the design viable. The inner loop equation is

Gþ d1
cθ
sθ

� �
þ d5

cφ
sφ

� �
−d4

cθ1
sθ1

� �
¼ G1: ð5Þ

The other two equations, for the middle and outer loops
are defined by the kinematic chains GWHH2W2G1 and
GWHYY1Y2W2G1.
As mentioned before, the design specifies a goal angle of

the proximal phalanx, μP , in addition for each goal pos-
ition of the proximal phalanx, Pg. Using the relationship

ψ ¼ μP−α2−δ−μ; ð6Þ

the goal angle for the proximal phalanx is substituted
into the previously presented path and loop equations to
constrain the configuration angle ψ to the goal angle of
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the proximal phalanx, μP, and the structural angles α2, δ,
and μ.
With the path and loop equations defined, the design

problem becomes a function minimization problem. The
objective is to find the structural variables and the set of
n = 15 configuration angles that best reach the 15 de-
sired configurations. To achieve this, a cost function is
created consisting of the sum of the squares of the
distance between the desired end-effector points P and
M and the goal positions PG and MG for each of the 15
desired configurations. The cost function is defined

J ¼
X15
n¼1

Pn−PG;n
� �T

Pn−PG;n
� �þ Mn−MG;n

� �T
Mn−MG;n
� �� �

;

ð7Þ
where Pn is the position of point P at angle θn and PG,n

is the nth desired configuration (with similar definitions
for M and MG). Only one configuration angle is neces-
sary as the mechanism has only 1 DOF, and θ was
arbitrarily chosen (the other possibility was θ1), even
though in the final design we selected θ1 as the input
angle for connecting the actuator (based on the locations
of G and G1).

Mechanism design equation constraints
In addition to the cost function, a large set of con-
straints are required based on the overall design goals
and manufacturing considerations. Our preliminary
approach to consstraints was presented in [23]. Some
constraints require only upper and lower bounds,
such as the location of the base points, G and G1,
and structure variables d1 − 11, m, and m2. Other con-
straints require additional calculations, such as the link
dimensions not specifically specified by the structural
dimensions (the distance HW1, for example). These
constraints are summarized, with brief explanations, in
Table 2.
These constraints govern the structural dimensions of

the 8-bar mechanism, but do not limit the location of
the free joints (W, W1, W2, H, H2, Y, Y1, and Y2) as the
Table 2 Mechanism structural design constraints

Dimension(s) Bounds (mm)

Gx,G1,x {−76.2, 25.4}

Gy,G1,y {−10.2, 2.54}

d1 − 7 {1.91, 12.7}

d8 − 11 {1.91, 7.62}

m {1.27, 12.7}

m2 {1.91, 12.7}

GG1 , PY , HW1, W1W2 , H2Y , H2Y2 , and MY1 {1.91, 7.62}
mechanism moves through the desired configurations.
For example, any two joints should not overlap during
the motion of the mechanism. This requires that the
location of each joint be calculated at each of the 15 goal
configurations. In total there are 29 joint pairs with the
potential to overlap which are constrained to keep the
distance between joints from going below a manufac-
turable distance. The complete list of joint-to-joint dis-
tances to calculate at each of the 15 goal configurations
is given in Table 3.
One of the most important set constraints concerns

the location of the joints with respect to the hand and
fingers throughout the motion. One of the main goals
for the mechanism was that it be entirely located behind
the hand during operation. This goal was chosen to
allow the hand to be easily attached to the robot, to
allow stacking of mechanisms for individual fingers, and
to facilitate providing sensory stimulation to the volar
surface of the hand. For instance, a soft object can be
mounted towards the palm of users’ hands to be touched
while practicing grasp motions. In the presented experi-
ment, however, this feature is not utilized. This requires
all of the joints to be behind the hand and fingers at
each of the 15 goal configurations. Thus the constraint
area is constantly changing. We implemented this con-
straint area by creating three separate unit vectors, one
at the back of the middle phalanx, um, one at the back of
the proximal phalanx, up, and one at the back of the
wrist, uw. These vectors are illustrated in Figure 4. These
unit vectors at the phalanges point away from the hand
at an angle perpendicular to the phalanx and are dif-
ferent for each of the 15 goal configurations. The unit
vector at the back of the wrist also points away from the
hand, but does not move for different goal configura-
tions. Furthermore, three vectors are created for each of
the free joints at each of the 15 goal configurations.
These three vectors, vm, vp, and vw, all point to the
aforementioned joint and originate from the base of the
unit vectors um, up, uw (see Figure 4). The maximum of
the dot products between the corresponding u and v
vectors gives the distance, as a positive value, that the
Purpose

