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SUMMARY
Cancer therapy exerts a strong selection pressure that shapes tumor evolution, yet our knowledge
of how tumors change during treatment is limited. Here we report the analysis of cellular
heterogeneity for genetic and phenotypic features and their spatial distribution in breast tumors
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pre- and post-neoadjuvant chemotherapy. We found that intratumor genetic diversity was tumor
subtype-specific and it did not change during treatment in tumors with partial or no response.
However, lower pre-treatment genetic diversity was significantly associated with complete
pathologic response. In contrast, phenotypic diversity was different between pre- and post-
treatment samples. We also observed significant changes in the spatial distribution of cells with
distinct genetic and phenotypic features. We used these experimental data to develop a stochastic
computational model to infer tumor growth patterns and evolutionary dynamics. Our results
highlight the importance of integrated analysis of genotypes and phenotypes of single cells in
intact tissues to predict tumor evolution.

INTRODUCTION
Intratumor phenotypic heterogeneity is a defining characteristic of human tumors. Cancer
cells within a tumor can display differences in many measurable traits such as proliferative
and metastatic capacity, and therapeutic resistance (Almendro et al., 2013; Fidler, 1978;
Heppner and Miller, 1983; Maley et al., 2006; Marusyk et al., 2012; Yap et al., 2012).
Multiple mechanisms underlie intratumor heterogeneity including both heritable and non-
heritable determinants (Fidler, 1978; Heppner and Miller, 1983; Maley et al., 2006; Marusyk
et al., 2012; Marusyk and Polyak, 2010; Yap et al., 2012). In addition, cellular genetic
diversity was observed within populations of tumor cells that is distinct from clonal
diversity, as it combines inputs from both clonal architecture and lower-scale differences
arising from genomic instability that are not amplified by selection (Maley et al., 2006;
Merlo et al., 2006). The study and treatment of cancer is complicated by this heterogeneity,
as small tissue samples, typically obtained by biopsy, may not be representative of the whole
tumor (Gerlinger et al., 2012) and a treatment that targets one tumor cell population may not
be effective against another (Turner and Reis-Filho, 2012; Yap et al., 2012).

Quantitative measures of intratumor heterogeneity might aid in the clinical management of
cancer patients including identifying those at a high risk of progression and recurrence. For
example, a larger extent of intratumor clonal heterogeneity is associated with a higher risk of
invasive progression in Barrett’s esophagus (Maley et al., 2006; Merlo et al., 2010) and
higher genetic heterogeneity in head and neck squamous carcinomas is related to worse
outcome (Mroz et al., 2013). The presence of multiple cellular clones with distinct genetic
alterations has also been implicated in therapeutic resistance (Engelman et al., 2007; Mroz et
al., 2013; Nazarian et al., 2010; Sakai et al., 2008) and in metastatic progression (Fidler,
1978).

Cancer therapy exerts a strong selection pressure that shapes tumor evolution (Merlo et al.,
2006). Thus, residual tumors after treatment are likely to have different, frequently less
favorable characteristics and composition than those of the diagnostic sample. Despite the
importance of these treatment-induced changes for the success of subsequent therapy,
tumors have been rarely re-sampled and re-analyzed, with the exception of hematopoietic
malignancies (Ding et al., 2012; Landau et al., 2013). Thus, our understanding of how
treatment impacts intratumor heterogeneity and cellular diversity in solid tumors, which then
in turn determines the effectiveness of treatment, is very limited.

The most informative approach to uncover intratumor heterogeneity in clinical samples is
the definition of the overall clonal architecture within a tumor. However, this level of
resolution is not practically feasible. A lower resolution view of clonal architecture can be
outlined based on computational inferences from allele frequencies of whole genome
sequencing of bulk tumors (Ding et al., 2012) or by low resolution sequencing of single
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cancer cells (Navin et al., 2011). Unfortunately, both of these approaches have many
technical caveats and are prohibitively expensive to apply for large patient cohorts.

An alternative to the whole-genome studies is to study genetic diversity using a single or a
few genomic loci. While this approach cannot reveal the clonal architecture within a tumor,
it is more feasible due to minimal sample requirements and low cost. Importantly, diversity
indices calculated based on a limited number of loci (even selectively neutral ones) have
been shown to predict clinical outcome (Maley et al., 2006; Merlo et al., 2010). Cellular
heterogeneity reflects both clonal heterogeneity and genetic instability; thus, it can be
impacted by anti-cancer therapy on several levels. First, the new selective pressures are
expected to favor relatively treatment-resistant clonal sub-populations over sensitive ones,
therefore limiting clonal diversity. Second, genotoxic treatments may elevate genomic
instability, thereby potentially increasing cellular genetic diversity. Despite of its clinical
importance, the potential impact of cancer therapy on cellular genetic heterogeneity is
largely unknown.

