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This article presents conceptual and empirical foundations for new parsimonious

simulation models that are being used to assess future food and environmental

security of farm populations. The conceptual framework integrates key features

of the biophysical and economic processes on which the farming systems are

based. The approach represents a methodological advance by coupling impor-

tant behavioural processes, for example, self-selection in adaptive responses

to technological and environmental change, with aggregate processes, such as

changes in market supply and demand conditions or environmental conditions

as climate. Suitable biophysical and economic data are a critical limiting factor in

modelling these complex systems, particularly for the characterization of out-of-

sample counterfactuals in ex ante analyses. Parsimonious, population-based

simulation methods are described that exploit available observational, exper-

imental, modelled and expert data. The analysis makes use of a new scenario

design concept called representative agricultural pathways. A case study illustra-

tes how these methods can be used to assess food and environmental security.

The concluding section addresses generalizations of parametric forms and

linkages of regional models to global models.
1. Introduction
Despite the successes of the Green Revolution in the twentieth century, and

substantial investments in some rural areas, many of the world’s rural house-

holds will continue to depend on small-scale, semi-subsistence agricultural

systems in the foreseeable future. The viability of these systems, and the well-

being of households that depend on them, face growing threats from increasing

population density, resource degradation and climate change [1]. Although

typically small in scale, these farming systems are highly diverse and complex,

often consisting of subsistence crops (often intercropped in various ways), live-

stock, cash crops and, in some regions, aquaculture. In parts of the world where

large-scale commercial agriculture predominates, the long-term sustainability of

‘industrial’ agricultural systems and their vulnerability to environmental changes

are also being questioned. These concerns are raising interest in the use of more

diversified systems that involve practices, such as crop rotations, intercropping

and integration of crops with livestock. While advances have been made in under-

standing these systems, their biophysical and economic heterogeneity and

complexity continue to pose great challenges to researchers striving to improve

their performance and predict their responses to environmental, economic,

technological, social and institutional change.

In this article, we present a novel conceptual and empirical framework for

conducting simulation experiments that can be used to support informed

science and policy decision-making and illustrate the approach with a study

of soil nutrient management in Kenya. The modelling approach described

here was inspired by research indicating the importance of site-specific inter-

actions between biophysical and economic processes [2,3]. These theoretical
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considerations led to the development of a complex modelling

system (the trade-off analysis (TOA) model) that linked site-

specific process-based crop models, econometric models and

process-based environmental models to simulate the behav-

iour of agricultural systems and assess trade-offs among key

outcomes [4–6]. However, similar to many such models, the

TOA model’s data requirements and complexity limited the

scope of its use to a relatively small number of case studies.

Also, as other detailed farming system models, the original

TOA model did not account for the interaction between

farm-level behaviour and aggregate processes, such as how

farm management changes affect market equilibrium (ME)

prices or off-farm impacts on water quality.

A relatively simple but powerful insight led to the develop-

ment of a new ‘parsimonious’ model called TOA-multi-

dimensional (TOA-MD): the complex econometric models used

in the TOA approach provided the basis to construct spatial dis-

tributions of economic and environmental outcomes; but once

these distributions were constructed from simulations at a repre-

sentative sample of sites in a population, the model structure was

relatively simple. Thus, it was recognized that if these outcome

distributions could be quantified directly from field observations,

or approximated using experimental, modelled or expert data,

they could be used to construct population-based models with

a relatively simple generic structure. The first version of the

TOA-MD model was an adoption model developed to simulate

ecosystem service supply curves for crop-based systems [7]. The

next step was to extend the approach in two dimensions to make

it a more general impact assessment tool. First, the model was

designed to represent a generic farm household comprised

crops, livestock, aquaculture and non-agricultural activities.

Second, the adoption model was linked to distributions of quan-

tifiable economic, environmental or social outcomes associated

with the production system [8]. The relatively simple generic

structure of the TOA-MD model has led to its application

in many types of systems around the world. The recent ver-

sions of the model that are available on World Wide Web have

been downloaded by hundreds of researchers since 2010

and are in use at numerous national and international research

institutions [9].

The population-based approach to agricultural systems

modelling represents a fundamental departure from the con-

ventional analysis that uses averaged or aggregated data in

‘representative farm’ models and agricultural market models.