Keep fixed pivots located behind wrist/hand.

Keep fixed pivots located behind wrist/hand.

Min. distance to manufacture joints, keep mechanism compact.

Min. distance to manufacture joints, keep mechanism compact.

Min. distance to manufacture proximal phalanx end-effector,
keep mechanism compact.

Min. distance to manufacture middle phalanx end-effector
(including room for rotating joint), keep mechanism compact.

Min. distance to manufacture joints, keep mechanism compact.



Table 3 8-bar mechanism joint distance constraints

Joint-to-joint distance(s), calculated at each of the 15 goal configurations Bounds (mm) Purpose

WG1 , W1G , W2G , W2W , W2H , HG , HG1 , H2G , H2G1 , H2W , H2W1 , YG , YG1 , YW , YW1 ,

YW2 , Y1G , Y1G1 , Y1W , Y1W1 , Y1W2 , Y1H , Y1H2 , Y2G , Y2G1 , Y2W , Y2W1 , Y2H , Y2Y
{19.1, 254}

Keep joints from colliding during motion,
and make joints manufacturable.
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joint is from the back of the hand/finger. This value is
constrained to between 12.7 and 76.2 mm, so that the
joints clear the back of the hand during motion but are
also kept from begin excessively away from the hand.

Mechanism cost function minimization
The cost function (7) was minimized within the bounds of
the constraints detailed in the previous section using a
constrained multivariable minimization optimizer (Matlab
function “fmincon”). The minimization process was re-
peated numerous times with randomized initial conditions
until viable solutions were found. The minimization was
first performed on the goal configurations generated from
the dimensions of the medium size given in Table 1. The
resulting structural parameters of the medium mechanism
are given in Table 4. The total error after cost function
minimization was 2.14 mm for all 30 of the target points
for the 15 medium finger size goal configurations. This is
an average error of 0.071 mm per target point.
After the structural parameters for the medium finger

size were determined, the cost function was re-minimized
for the large, small, and extra small finger sizes using the
Figure 4 Vectors for constraining the location of the free joints to the
medium structural parameters as the initial conditions.
During re-minimization, all of the structural parameters
were fixed except for five (m, m2, δ, δ2, & μ) which allow
the new mechanism it to reach the goal configura-
tions of the other finger sizes. Although other choices
of parameters also allow the minimization to reach
the trajectories for the other finger sizes, changing
these five parameters can be accomplished by only modi-
fying the shape the two end-effector links. This allows the
re-sizing to be accomplished without the need to disas-
semble the mechanism when changing between sizes. The
resulting values of these structural parameters and the
minimized cost function for the other mechanism sizes
are given in Table 5. A visual depiction of the ability of the
four different mechanism sizes to reach the four sets of 15
desired configurations is shown in Figure 5.

Mechanical design
The current version of FINGER has two identical planar
8-bar mechanisms to individually curl the index and
middle fingers through a naturalistic motion. The mech-
anism, actuators, and adjustment assemblies are located
back of the hand and finger.