Here we report the effects of neoadjuvant chemotherapy on the extent of genetic and
phenotypic cellular diversity within breast tumors and the associations between intratumor
genetic heterogeneity and therapeutic outcomes.

RESULTS
Tumor subtype- and cancer cell type-specific differences in genetic diversity

To investigate relationships between intratumor heterogeneity and cancer therapy, we
analyzed pre- and post-treatment tumor biopsies from 47 breast cancer patients undergoing
neoadjuvant chemotherapy (Table S1). These included 13 luminal A, 11 luminal B, 11
HER2+, and 12 TNBC (triple negative breast cancer) tumors representing each of the major
breast tumor subtypes (Perou et al., 2000). Four patients showed complete pathologic
response (pCR) to treatment; thus, in these cases post-treatment samples could not be
analyzed.

Genetic heterogeneity was assessed based on immunoFISH (iFISH) using BAC (Bacterial
Artificial Chromosome) probes for 8q24.3, 10p13, 16p13.3, and 20q13.31 and the
corresponding centromeric probes (CEP) to distinguish between gain of whole
chromosomes versus specific chromosomal regions. These genomic loci were selected
because they are the most commonly amplified chromosomal regions in breast cancer
regardless of tumor subtype (e.g., 8q24), or within a specific tumor subtype (Nikolsky et al.,
2008). Phenotypic heterogeneity was assessed by staining for CD44 and CD24 (Figure 1A),
since prior studies from our and other laboratories demonstrated that these cell surface
markers identify cancer cells with distinct molecular and biological properties (Al-Hajj et
al., 2003; Bloushtain-Qimron et al., 2008; Li et al., 2008; Liu et al., 2007; Shipitsin et al.,
2007) including genetic heterogeneity both between and within CD44+ and CD24+ breast
cancer cell populations (Park et al., 2010a; Shipitsin et al., 2007). The neoplastic nature of
the cells was confirmed by examining cellular and nuclear morphology using adjacent
hematoxylin-eosine stained slides, and in the majority of cases by the presence of
chromosomal copy number gain.

The 8q24 BAC and chromosome 8 CEP signals were counted in about 100 individual cells
for each of the four phenotypically distinct tumor cell populations (i.e., CD44+CD24−,
CD44+CD24+, CD44−CD24+, and CD44−CD24− cells). Diversity was evaluated based on
Shannon and Simpson indices (Magurran, 2004) that were calculated in four different ways
based on measures of (1) copy number of 8q24 (BAC probe), (2) copy number of
chromosome 8 centromeric region (CEP probe), (3) ratio of BAC/CEP counts, and (4)
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individual copy number of both BAC and CEP probes in each cell (unique counts). Overall,
each of the four different calculations displayed similar relative differences among tumors
and matched pre- and post-treatment samples, but diversity indices were the highest based
on unique counts (Table S2). Thus, owing to its more accurate prediction of genetic
diversity, we subsequently used unique counts for all analyses unless otherwise indicated.

First, we investigated whether pre- and post-treatment genetic diversity for 8q24 is different
in distinct breast tumor subtypes. HER2+ tumors had significantly higher diversity after
treatment compared to luminal B and TNBC tumors (Figure 1B and Table S2). However,
there was no significant difference in overall genetic diversity in any of the tumors between
pre- and post-treatment samples (Figure 1C). Next, we investigated potential changes in
genetic diversity in phenotypically distinct tumor cell subpopulations. We required cell
subpopulations for analysis to represent at least 5% of all cancer cells within a tumor in
order to avoid a counting bias; thus, not all four phenotypic types were analyzed in all
samples. In some tumors, we observed significant differences in the relative distribution of
copy number for BAC or CEP probes or BAC/CEP ratios in specific cell subpopulations
when comparing pre- and post-treatment data (Figure S1A). We also observed changes in
cell populations and unique cancer cells based on kernel density estimates and Whittaker
plots (Figures S1B and S1C). However, pair-wise analysis of pre- and post-treatment
differences in genetic diversity in each of the four phenotypic subpopulation across all
tumors did not reveal significant changes (Figure 1D); cell type-specific genetic diversity
was significantly higher after treatment only in a few cases (Figure 1E and Table S2).

To ensure that our results were not due to the inaccurate reflection of overall genomic
diversity based on 8q24 counts, we also analyzed three additional loci commonly amplified
in luminal (16p13), TNBC (10p13), and HER2+ (20q13) tumors. Similar to 8q24, these
additional loci also failed to demonstrate significant changes in genetic diversity (Figure
1F). Our data suggest that genetic diversity is an intrinsic tumor trait that remains relatively
stable during treatment.