Besides representing the essential biophysical and economic

heterogeneity of these systems, the population-based approach

provides a new way to simulate economic, environmental and

social impacts of changes in technology and in economic or

environmental conditions, taking into account the self-selection

behaviour emphasized in the econometric policy evaluation lit-

erature [10] and in recent contributions to the technology

adoption literature [8,11]. In this article, we show how the popu-

lation-based model can be linked to aggregate processes, for

example, changes in market supply and demand conditions

or environmental conditions for example, climate [12], and we

show how the approach can be implemented with parsimo-

nious empirical models following [7,8,13]. We argue that

model parsimony is particularly important when analysing

changes in technology, economic or environmental conditions

‘out of sample’—i.e. when extrapolating from situations

where systems can be observed, to situations, for example,

of climate change impact assessment where they cannot be

observed, and thus conventional parameter estimation and
calibration methods cannot be used. These parsimonious

simulation models can be parametrized with the various obser-

vational, experimental, modelled and expert data that may be

available, including information from new scenario methods

being developed by the global impact assessment community

[14–17]. The concluding section discusses possible generaliz-

ations of the population-based approach, including linkages

between regional model and global models.
2. Assessing food – environment synergies and
trade-offs: nutrient management in Kenya

We motivate and illustrate our approach with an analysis of a

critical challenge to agricultural progress in sub-Saharan

Africa: declining agricultural productivity and persistence

of high poverty levels, and the search for policy interventions

that will achieve the win–win outcome of reversing both of

these adverse trends [18]. Agriculture is the most important

sector of the Kenyan economy, representing about 30% of

its gross domestic product [19]. Most agriculture is semi-

subsistence where intercropping, small farm size (less

than 2.5 ha), high rates of crop failure (more than 50%

during dry years) and the lack of an established capital

market are typical [20,21]. In many regions of Kenya, rapid

population growth and limited access to land have led to

extremely small farm sizes that are neither economically nor

environmentally sustainable.

This case study focuses on the Machakos region located

southeast of Nairobi, comprising a hilly, semi-arid area of

approximately 14 000 km2 and an altitude range between 340

and 1710 m above sea level. The predominant system is semi-

subsistence mixed crop-livestock agriculture with maize as

the main staple crop. Other main crops in Machakos region

include pigeon pea, sorghum, beans, horticultural crops and

fruit trees. Farms that produce milk tend to have much

higher incomes than those that depend mostly on subsistence

crops. In the data used here, the headcount poverty rate (the

percentage of the population below a $1/person/day poverty

line) for the farms without dairy is over 80% in contrast to 40%

for the farms with substantial dairy production. In the subsis-

tence group, about 30% of cropped area is planted with maize,

and less than 20% for the farms with dairy or irrigated veg-

etable production. Maize is an important subsistence crop

and a cash crop for larger farms. Despite several efforts of the

government and research programs to increase maize yields,

average yields in Kenya are low, averaging around 1 tonne

grain per hectare, far below the potential, contributing to fre-

quent food deficits in Machakos and other regions. This hilly

area suffered high rates of soil erosion in the mid-twentieth cen-

tury, but government sponsored terracing programmes have

reduced erosion rates substantially [22]. Nevertheless, there

still appear to be high rates of soil nutrient and organic

matter losses [23], one of the major constraints for increasing

productivity. Researchers argue that to reverse the declining

trends in per capita food production, soil fertility management

must be improved [18,24].

Despite research showing that fertilizer could be a pro-

fitable option to increase yields and income, fertilizer use

in sub-Saharan Africa is low, and it is even lower in semi-

arid areas. According to the United Nations Development

Program [25], the average consumption of fertilizer in 1998

was 13.8 kg of N–P–K nutrients per hectare of arable and
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permanently cropped land and the situation has not

improved much since then. Low fertilizer use has been attrib-

uted to high prices caused by high transport costs and import

tariffs, high levels of risk associated with low and highly vari-

able rainfall patterns, inefficient input distribution and

availability, financial constraints and difficulty of farmers in

assessing returns to fertilizer [26]. Marenya & Barrett [18]

show that low rates of fertilizer use in Kenya are also associ-

ated with low soil fertility owing to severe nutrient depletion

and resulting low fertilizer response. Antle et al. [27] show

that this type of situation can be a low-level equilibrium

‘trap’ in the sense that, once soils are depleted beyond a

threshold level, it may not be economically viable for poor

farmers to invest enough in restoring soil productivity to

achieve a permanent higher productivity level, even if it is

technically feasible.

(a) Scenario definition
Various policy interventions to deal with poverty and land

degradation have been discussed in Kenya and other African

countries. In this study, we base our analysis on a policy

intervention scenario described by Valdivia et al. [12]. This

fertilizer-use scenario consists of reducing import tariffs and

increasing investment in extension information and market

infrastructure aimed to increase fertilizer availability and

use while reducing fertilizer farm-gate cost, and is consistent

with policies being pursued by the Government of Kenya

[28]. This scenario assumes that these interventions reduce

the mean fertilizer price by 50%, and induce all farmers

to increase fertilizer use, as determined by the fertilizer

demand component of the model described below.