Table 4 Structural parameters for the medium finger
curling mechanism

Length (mm) Angle (°)

Gx = −40.93 α = −135.2

Gy = −28.68 α2 = +59.18

G1x = −59.64 δ = +9.520

G1y = −25.40 δ2 = −24.25

d1 = +36.28 γ = −39.29

d2 = +49.12 γ2 = 2.057

d3 = +19.05 μ = −19.67

d4 = +34.43

d5 = +20.18

d6 = +70.30

d7 = +92.68

d8 = +76.20

d9 = +69.80

d10 = +76.20

d11 = +55.30

m = +47.24

m2 = +101.20 Figure 5 Optimized mechanism paths four different finger
sizes. There are 15 goal configurations for each size, including
target points (red exes) for the middle phalanx (for controlling
position) and target lines (read lines) for the proximal phalanx
(for controlling position and angle). The ability of the mechanism to
reach these 15 configurations is demonstrated with black crosses
and black lines.
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behind the hand. As mentioned above, this allows con-
tact of the volar surface of the hand with objects during
therapy, and makes it easier to attach the hand of a sub-
ject to the robot.
Each 8-bar mechanism was designed with alternating

inner links and outer link pairs, overlapping at joints to
balance bearing forces and keep friction low. Two ABEC
5 bearings and one precision shoulder bolt were used for
each joint. The links were designed in Solidworks to the
dimensions determined from the mechanism synthesis
and machined from aluminum using a three-axis, com-
puter numerical control (CNC) milling machine. The
linkage design includes mechanical hard stops to limit
the range of motion to the desired range.
Finger cups with custom ratcheting straps (see Figure 6)

are located at the two end effectors of each mechanism to
attach the robot to the subjects’ proximal and middle
Table 5 Values of the changing structural parameters for
different mechanism sizes and the resulting cost function

Parameter Extra-small Small Medium Large

m (mm) +41.5 +44.2 +47.2 +50.1

m2 (mm) +94.5 +67.6 +101.2 +105.7

δ (°) +145.7 +120.6 +95.2 +74.2

δ2 (°) −32.79 −28.46 −24.25 −20.45

μ (°) −19.93 −19.99 −19.67 −19.13

Cost function, J (mm) 7.58 3.42 2.14 5.01

Per 30 points, J/30 (mm) 0.25 0.11 0.07 0.17
phalanges. The middle phalanx finger-cup allows for rota-
tion while the proximal finger cup is fixed, as per desired
kinematic design. Each of the 8-bar mechanisms includes
adjustability for different finger lengths. After inspecting
the results of the mechanism synthesis, it was apparent
that the locations of the end effector M as defined for the
four hand sizes (Table 5) are very nearly located on a
line with respect to link MY1Y2. The same is true for
the proximal phalange end effector on PHY. This fact
simplified the mechanical design, allowing for infinite po-
sitioning of the finger cups over the full adjustment range.
The middle phalanx length adjustment is shown in
Figure 6.
The location of each of the 8-bar mechanisms may be

adjusted vertically to align them with the plane of the sub-
jects’ index and middle fingers (see Figure 7). Furthermore,
the wrist of the subjects is secured in a wrist cuff, of which
the height and angle may be adjusted as necessary for
alignment and comfort during gameplay (see Figure 7).
Each 8-bar mechanism is independently actuated. The

two linear actuators are mounted on top of each other with
a fixed vertical distance from the base plate while they can
freely rotate about an axis normal to it. The detailed speci-
fications of the actuators are explained in the sections that
follow. The entire assembly is shown in Figure 8.



Figure 6 Finger cups with ratcheting straps for the middle phalanx (top left) and the proximal phalanx (top right) and finger length
adjustment (bottom).
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Robotic actuation and performance
Actuation hardware
FINGER uses two brushless linear motors (“Servo
Tube” actuators, Dunkermotoren STA116-168-S-S03C) to
independently actuate the 8-bar finger curling mech-
anisms. These actuators were chosen for their unique
Figure 7 Wrist cuff with height adjustment assembly (left) and mecha
combination of high speed, low friction, and large
stroke length. Because they lack any gearing or ca-
bles, they exhibit good backdrivability. This is an
important feature for robot assisted therapy; the ideal
rehabilitation actuator would be able to apply any
force at any point during the desired motion,
nism height adjustment (right).