Changes in phenotypic heterogeneity highlight biologic differences among cell types
To determine potential changes in cellular phenotypes due to treatment, we analyzed the
relative frequency of the four distinct cell subpopulations within tumors. We observed a
significant increase in the frequency of CD44−CD24+ cells in luminal A, luminal B, and
TNBC tumors after treatment, and residual TNBC tumors were also enriched for
CD44−CD24− cells (Figures 2A and 2B). Concomitantly, there were fewer CD44+CD24−

cells in luminal A and triple negative tumors after treatment, whereas HER2+ tumors
displayed very few changes in the distribution of cell subpopulations. Next we estimated the
degree of phenotypic diversity based on Shannon index and found that phenotypic diversity
for CD44 and CD24 markers tends to decrease in luminal tumors while it increases in TNBC
tumors (Figure S2).

Because chemotherapy is thought to target proliferative cells (Collecchi et al., 1998), the
observed changes in the relative frequencies of the four cell subpopulations could be due to
cell type-specific differences in proliferation. Thus, we assessed the frequency of cells
positive for the Ki67 proliferation marker within each of the four cell types before and after
treatment. The fraction of Ki67+ cells was lower in all cell types in all tumors after
treatment, with only a few exceptions (Figure S3A). We also observed significant
differences in the proportion of Ki67+ cells before treatment between CD44+CD24− and
CD44−CD24+ cell populations, which were the most and least proliferative, respectively
(Figures 2C and 2D). Spearman correlation analysis of associations between changes in the
frequency of Ki67+ cells and cell subpopulations revealed a significant positive correlation
in CD44+CD24− cells (p=0.007) and a significant negative correlation in CD44−CD24+ cells
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(p<0.001) (Figure 2E). These results imply that the increase in the relative frequency of
CD24+ compared to CD44+ cells after treatment might be due to the preferential elimination
of the more proliferative CD44+ cells by chemotherapy. Thus, if a tumor remains highly
proliferative after treatment, it has a higher CD44+CD24− to CD44−CD24+ cell ratio.
However, the possibility of conversion from CD44+ to CD24+ cellular phenotypes or a
change in the expression of these markers due to the cell cycle phase or as a direct effect of
treatment cannot be excluded. These results are in agreement with previous findings that
treatment selects for slow-growing CD24+ cancer cells in lung cancer (Sharma et al., 2010)
and in melanoma (Roesch et al., 2013).

Differences in cellular proliferation could also be related to differences in genetic diversity,
as faster growing cells may have a larger population size and might therefore be more likely
to accumulate genetic abnormalities. Thus, we also analyzed potential associations between
the proliferation rate of each cell type and its genetic diversity index. Spearman correlation
analysis demonstrated significant associations between Ki67 levels and Shannon index of
genetic diversity in CD44−CD24+ (p=0.007) and CD44+CD24+ (p=0.027) cells before
treatment, suggesting that the observed genetic diversity in these cell subpopulations could
be influenced by their lower proliferation rates (Figure S3B). In contrast, after treatment,
Ki67 levels and Shannon indices showed a significant (p=0.04) correlation only in
CD44+CD24− cells. We failed to observe any associations between changes in diversity and
changes in the fraction of Ki67+ cells during treatment (Figure S3C), suggesting that
although differences in proliferation could be associated with differences in diversity in
some cell subpopulations before treatment, changes in proliferation were not generally
associated with differences in diversity after treatment.

Topology maps to explore changes of cellular heterogeneity in spatially explicit context
The previous analyses focused on population-level genotypic and phenotypic diversity.
However, intermixing of tumor cells is substantially restricted in solid tumors by tissue
architecture. Furthermore, heterogeneity of intratumor microenvironments, including
differences in extra-cellular matrix and vascularization, is expected to impact selective
pressures and differentiation cues, thereby translating into differences in genotypes and
phenotypes. Therefore, we decided to address whether accounting for spatially-explicit
tissue organization can reveal therapy-induced changes in cellular heterogeneity missed by
population-based analyses. To investigate this issue, we created tumor topology maps by
analyzing the distribution of cancer cells with distinct genotypes and phenotypes in three
physically distinct regions in 15 tumors (five of each of the three major subtypes) before and
after treatment. These cases were selected based on the presence of sufficiently large cell
numbers after treatment to allow cell-to-cell interaction analyses. For each cell, we recorded
copy numbers of 8q24 BAC and chromosome 8 (chr8) CEP probes and cellular phenotype.
Representative examples of such topology maps are depicted in Figures 3A–3C (Patient 1,
luminal A tumor), and S4 (Patient 20, TNBC, and patient 30, HER2+ tumor). The tumor of
patient 1 showed a marked increase in both 8q24 BAC and chr8 CEP copy numbers and in
the frequency of CD44−CD24+ cells after treatment (Figures 3A–3C). In patient 20, there
was a clear decrease in both 8q24 BAC and chr8 CEP copy numbers but no substantial
changes in the frequencies of cellular phenotypes (Figures S4A–S4C). In contrast, in patient
30, there was a dramatic increase in 8q24 BAC copy numbers with a concomitant decrease
in chr8 CEP counts, but essentially no changes in cellular phenotypes (Figures S4D–S4F).
Therefore, at least some tumors display substantial phenotypic and genotypic difference pre
and post treatment. Despite these changes, pre- and post-treatment genetic diversity indices
in the three topologically distinct areas of each tumor and were not significantly different
(Table S3 and Figure S5) with the exception of two cases (patients 1 and 3, both with partial
response to treatment). These results imply that the analysis of even one region might be
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sufficient to assess overall genetic diversity of a tumor. However, since the distant regions
we compared were still within one section and one biopsy, the possibility cannot be
excluded that biopsies taken from distant parts of the tumor may show more pronounced
differences. Furthermore, the lack of significant differences in genetic diversity in different
regions of the same tumor does not mean that tumor cells located in distinct areas are
genetically identical. It rather implies that diversity is an inherent feature of the tumors that
is less subjective to sampling bias than the measurement of a specific trait.