(b) Trade-off curves
The foundation of our analytical approach is to construct

simulation models that quantify the inter-relationships

among key sustainability indicators defined for a farm

household population. Here, we define two sustainability

indicators of interest: an economic indicator defined as the

per cent of the population above the income-based poverty

line (defined here as 100 minus the headcount poverty rate

with the poverty line set at $1 per day), and the rate of gains
in soil nutrients during the growing season. We interpret nega-

tive balances as indicative of a system whose productivity

cannot be maintained if the negative balance persists.

Following much of the impact assessment literature

[4,29–31], we use the inter-relationships between these

indicators—which may involve either negative (trade-offs)

or positive (synergies or win–win) outcomes—to assess the

effects of the fertilizer-use scenario. We refer to the relation-

ships among sustainability indicators, holding constant

specified factors, as trade-off curves. Two fundamental pro-

cesses drive these trade-offs and synergies and lead to two

different types of trade-off curves. First, for a population of

farmers using a given production system, changes in prices,

policies and other economic variables induce behavioural

responses, leading to price-based trade-off curves. Maize is

considered to be a key crop by rural households and policy-

makers, so we construct price-based trade-off curves between

these two indicators by varying the mean of the maize price

distribution. Second, given prices and other economic factors,

farmers may make changes in their production system by

adopting new technological components, such as improved
seeds, fertilizers and associated management practices, giving

rise to adoption-based trade-off curves. As we discuss later, the

characteristics of the farmers’ production systems and the bio-

physical and economic environment in which they operate

determines the properties of these trade-off curves.
(c) Modelling approach and results
This study builds on a project on sustainable nutrient man-

agement and uses the same input data [23]. Here, we

extend the original analysis by combining two models.

First, the TOA-MD model [8,9] (discussed in detail later)

simulates farmers’ choice between two production systems,

the current system in use and a system with improved nutri-

ent management practices involving increased fertilizer use,

for given prices and costs of production. Second, a market

equilibrium model called TOA-ME—which links site-specific

process-based crop simulation models, econometric models

of farm output supply and input demand, and a nutrient bal-

ance model—simulates the price-based trade-off curves and

identifies the points of ME along those curves [12]. The

TOA-ME results are used to obtain equilibrium prices corre-

sponding to the two technology scenarios. Then the TOA-MD

model is calibrated to simulate the fertilizer-use scenario and

generate the adoption-based trade-off curves at those prices.

The data on which the analysis is based are available at

http://tradeoffs.oregonstate.edu.

As described below, the TOA-MD model is based on the

assumption that farmers choose the practice that provides the

highest economic value. The prediction of an adoption rate is

based on the distribution of the difference between economic

values of the two systems, defined as the opportunity cost of

changing systems. Figure 1 shows the cumulative distribution

of opportunity cost for the fertilizer-use scenario, at the base

(observed) prices and at the ME prices. We interpret these

cumulative distributions as adoption curves because the point

where this curve crosses the horizontal axis indicates the pro-

portion of farms that expect higher returns from system 2, and

thus is the predicted adoption rate of system 2. Figure 1 shows

that at base prices the adoption rate is 63% and it also

shows that when the ME effect of adoption on maize prices is

taken into account, the rate falls to 55%.

Figure 2 illustrates the relationship between the adoption

rate and an economic indicator, the per cent of the farm

households with incomes above the poverty line (the case

corresponding to the ME maize price is shown). As figures 1

and 2 show, the economic value of the system is maximized

at the predicted adoption rate—intuitively, the model shows

that if farmers choose the system that provides them with the

highest economic return, then the proportion of households

above the poverty line will be maximized in the entire popu-

lation—increasing from about 22% when all farms use the

current practice with relatively poor nutrient management,

to about 30% when 55% of the farms adopt the improved

practices. Figure 2 also shows the value of this indicator for

the sub-populations of farms that adopt or do not adopt

the improved nutrient management. As we discuss in the fol-

lowing section and in appendix A, the correlations between

opportunity cost and other outcomes determine how those

outcomes change with adoption, and thus are related to the

slopes of the adopter and non-adopter curves. Figure 2

shows that the correlation between opportunity cost and

mean economic returns is negative for adopters and positive

http://tradeoffs.oregonstate.edu
http://tradeoffs.oregonstate.edu
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for non-adopters. Thus, as the adoption rate increases, mean

expected returns among adopters decline, and mean returns

among non-adopters increase. At the predicted 55% adoption

rate, about 33% of adopters are above the poverty line, but

only about 26% of non-adopters are.