Figure 8 FINGER assembly. FINGER robot with two 8-bar finger
curling mechanisms and two actuators (top), and close-up of index
and middle fingers attached to the robot (bottom). The proximal
phalanx finger-cup is fixed at an angle but the middle phalanx is
free to rotate.
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including zero-force, allowing the subject to see the
results of their efforts.
This particular model of Servo Tube actuator can

produce a continuous force of 26.75 N with a peak of
91.9 N. Current to the actuator is controlled by an amp-
lifier (Copely Controls ACJ-055-09-S), which allows a
voltage or PWM setpoint signal. The Servo Tube actuator
has built-in Hall Effect sensors and outputs an emulated
quadrature encoder position signal of up to 8 microns of
resolution. Accelerometers (Analog Devices ADXL325EB)
mounted to the end of the actuator rod measures actuator
accelerations with a range of ±6 g.
The controller is implemented on a PC using Matlab®

xPC Target, with a sampling frequency of 1000 Hz. A
National Instruments 6221 DAQ card (16-Bits, 250kS/s) is
used to acquire voltage signals from the accelerometers,
read the quadrature outputs from the Servo Tube actua-
tors, and send the forces commands to the actuators.

Control fidelity
To evaluate the control fidelity of FINGER, we conducted
a closed loop frequency response test. A Proportional-
Integral-Derivative (PID) controller was used to follow
desired sinusoidal trajectories with a magnitude of 75% of
the range of motion and frequencies from 0.15 to 100 Hz.
The PID controller gains, chosen by trial and error, for this
test were KP = 8 N/m, KI = 8 N/m∙s and KD= 2 N∙s/m,
respectively. The results, shown in Figure 9, show a −3 db
magnitude reduction at approximately 8 Hz. The corre-
sponding jump in phase lag indicates the nonlinearity in
the system at high speeds.

Velocity estimation
Although the built-in position sensor of the Servo Tube
actuator has a very high resolution, using a discreet de-
rivative of the position signal can be very noisy, espe-
cially at low velocities. In order to obtain a smooth
velocity estimate, a Kalman-Filter was designed that uses
the actuator’s position signal and an acceleration signal
from an accelerometer mounted at the end of the actu-
ator rod. The Kalman-Filter gains were calculated using
the Matlab LQR function (Linear Quadratic Regulator).
The Kalman-Filter design is similar to the one used
in [30].

Friction compensation
Minimizing friction was a top priority during the design
and manufacturing of FINGER. This goal guided the
mechanism design, manufacturing process, and the se-
lection of bearings and actuators. Figure 10 shows the
static friction force for one of the 8-bar mechanisms as a
function of actuator stroke. These static friction forces
were determined experimentally as the force required by
the actuator to move the mechanism from a rest
position. Because the position dependency in the static fric-
tion is minimal, the average static friction force (0.0137 ±
0.0015 N SD) was used to construct a feedforward friction
compensator. Assuming a simple Coulomb friction model,
the compensator adds this average friction force along the
direction of the estimated velocity. To prevent chattering,
the compensator only applied the static force after a mini-
mum velocity magnitude is achieved (see the dotted box in
Figure 11).

Control architecture
Figure 11 shows the block diagram of the robot control
system. The trajectory planning block includes the com-
puter game with predefined desired trajectories, sent to
the robot controller. Based on therapeutic preferences,
different games can be used or designed as an interface
between the subjects and the robot. For each game, the
subjects are instructed to move the robot that is at-
tached to their fingers according to the tasks dictated by
the game. The robot moves by the combination of sub-
ject and actuator forces (Figure 11). The actuator force
is a function of the controller type; hence, the controller
structure determines how the subject will be assisted by