Effect of treatment on the distribution of genetic heterogeneity within topology maps
We then employed the topology maps to assess the effects of treatment on spatial
distribution of genetic heterogeneity by measuring genetic distances between the adjacent
and all cancer cells within tumors using the copy number differences for both 8q24 BAC
and chr8 CEP. We observed that in most cases, the distribution of the differences in copy
number were significantly different after treatment compared to before treatment, both when
considering the differences only in adjacent cells or in all cells (Figure 3D and 4A).
However, in some cases the distribution of the differences in adjacent cells was not
significantly different (Figure 4B), indicating the differential topologic distribution of cells
with similar copy number. We observed that in several tumors, the genetic distance for both
8q24 BAC and chr8 CEP probes changed in the same direction after treatment, whereas in a
few cases the divergence for the 8q24 BAC probe decreased with a concomitant increase in
variability for chr8 CEP (Figures 3D, 4A–4C). Overall, in the 15 tumors analyzed, the cell-
to-cell variability for 8q24 BAC and chr8 CEP counts was significantly higher after
treatment in 8 cases, lower for chr8 CEP copy number in 5 patients, and decreased for 8q24
in 3 cases (Figure 4C). Therefore, incorporation of spatially-explicit context into analysis of
genetic diversity has revealed differences missed by population-wide analysis. However, the
causes of the observed differences are difficult to interpret as increase in copy number
differences between adjacent cells after chemotherapy could be due to an increase in genetic
instability, the selection for slowly proliferating cells that are more likely to be
phylogenetically distinct, or increased cell migration.

We then sought to obtain further insight by analyzing changes in genetic divergence within
cells with similar phenotype focusing on the four phenotypically distinct cellular
subpopulations defined by expression of CD24 and CD44. We found significant cell type-
specific differences in the degree of genetic variability between all cells and all adjacent
cells of the same phenotype within individual tumors. For example, in a luminal tumor
(patient 1), the increase in cell-to-cell variability for 8q24 and chr8 CEP copy numbers was
significant in CD44−CD24+ and CD44−CD24− cells when considering all cells, whereas in
adjacent cells only the CD44−CD24+ fraction showed a significant increase for both BAC
and CEP probes (Figure 3E). In this tumor we could not detect any CD44+CD24− and
CD44+CD24+ cells after treatment. Thus, it is possible that the increased genetic
heterogeneity of the CD44−CD24+ and CD44−CD24− fractions was due to phenotypic
switch of the CD44+ cell populations due to treatment.

Similarly, in a TNBC (patient 20), variability for 8q24 and chr8 CEP counts decreased in all
CD44+CD24− and CD44−CD24− cells (adjacent or not), but in CD44+CD24+ cells the
variability for 8q24 only decreased in adjacent cells (Figures 5A and 5B). Similar
differences were observed in other cases for changes in genetic variability between adjacent
cells compared to all cells within the tumor, like in a HER2+ tumor (patient 30) (Figures 5B
and 5C).

The increased genetic variability in adjacent cells of the same phenotype together with the
significant changes in the relative frequency of distinct cell subpopulations due to treatment
suggests either selection for distinct phenotypes based on their differential sensitivity to the
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treatment or increased rates of genomic instability resulting from the treatment.
Interestingly, in all 15 tumors analyzed the frequency of homotypic phenotypic clustering
was significantly higher compared to heterotypic one both before and after treatment (Figure
3F). Thus, tumor cells tend to cluster more based on their phenotype than on their genotype.

The results of these topology analyses highlight the insights afforded by analyzing tumors at
the single cell level and in situ, as the spatial organization of the cells with distinct
genotypes and phenotypes are lost when analyzing bulk tissues or dissociated cells.