As we explain further below, in addition to the levels of

outcomes associated with adoption and non-adoption, it is

possible to simulate the counterfactuals for the adopters and

non-adopters, and thus estimate the various treatment effects
(i.e. changes in outcomes associated with adoption) discussed

in the econometric policy evaluation literature [10]. Table 1

presents the values of the indicators, counterfactuals and treat-

ment effects for the subsistence farms at equilibrium prices and

the predicted adoption rate. The counterfactual for the adopter

group shows that without increased fertilizer use, 9.8% were

above the poverty line, whereas 27.4% are above poverty

with it, thus almost tripling the number of farms above poverty

in this group. Table 1 also provides useful information about

the non-adopters: while there would be larger positive impacts
on soil nutrient gains for the non-adopters, they would be

substantially worse off economically if they were to adopt

the practice. These remaining non-adopters would require

additional economic inducements to adopt the practice.

Figure 3 presents the linkage between adoption-based

and price-based trade-off curves for the environmental indi-

cator (soil nutrient gains) and the economic indicator (per

cent of population above the poverty line). The price-based

trade-off curves were generated by the TOA-ME model as

described in [12]. The adoption-based trade-off curves were

generated by the TOA-MD model, for the base maize price

(from 1 to 100) and the ME maize price (from 2 to 200). Holding

prices constant, the adoption analysis shows that there

are substantial economic benefits but minimal environmental

effects (e.g. the movement from point 1 to 10 or from 2 to 20),

whereas when the ME effect is included, the movement from

point 1 to 20 shows smaller gains in the economic dimension

but larger gains in the environmental dimension. Thus, the

linkage of the population-based analysis to the ME analysis



18

20

22

24

26

28

30

32

34

36

38

–35 –33 –31 –29 –27 –25 –23 –21

pe
rc

en
t o

f 
ho

us
eh

ol
ds

 a
bo

ve
 th

e 
po

ve
rt

y 
lin

e

soil nutrient gains (kg N ha–1 season–1)
price-based trade-off, low fertilizer use price-based trade-off, high fertilizer use
adoption-based trade-off, base prices adoption-based trade-off, ME prices

1

2¢

1¢¢

1¢

2  

2¢¢

Figure 3. Price-based and adoption-based trade-off curves for improved fertilizer use at base and ME prices. Predicted adoption rates are at maximum point on the
adoption-based trade-off curves ( points 10 and 20).

Table 1. Economic and environmental indicator values, counterfactuals and average treatment effects for the fertilizer-use scenario, at ME prices and predicted
adoption rate, for subsistence farms in Machakos, Kenya. (ATE, average treatment effect; CF, counterfactual; ATT, average treatment effect on treated; ATU,
average treatment effect on untreated, nutrient gain is kg N ha21 season21.)

base ATE

adopters non-adopters

value CF ATT value CF ATU

per cent above poverty 13.1 4.1 27.4 9.8 17.6 16.7 7.6 29.1

mean nutrient gain 227.9 4.3 228.4 230.8 2.4 224.5 217.9 6.6
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provides potentially important additional information about

the ultimate economic and environmental consequences of

this fertilizer-use scenario.

(d) Representative agricultural pathways and
socio-economic scenarios

History shows that the well-being of rural populations is highly

dependent on what happens in the rural non-agricultural

economy and in the larger national and international econom-

ies. Farm households’ incomes come from agricultural and

non-agricultural sources, including off-farm employment in

the rural sector and remittances from family members working

outside the rural sector. Farm income is determined by prices

affected by local, national and international demand and

supply; farm size depends on demand-pull factors, such as

employment opportunities in the non-agricultural sector and

technology that enables farm consolidation and mechanization.

Institutional factors, including policies to support investments

in infrastructure and education and supportive policies that

lower costs of imported inputs and technologies, all play impor-

tant roles. Some of these factors, for example international

prices, can be simulated under plausible future scenarios

using global agricultural economic models. But many of these

factors are not provided by such models. The role of
representative agricultural pathways (RAPs) is to provide a con-

sistent narrative together with quantitative information about

the economic, technological, social and institutional context in

which agricultural development occurs. Using these pathways,

researchers can formulate specific model scenarios that are

consistent with these defined development pathways [17].