Figure 9 Bode plots of the robot under PID control. Reproduced from [22] with permission from IEEE.
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the robot. Various controller types with different cha-
racteristics have been used in assistive devices to fulfil
different therapeutic hypotheses [13]. The controller
used for the testing described herein is a linear Propor-
tional-Derivative (PD) controller, whose gains vary during
the gameplay according to an algorithm that will be de-
scribed in the following sections.
Figure 10 Static friction of the 8-bar finger curling mechanism.
Pilot testing with individuals with stroke
Human subjects
Eleven male and five female volunteers with stroke re-
lated motor impairment on the right side participated in
the study. The average age of the subjects was 57.8 +/−
12.5 SD and they were 3.3+/−1.8 SD years post stroke.
Eight subjects reported that their stroke was ischemic;
three reported that their stroke was haemorrhagic; and
five did not know. Level of impairment was assessed
using both the upper extremity Fugl-Meyer (FM) test
and the box and blocks (BB) test [31,32]. For the FM test,
a trained therapist asked subjects to perform 33 test move-
ments and scored them 0 (can’t do), 1 (can do partially),
or 2 (can do), then summed the scores. For the BB test,
subjects moved as many blocks as possible over a divider
in a one minute period. The average FM scores for the
group were found to be 41.6 ± 15.8 SD out of 66, and aver-
age BB scores were found to be 25.1 ± 21.9 (compared to a
score of 75.2 ± 11.9 reported in literature for healthy sub-
jects) [32]. Based on these scores, nine of the subjects were
classified as highly impaired (FM < 40 & BB < 20), and the
remaining seven subjects were classified as moderately
impaired. For comparison, four healthy subjects (3 male/1
female, average age 33.5 ± 9.4 SD) were also included in
the study. All subjects provided informed consent,
and all procedures were approved by the institutional
review board at U.C. Irvine.



Figure 11 Block diagram of the control system.
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Therapeutic game play
To demonstrate its potential as both a rehabilitative tool
and a platform for exploring the factors that promote
functional recovery, FINGER was used to test the hypo-
thesis that subjects will be most engaged in the rehabili-
tation therapy presented to them when they are at their
optimal challenge level. To test this hypothesis, FINGER
was used to assist subjects in playing a custom-designed
game similar to Guitar Hero®, which is the third largest
video game franchise in history (Additional file 1). Prior
to gameplay, the subjects were asked to put their hand
in FINGER, and the proximal and middle phalange
attachment points were adjusted to finger size until the
subjects were able to comfortably curl their fingers
through the full range of motion. Additional support
under elbow was provided as needed to put the subject’s
Figure 12 Screen-shot of the game, which is similar to Guitar Hero®.
the middle finger, and the blue target by both fingers together. The other tw
ball moves along the fret board. The desired locations of the fingers are displ
the screen. To hit a note, the subjects were required to move the ball to the
After hitting a note, the subjects must return the finger(s) to neutral position
arm and wrist in a comfortable orientation. This game
requires subjects to play along with a song by attempting
to hit notes streaming down a visual display as shown in
Figure 12. In order to hit these notes, the subjects were
required to flex their fingers to a desired angle and stop
at the correct time while receiving performance-based
assistance from the robot. During the game, subjects
were presented with three types of notes corresponding
to flexion of the index finger, the middle finger and both
fingers together. After successfully hitting a note, the
subjects were required to extend their fingers back to a
neutral position before the game would credit them with
hitting future notes. During extension to the neutral
position, subjects received the same amount of assist-
ance as they received during flexion. While subjects
attempted to flex their fingers to the correct positions,
The green target was controlled by the index finger, the yellow target by
o targets were not used. As subjects move a finger, a corresponding dark
ayed by fixed circles on the fret board that stream towards the bottom of
fixed desired position at the time the streaming note passes through it.
in order to hit the upcoming notes.
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small dark balls hovering above the fretboard were dis-
played to provide the subjects with visual feedback of
their finger position (see Figure 12). The song used in
this experiment was “Happy Together” by the Turtles,
and it required 104 notes to be hit over the course of a
160 second game. Timing of the notes was the same
during all the experiments and only the level of assist-
ance changed to modulate subjects’ success rates as will
be discussed later. Portions of this experiment have been
published in conference paper format [33].
Success rate algorithm
During the game, FINGER was used to both assist the
subjects in completing the desired task and to monitor
their performance. Although FINGER can be operated
under a variety of control paradigms, this experiment
used a PD controller whose gains were intermittently
updated by an algorithm which attempts to control the
subjects’ probability of hitting notes successfully [34].
Our contention is that by controlling subjects’ success
rate, we will be able to control their challenge level.
According to the challenge point framework (CPF),
determining the optimal challenge level is crucial to op-
timality of motor learning, particularly in rehabilitation
[35]. CPF states there is an ideal amount of information
which when presented to the learner will optimize the
learning process. In other words, to achieve the best
learning rate, the task shouldn’t be too easy or too diffi-
cult. This ideal amount of information varies with the
skill level of the learner. By controlling the controller
gains, we can control the game difficulty and hence the
level of challenge the subjects experience, regardless of
their impairment level” with “ By changing the feedback
gains, we can control the game difficulty and hence the
level of challenge the subjects experience, regardless of
their impairment level.
Determining the optimal challenge point for a particular