Computational modeling allows an investigation of tumor growth patterns and evolution
during treatment

To better understand the forces that could give rise to the observed patterns of spatial
clustering of cells with the same phenotype, we next developed a stochastic computational
model of cellular proliferation and death utilizing our tumor topology and Ki67 data (see
Supplemental Experimental procedures for details). This model is based on a stochastic
process of cell growth and death in a two-dimensional cross-section of a tumor,
implemented as a patient-specific computer simulation informed by parameters measured in
a patient-specific manner. This model was used to investigate the growth patterns and
evolutionary dynamics of tumor cells during chemotherapy, and also enabled us to
determine the extent to which proliferation alone could explain the detected clustering of
phenotypes.

The initialization state for the simulation for each patient consisted of the cell coordinates
for each cell in the pre-treatment samples, an estimation of the age of each cell based on its
size, and the cellular phenotypes. We considered the average length of the cell cycle across
all cellular phenotypes and all patients to be comparable to the average cell cycle time
determined by cell line experiments (Schiffer et al., 1979), and then varied individual cell
cycle times based on the corresponding Ki67 values. Initially, we assumed that daughter
cells maintained the same phenotype as the mother cell, thus neglecting the possibility of
phenotypic switching or migration; this assumption was later relaxed.

Each patient-specific simulation was performed for three phases of proliferation. The first
phase consisted of the period of time between biopsy and start of chemotherapy. Cell
proliferation occurred at the rates determined by the pre-treatment Ki67 data. The
probability of cell death per unit time for each phenotype was selected to maintain a roughly
constant population size. We chose these values for cell death since rates of apoptosis
correlate well with proliferation, and the montage of visualized cells did not consist of cells
crowded together as would be consistent with high growth rates. During treatment, we
lowered proliferation by 5% and adjusted the rate of cell death accordingly. This choice of
treatment effect was selected by fitting of the number of cells at the end of the simulation to
the number of cells observed in the post-treatment samples, and due to evidence of a
decrease in proliferation with anthracyclines with a corresponding decrease in apoptotic
index (Burcombe et al., 2006). The last phase consisted of the period of time between the
end of chemotherapy and surgery. Cell proliferation in this phase occurred at the rates
determined by the post-treatment Ki67 data (Figure 6). These three time periods were
obtained individually for each patient and implemented in the patient-specific simulations.

Using this model, we found that the level of clustering detected in our post-treatment
samples was less than what would be expected in a model without cellular motility or
phenotypic switching (Figure 6, Table S4, and video S1). Therefore, we sought to determine
rates of phenotypic switching that would fit the distribution of cell types found in our post-
treatment samples. We identified a lower requirement for phenotypic switching or motility
amongst the luminal tumors, while we observed both low and high rates for HER2+ and
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triple negative patients (see Supplemental experimental procedures for more details). The
inclusion of migration in this model, based on intravital imaging of metastatic breast cancer
cells (Kedrin et al., 2008), led to increases in the rates of phenotypic switching necessary to
recapitulate the post-treatment data, but did not change the relative ordering of the breast
tumor subtypes with regard to this rate. Migration was assumed to occur in a non-directed
manner (i.e., in random directions) and was considered to be higher for CD44+CD24− and
CD44+CD24+ cells as compared to CD44−CD24+ and CD44−CD24− cells. This model
provides a proof of principle of feasibility of the prediction of therapy induced phenotypic
changes in tumor based on the detailed characterization of tissue samples at the single cell
level before and after treatment.

The impact of intratumor diversity on therapeutic responses
To explore the potential impact of intratumor diversity on therapeutic resistance, we
compared genetic and phenotypic diversity among tumors classified as pathological
complete response (pCR) and pathological partial response (pPR) or stable disease (SD).
Interestingly, tumors with complete response had the lowest pre-treatment genetic diversity
using measures that incorporated 8q24 copy number, whereas tumors with partial response
or stable disease were not significantly different from each other, neither before nor after
treatment (Figures 7 and S6A and Table S5).

Age at diagnosis affects both breast tumor subtype and the success of chemotherapy within a
subtype (Hess et al., 2006). TNBC is more common in younger women and chemotherapy
also tends to be more effective in younger patients (Silver et al., 2010). These
epidemiological data suggest that tumors of different subtypes may have different
evolutionary paths and growth kinetics such as the length of time from tumor initiation to
diagnosis, which may influence both treatment responses and intratumor heterogeneity.
Thus, we analyzed potential associations between the age at diagnosis and the Shannon
diversity index of each tumor. We found that the extent of pre-treatment diversity did not
display a significant correlation with patient age (Figure S6B). However, older age at
diagnosis was significantly correlated with a decrease in genetic diversity during treatment
in TNBC (p=0.025) and an increase in genetic diversity in HER2+ tumors (p=0.038, Figure
S6C). These results suggest that TNBC in older women may have a dominant, slowly
proliferating subpopulation that is resistant to treatment, whereas HER2+ tumors in older
women might be more genetically unstable.