task is difficult because it requires measuring long-term
learning at a variety of challenge levels in a large number
of subjects. However, one determinant of the optimal
challenge point is likely effort – i.e. the more engaged a
subject is, the more learning will likely occur. Effort can
be measured in real-time and thus has the potential to
serve as a means to identify when conditions are at least
partially conducive for learning. Thus, we studied how
effort, quantified by how much force the subjects exerted
during the game (see below), varied with success rate.
The success rate algorithm mentioned above works as

follows: For each successful note, the algorithm reduced
the gains on the corresponding finger by an amount ρ,
and for every missed note the gains on the correspond-
ing finger were increased by an amount α∙ρ. As shown
in [34], this simple algorithm eventually forces the
subjects’ probability of success to converge on a value
dependent only on α as shown in Equation 8 below.

�Pi→∞ ¼ α

αþ 1
ð8Þ

Experimental protocol
Subjects were seated in front of a visual display, and the
proximal and middle phalanges of their index and mid-
dles fingers were securely attached to the end effectors
of the FINGER robot. Subjects were then instructed how
to play the game and were asked to familiarize them-
selves with the task by playing through a song at a
success rate of 75%. Data from this initial trial were
excluded from the final analysis.
After the familiarization task, the robot was used to

measure the subjects’ range of motion and maximum
isometric force in both flexion and extension. Measure-
ments were taken from the index and middle fingers
both individually and together. These measurements
were repeated at the end of the experiment. Then subjects
were asked to play through the same song twice at each of
the three randomly presented success rates (50%, 75%,
and 99%).
On a randomly selected subset consisting of roughly

15% of the notes in every song, the robot’s gains were
set to a fixed value and the robot was used to block the
subject’s movements instead of assisting them. During
these blocked trials, the amount of force exerted against
the robot was taken as a measure of the subject’s effort
in the task. Subject performance during these trials was
not used to adapt the robot’s gains, and once the
blocked notes passed the control gains were returned to
their previous values.

Data analysis
The instantaneous success rate at each note was calcu-
lated by dividing the number of successful trials within a
moving window containing the 25 preceding notes by
the size of the window. The peak force applied against
the robot during blocked trials was used to quantify sub-
ject effort by normalizing it to the subject’s maximum
force for the corresponding finger as measured during
isometric trials. An unbalanced 2 factor mixed measures
ANOVA with repeated measures applied to the success
rate variable was used to test the effects of success rate
and impairment level on subjects’ effort.
During blocked notes for the index and middle fingers,

the robot restricted the motion of both the correct and
the incorrect fingers. An estimate of finger individuation
was thus obtained by comparing the force generated by
the finger that was supposed to move to the force
generated by the finger that was not. Forces measured
from both fingers were first normalized by their
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corresponding maximum force values from isometric tri-
als. A measure of individuation was then calculated by
dividing the average maximum normalized force applied
by the incorrect finger by that of the correct finger. For
blocked notes in which the force applied by the incorrect
finger was greater than 1.25 times the force applied by
the correct finger, it was assumed that the subject acci-
dentally tried to hit the wrong note. Similarly, for trials
in which the subjects did not apply any measurable force
with either finger, it was assumed the notes were com-
pletely missed. These blocked notes were not included
in the individuation analysis. An unbalanced three factor
mixed measures ANOVA with repeated measures on the
finger variable and the success rate variable was used to
determine whether finger, success rate, or impairment
level had any significant effect on the subject’s individu-
ation value.