It is possible that treatment-induced changes in genetic diversity might be masked by re-
diversification during the time interval between the end of treatment and post-treatment
sample collection (i.e., surgery). Similarly, the duration of the treatment (i.e., length of
selective pressure) might affect intratumor genetic diversity. Thus, we analyzed potential
associations between these clinical variables and changes in genetic diversity but did not
detect any significant associations (Figure S6D and S6E). These results suggest that the
observed lack of changes in genetic diversity during neoadjuvant chemotherapy is not likely
to be affected by the lengths of treatment and time between the last dose of chemotherapy
and the surgical removal of residual tumors.

DISCUSSION
Here we describe a single cell-based analysis of intratumor genetic and phenotypic diversity
and topology in a cohort of breast tumors prior to and after neoadjuvant chemotherapy.
While inter- and intratumor heterogeneity has been described and well-characterized in
breast cancer (2012; Geyer et al., 2010; Hernandez et al., 2012; Polyak, 2011; Stephens et
al., 2012; Yap et al., 2012), our knowledge of how intratumor heterogeneity may change
during therapeutic interventions in distinct subtypes of breast cancers is very limited.
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Neoadjuvant (i.e., preoperative) chemotherapy is a well-established standard treatment
option for patients diagnosed with locally advanced disease or patients with large potentially
operable tumor (Kaufmann et al., 2006). In addition to its effectiveness in reducing the size
of the primary tumor, allowing for less extensive surgery, neoadjuvant chemotherapy also
improves long-term clinical outcome, presumably by eliminating micrometastatic disease
(Fisher et al., 1998). Moreover, a pathological complete response to neoadjuvant treatment
is a strong predictor of long-term disease-free survival (Esserman et al., 2012), particularly
in ER-negative cancers. Despite widespread use of neoadjuvant therapies, our knowledge of
their influence on the subsequent evolution of the tumors is very limited.

The success of chemotherapy is influenced by breast tumor subtype, with luminal tumors in
general being less responsive than HER2+ and TNBC (Houssami et al., 2012). Because
chemotherapy is thought to target proliferating cells, associations between tumor
proliferation (measured by the Ki67 index) and treatment response has been extensively
characterized, with conflicting results. A recent study found that the relative change in the
fraction of Ki67+ cells, but not the absolute pre- and post-treatment levels of Ki67+ cells, is
an independent predictor of treatment outcomes after neoadjuvant chemotherapy in luminal
B, HER2+, and TBNC subtypes (Matsubara et al., 2013). Changes in hormone receptors and
HER2 due to neoadjuvant therapy have also been analyzed with inconclusive results (van de
Ven et al., 2011).

More recently, intratumor heterogeneity for cellular phenotypes, mainly focusing on stem
cell-like and more differentiated cell features, has been explored as a potential predictor of
the success of neoadjuvant chemotherapy. The frequency of CD44+ stem cell-like and
CD24+ more differentiated breast cancer cells varies within tumors according to subtype,
with CD44+ cells being more common in TNBCs than in luminal cancers (Honeth et al.,
2008; Park et al., 2010b). The relative frequency of these cells within tumors also changes
during neoadjuvant chemotherapy. A study analyzing pre- and post-treatment samples by
FACS found an increase in CD44+CD24− cells; however, the neoplastic nature of these cells
was not confirmed (Li et al., 2008). Another report found that while an increased frequency
of CD44+CD24− cells after neoadjuvant chemotherapy was a poor prognostic factor, tumors
that had a high fraction of these cells were more likely to have a pathologic complete
response (Lee et al., 2011).

Here we showed that while overall intratumor cellular genetic diversity for 8q24, 16p13,
10p13, and 20q does not change during treatment in tumors with a partial or no response,
there are significant changes in phenotypically distinct tumor cell subpopulations within
tumors and in the relative localization of these populations of cells. Some of these changes
might be explained by the observed differences in the proliferation rates among cell types,
with CD44+CD24− cells being more proliferative and thus more likely to be eliminated. Our
data, however, also imply potential changes in cellular phenotypes and selection for cells
with more differentiated luminal features due to lower sensitivity to the therapy stemming
from lower proliferation capacity. Moreover, our findings provide a potential explanation for
the apparent paradox between the presumed resistance of CD44+ stem cell-like breast cancer
cells (i.e., cancer stem cells) (Dave et al., 2012) and our data demonstrating a relative
decrease in this cell population due to treatment. Based on our data, CD44+CD24− cells are
more proliferative than CD44−CD24+ cells, and thus, they might be preferentially
eliminated by chemotherapy. If a tumor does not respond to treatment due to inherent
resistance, which is independent of stem cell-like or epithelial phenotype, then there is an
apparent increase in the relative frequency of CD44+CD24− cells due to their higher
proliferation.
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Our observation that in some cases adjacent cells within a tumor are more likely to be
genetically divergent yet phenotypically similar imply that homotypic cell-cell interactions
might favor treatment resistance and also that chemotherapy might increase genetic
instability or select for cells with higher chromosomal instability.