Results
Average probability of success in hitting correct notes
during gameplay versus time for the sixteen impaired
and the four healthy subjects is shown in Figure 13. At
the desired success rates of 50%, 75% and 99% the
impaired subjects converged to the average actual success
rates of 47.7+/−9.6%, 73.8+/−7.1%, and 97.6+/−1.9%.
However, the unimpaired subjects converged to the aver-
age actual success rates of 72.2+/−19.5%, 79.3+/−4%, and
Figure 13 Actual success rates of stroke and unimpaired subjects. Ac
songs with desired success rates of 50% (red), 75% (green), and 99% (blue)
moving window average over subjects and the shaded area is the standard
desired vs. actual success rates at convergence.
99+/−1.1%. This result shows that the algorithm explained
in 4.3 is successful in assisting subjects to achieve a
desired success rate. It is not surprising that the healthy
subjects could achieve success rates higher than algo-
rithm’s desired success rate, because the algorithm doesn’t
prevent subjects from hitting more correct notes than
desired. In order to effectively challenge the unimpaired
subject, the algorithm would need to have been able to
make the game more difficult than it would naturally be
with the assistance turned completely off. This is not
necessary for the impaired subjects, whose reduced neuro-
muscular ability provided the increased difficulty.
We also measured how success rate and impairment

level affected the subjects’ effort while playing the game.
Success rate was found to have a significant effect on
subjects’ effort (p = 0.0024, degrees of freedom= 2). The ef-
fects of impairment level on effort, approached but did not
achieve significance (p =0.0785, degrees of freedom= 2).
As shown in Figure 14, effort decreased when subjects’
success rate increased.
Figure 15 shows the effects of impairment level and

the finger being used on finger individuation. Both the fin-
ger being used and impairment level were found to have a
significant effect on finger individuation (p = .0001, degrees
of freedom = 1 and p = .0062, degrees of freedom = 2,
respectively). As can be seen in Figure 15, individuation
scores of the index finger were consistently better than
tual success rates of stroke (top) and unimpaired (bottom) subjects for
. Plots to the left show time progression of success rates. Lines are the
deviation. Plots to the right show mean and standard deviation of



Figure 14 Average and standard deviation of effort versus
average actual success rates for three groups of highly
impaired, moderately impaired and unimpaired subjects. Effort
was quantified as the peak force subjects generated during blocked
notes. This peak force was then normalized to each patient’s maximum
force generated during isometric test.

Figure 16 Average and standard deviation of finger
individuation versus impairment level of three groups of highly
impaired, moderately impaired and unimpaired subjects.
Average finger individuation across success levels of both middle
and index fingers.
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those of the middle finger. This means that when the sub-
ject tried to move the index finger, he was more successful
at moving the index finger only, as compared to when he
tried to move the middle finger. Success rate was not
found to have a significant effect on finger individuation,
and so we combined data across success levels, resulting
in Figure 16, which shows the effect of subjects’ impair-
ment level on finger individuation. Subjects’ with higher
impairment had lower individuation ability. The ability to
individuate the index finger was higher than the ability to
individuate the middle finger.

Conclusions
This paper described the design and preliminary evalu-
ation of FINGER (Finger Individuating Grasp Exercise
Robot). FINGER makes use of individual single degree-
of-freedom 8-bar mechanisms to assist patients in making
Figure 15 Average and standard deviation of the index and middle fi
groups of highly impaired, moderately impaired and unimpaired sub
normalized force generated by the finger that was not supposed to move
a naturalistic grasping motion with different fingers, to-
gether or separately. The kinematic and mechanical design
work was guided by the overall goal of creating a robot
with high-control fidelity as an instrument for testing and
implementing the widest possible range of control strat-
egies. Thus, we paired the lightweight, low-friction mech-
anism with high-speed and un-geared linear actuators.
The resulting robotic mechanism has a closed loop fre-
quency response of approximately of −3 dB at approxi-
mately 8 Hz. The fast speed and frequency response of
FINGER make it a good candidate for evaluating control
algorithms and therapy tasks that require fast movements
and/or precise timing.
Another unique feature of FINGER is that, in contrast

to most exoskeleton designs that attempt to align the
nger individuations versus average actual success rates of three
jects. Finger individuation was quantified as the ratio of the
to that of the finger that was during blocked notes.



Taheri et al. Journal of NeuroEngineering and Rehabilitation 2014, 11:10 Page 16 of 17
http://www.jneuroengrehab.com/content/11/1/10
joints of the robot with the joints of the body, the joints
of the 8-bar mechanisms of FINGER are kept to the
back of the hand and wrist throughout the curling mo-
tion. This facilitates easy attachment to the user and
stacking of the mechanisms for multiple fingers, and al-
lows for the possibility of applying sensory stimuli to the
volar surface of the palm, for example by having individ-
uals grasp real objects with assistance from FINGER.
The physical parameters of the 8-bar mechanism were

determined through a mechanism synthesis process that
achieved desired end-effector locations using cost function
minimization. Four different sets of desired end-effector
locations were created to generate a mechanism that
could be easily adjusted to accommodate four different
hand sizes. Using low-friction bearings and a balanced
joint design, we were able to achieve smooth, low-friction
8-bar mechanisms that are easily backdriven. Further
design features include finger-to-finder width adjustment,
finger length adjustment, and wrist alignment.
Future upgrades to FINGER are currently under devel-

opment. Possible upgrades and improvements include
adding direct force sensing and impedance control,
implementing unstructured “assist-as-needed” adaptive
control, and adding a thumb exoskeleton mechanism.
The preliminary tests of FINGER showed that it can

allow individuals with a range of impairment levels to play
an engaging video game similar to Guitar Hero®. We used
FINGER with a simple gain-adaptation algorithm to test
the hypothesis that we can assist subjects as needed in
achieving predefined success levels at the game, which we
confirmed. We also found that the effort of both high level
and low level subjects decreased when their success rate
increased; this is consistent with previous observations of
slacking when a robotic device over-assists its user [9,10].
According to CPF, there is an intermediate success rate

in which learning is maximal. We do not find a success
level at which effort was optimal. One possibility is that ef-
fort may not decrease unless success is below 50%, the
lowest level we tested. Determining the relationship be-
tween measures of effort and the optimal challenge point
is an important direction for future research.
These tests also demonstrated the ability of FINGER to

quantify finger individuation. Using measurements during
blocked trials based on patients’ force applied by the
wrong finger, we found that patients with higher impair-
ment levels individuated less than those with lower levels
of impairment. This result supports the findings in the
previous literature on individuation that found that stroke
reduced the ability to perform selective individuated finger
motions, and specifically that the independence of the
middle finger is more impaired than that of the index fin-
ger [36,37]. A significant result is that we were able to
quantify individuation during the normal course of game
play of the game similar to Guitar Hero®. The possibility
of generating quantitative measures of movement ability
while therapy is delivered may increase the frequency at
which these measures can be obtained [38].
The results of the preliminary tests with FINGER

demonstrate its unique capabilities to study and imple-
ment finger therapy after stroke. Additional testing with
FINGER may add insight to the effects of success rate
on motor learning and finger movement recovery. We
also plan to further explore the mechanisms of finger in-
dividuation in subjects with impairment due to stroke.
Such knowledge will guide the use of FINGER for post-
stroke movement therapy.

Endnote
aGuitar Hero® is a trademark of Activision Publishing, Inc.
Additional file

Additional file 1: A video of FINGER being tested. A lady suffering
from stroke is playing the custom designed game similar to GuitarHero®
using FINGER. The video game and robot assembly can be seen in the
video from two different angles. The MPG video clip can be played using
standard video players such as Windows Media Player. Informed consent
to publish the video was obtained from the subject.
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