Our computational model of tumor cell proliferation provides a tool with which we can
predict changes in the distribution of cell phenotypes in a patient-specific fashion. These
variations can manifest themselves in spatial coordinates and clustering of cells, or they can
be the result of changing population dynamics over periods of time with and without
therapy. Here, we found that the clustering of cellular phenotypes could not have occurred
solely due to cell division placing daughter cells closer to the parent cell, but must require
some level of phenotypic plasticity. We tested varying levels of phenotypic switching, and
found that no single rate of switching could account for the divergence between simulation
and biopsy samples: instead, rates of switch may vary at the subtype or individual patient
level. We also investigated the effects of migration on the predicted levels of phenotypic
switching and found that migration increases the rate of phenotype switching necessary to
explain the patient data. This effect might arise because migration scatters cells more widely
throughout the tumor and hence phenotype switching is needed to return the patterns of cells
to those observed in patient samples.

In summary, our data provide an integrated view of how the genotype (measured by 8q24
copy number), phenotype (CD24 and CD44 expression and proliferation state) and topology
(distribution of cancer cells with defined genotype and phenotype within tumors) change in
response to neoadjuvant chemotherapy in breast cancer. As phenotypic diversity in
combination with selection pressure by local microenvironmental signals is the driver of
tumor evolution, our results highlight the importance of using an integrated approach.
Lastly, our in silico simulation of tumor growth using models built on the patient-specific
characterization of tumors at the single cell level in situ prior to and after chemotherapy
illustrates the feasibility of predicting the evolution of tumors during treatment -- a
knowledge that could be used for the design of more effective treatment strategies.

EXPERIMENTAL PROCEDURES
For further details, see the Supplemental Experimental Procedures.

ImmunoFISH
Formalin-fixed paraffin embedded breast tumor samples were dewaxed in xylene and
hydrated in a series of ethanol. Heat-induced antigen retrieval was performed in citrate
buffer (pH 6), following by pepsin digestion. The immunostaining for CD44 and CD24 was
performed at room temperature, followed by the hybridization with BAC and CEP probes
and incubation for 20 hours at 37°C. After several washed with different stringent SCC
buffers, the slides were air-dried and protected for long storage with ProLong Gold.
Different immunofluorescence images from multiple areas of each sample were acquired
with a Nikon Ti microscope attached to a Yokogawa spinning-disk confocal unit, 60× plan
apo objective, and OrcaER camera controlled by Andor iQ software.

Immunofluorescence analysis of cellular phenotypes and proliferation
Multicolor immunofluorescence for CD44, CD24, and Ki67 was performed using whole
sections of formalin fixed paraffin embedded breast tumor samples by sequential staining
after antigen retrieval in citrate buffer (pH 6). Different immunofluorescence images were
acquired as described before and the frequency of each cell phenotype was calculated by
counting an average of 300 cells in each sample.

Almendro et al. Page 10

Cell Rep. Author manuscript; available in PMC 2014 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Statistical analyses
Genetic diversity was determined as described (Park et al., 2010a). Statistical differences in
genetic diversity were analyzed by bootstrapping and comparing the mean count of each
bootstrap repetition against the mean count of the smaller cell population. Correlations were
assessed using Spearman’s rank-based coefficient. The association between diversity indices
and clinical variables was assessed using the Wilcoxon test for categorical clinical variables
(such as response) and a permutation test based on Spearman’s rank correlation for
continuous clinical variables (such as size). Statistical differences in pre- and post-treatment
BAC and CEP counts were evaluated using the achieved significance level (ASL) method
(Efron and Tibshirani, 1993).

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Highlights

• Changes in intratumor genetic and phenotypic diversity due to breast cancer
therapy

• Evolutionary dynamics during neoadjuvant chemotherapy in breast cancer

• Computational model to predict evolutionary trajectories and topologic patterns

• Intratumor heterogeneity measures predict response to treatment
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Figure 1. Genetic diversity in breast cancer according tumor subtype and treatment
(A) Representative images of iFISH in four tumors of the indicated subtypes before and
after treatment.
(B) Shannon index of diversity in each tumor subtype before and after treatment calculated
based on unique BAC and CEP counts for each cell. Each dot represents an individual
tumor, black line shows mean ± S.E.M., colors indicate luminal A (dark green), luminal B
(light green), triple negative (orange), and HER2+ (violet) tumor subtypes. Asterisks mark
significant differences (* p≤ 0.05 and ** p≤ 0.01, respectively, by Wilcoxon rank sum test)
between subtypes.
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(C) Correlations between Shannon indices in each tumor before and after treatment and the
relative change in diversity in each tumor. Black line shows mean±SEM.
(D) Correlations between pre- and post-treatment Shannon indices in the indicated cell
subpopulations and tumor subtypes. Not all cell subpopulations are present in all tumors.
(E) Shannon index in phenotypically distinct subpopulations in individual tumors before and
after treatment. Each vertical line separates individual cases.
(F) Correlations between Shannon indices in each tumor before and after treatment for the
indicated loci. See also Figure S1, Table S1 and S2.
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Figure 2. Changes in phenotypic heterogeneity and cell type-specific variations in proliferation
rates
(A) Changes in the frequency of the indicated cell subpopulations in the different tumor
subtypes. Dotted line connects values for each cell subpopulation before and after treatment.
Significant p values by two-sided Wilcoxon matched-pairs signed rank test are shown.
(B) Box plot depicts relative changes in the frequency of each of the four cell
subpopulations. Boxes correspond to 25th to 75th percentile whereas whiskers mark
maximum and minimum values. Asterisks indicate statistically significant differences (*
p<0.05, ** p<0.01) by two-sided Wilcoxon matched-pairs signed rank test.
(C) Representative immunofluorescence images of Ki67 staining in specific cell
subpopulations.
(D) Frequency of Ki67+ cells before treatment. Boxes correspond to 25th to 75th percentile
whereas whiskers mark maximum and minimum values.
(E) Correlation between differences (Δ denotes post- minus pre-treatment values) in the
frequency of cell subpopulations and % of Ki67+ cells after treatment. Negative values
indicate a decrease of each variable after treatment. A 95% confidence interval is indicated
in yellow. See also Figure S2 and S3.
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Figure 3. Analysis of tumor topology
Maps showing topologic differences in the distribution of genetically distinct tumor cells
based on copy number for 8q24 BAC (A), chromosome 8 CEP (B), and cellular phenotype
(C) in three different regions of a luminal A tumor (Patient 1).
(D) Histograms depicting absolute differences in copy numbers for BAC and CEP probe
counts regardless of phenotype in all cells or in adjacent cells before and after treatment.
(E) Histograms depicting absolute differences in copy numbers for BAC and CEP probe
counts in all cells of the same phenotype or in adjacent cells of the same phenotype before
and after treatment. CD44+CD24− and CD44+CD24+ cell subpopulations are not present
after treatment.
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(F) Fraction of adjacent cells with the same phenotype before and after treatment. Asterisks
indicate significant changes. Significance of differences was determined by calculating the
homotypic fraction for 100,000 iterations of permutation testing over randomized cellular
phenotypes. See also Figure S4, S5, and Table S3.

Almendro et al. Page 20

Cell Rep. Author manuscript; available in PMC 2014 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 4. Genotype of all cells and adjacent cells within tumors
Histograms depicting variability for 8q24 BAC and Chr8 CEP probe counts regardless of
phenotype in all cells (left panel) or in adjacent cells (right panel) before and after treatment
in a triple negative tumor (Patient 20) (A) and in a HER2+ tumor (patient 30) (B).
(C) Summary of differences for 8q24 BAC or Chr8 CEP probe counts in all cells before and
after treatment in the 15 tumors analyzed. Asterisks mark significant differences, red and
blue color indicates increase and decrease in differences, respectively. Data is presented as
mean ± S.E.M.
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Figure 5. Genetic and phenotypic differences between all cells and adjacent cells
(A) Histograms depicting variability for 8q24 BAC and Chr8 probe counts in all cells of the
same phenotype (left panel) or in adjacent cells of the same phenotype (right panel) before
and after treatment in a triple negative tumor (Patient 20).
(B) Plots depicting differences in 8q24 BAC and Chr8 CEP copy numbers differences in all
adjacent cells and in adjacent cells of the same phenotype. Asterisks indicate significant
differences, yellow and green color indicates increase and decrease in differences,
respectively. Data is presented as mean ± S.E.M.
(C) Similar as panel A, histograms for a HER2+ tumor (patient 30).
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Figure 6. Examples of snapshots of computer simulated tumor growth during treatment
Representative images depicting changes in tumor topology and cellular composition during
treatment based on simulations. Modeling was built based on actual data obtained from
cases analyzed for topology. Confocal images were converted into topology maps for the
distribution of cell phenotypes that served as time zero for the mathematical simulations of
tumor growth. See also Table S4 and Video S1.
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Figure 7. Associations between intratumor diversity and pathologic response to treatment
(A) Shannon index of diversity before and after treatment in tumors with different response
to treatment. Significant p values between groups by Wilcoxon rank sum test are indicated.
Black lines show the mean ± S.E.M.. Tumors with lower pretreatment diversity are more
likely to have complete pathologic response regardless of tumor subtype. Tumors with
complete response were only analyzed prior to treatment, as there was no tumor tissue left at
the time of surgery.
(B) Shannon index of diversity before and after treatment in tumors with different grade.
Boxes correspond to 25th to 75th percentile whereas whiskers mark maximum and
minimum values. Significant p values by two-sided Wilcoxon matched-pairs signed rank
test are shown. See also Figure S6 and Table S5.
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