An example of a positive development pathway for the

Machakos region of Kenya was provided by Hochman &

Zilberman [2] and Valdivia et al. [12]. This pathway involves

changes in rural development that lead to doubling the

average farm size from 3 to 6 ha and reducing the average

household size by 25% from about eight to six persons, con-

sistent with received economic growth theory and the

historical experience in other countries that have experienced

economic growth. At the base prices, these changes shift

the base point 1 in figure 3 from coordinates of (232, 24) to

(227, 49), thus doubling the number of households that are

above the poverty line and reducing the rate of nutrient

depletion by about 15%. The introduction of the improved

nutrient management practices under these improved socio-

economic conditions then results in an adoption rate of

about 64%, similar to the adoption rate under the base scen-

ario (figure 1); however, the combination of the improved rural

development conditions plus the nutrient management scen-

ario lifts the per cent of households above poverty to over
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60% and reduces the nutrient loss rate slightly to around 26%.

The obvious—but often overlooked—point that this example

illustrates is that the socio-economic environment in which

the farm households operate can have a very substantial

impact on their well-being, often more important than the

possible technological improvements that could be made in

their farm operation. Valdivia et al. [21] and Claessens et al.
[32] also find that the future socio-economic conditions

of farm households may have a greater impact on their well-

being than possible effects of climate change, at least in

the near term (to 2030) when climate change impacts may be

relatively small.
 il.Trans.R.Soc.B
369:20120280
3. Conceptual foundations: linking population-
and market-based models

This section presents the conceptual framework that is the

foundation for the simulation analysis presented earlier, using

a heuristic and graphical exposition; technical details are

provided in appendix A and in cited publications. As we

noted in §2, a fundamental feature of agricultural household

populations is their heterogeneity, in both biophysical and

socio-economic dimensions. Our approach is based on the

design of simulation models that represent a heterogeneous

population of farms, with biophysical and economic-

behavioural processes operating at both farm and population

scales. While site-specific biophysical process and farm-level

behaviour are the foundation of these complex systems,

impact assessment for public policy decision making is primar-

ily concerned with measures of impacts for populations.

Accordingly, our conceptual framework integrates economic

and environmental heterogeneity with aggregate economic

and environmental processes for analysis of trade-offs and

synergies between food and environmental security at the

population level. We begin with the analysis of a heterogeneous

farm population, holding biophysical and economic drivers

constant (e.g. soil and climate, prices of outputs and inputs,

technology), and then discuss how this population-based

model is affected by changes in biophysical or economic dri-

vers, e.g. thorough biophysical feedbacks or interactions

between farm households and markets.

(a) Outcome distributions, system choice and
impact assessment

Following the modern econometric policy evaluation literature,

our approach is based on the concept of outcome distributions: a

heterogeneous population using a particular production system

comprising a set of inter-related crop and livestock activities

(call this system 1) is characterized by an associated joint distri-

bution of economic, environmental and social outcomes. These

outcome distributions arise from the complex interactions of

biophysical, economic and social processes at the field, farm,

household and population levels.

In a typical technology adoption analysis, an alternative

system (call this system 2) becomes available to the popula-

tion using system 1. If the entire population were to switch to

this alternative system, the result would be a different outcome

distribution. In most cases, some farms choose to continue

to use system 1 (i.e. are non-adopters of system 2), and some

use system 2 (i.e. are adopters of system 2), in which case the

overall population is characterized by a mixture of the outcome
distributions of the two systems. This conceptual framework

can be used to design simulation experiments that mimic

what would be observed when a population is ‘treated’ in

this way (i.e. offered the option of using a new system). How-

ever, as recognized in the biomedical and economic policy

evaluation literature, there is a critical difference between con-

trolled physical experiments and interventions that involve

people. As the fertilizer-use scenario example presented

above suggests, in most experiments involving people, that

the potential subjects choose whether or not to be subjected

to the ‘treatment’—they self-select into treatment. In the analy-

sis of new technologies, or in the analysis of adaptation to

changes in environmental, economic or policy conditions,

farmers and other economic agents can be expected to make

purposeful choices between alternatives. The biostatistics,

econometrics and related literature show that quantitative

analysis of the outcomes of such purposeful choices must,

therefore, take into account the statistical inter-relationships

between peoples’ choices and the associated outcomes.

Farms are ordered according to an index v such that for

the adoption threshold a, v � a for those farms using

system 1 and v , a for those using system 2. Expected econ-

omic outcomes associated with each system are defined as

v(1) and v(2), and we let v ¼ v(1)2v(2), i.e. we order farms

according to v which is interpreted as the opportunity cost
of changing from system 1 to system 2. As introduced in

§2, we assume farms choose the system that maximizes

expected returns, thus a ¼ 0. Alternatively, the adoption

threshold a may be non-zero to represent incentives to encou-

rage or discourage adoption, as in payments for ecosystem

services [7,33,34]. The opportunity cost can be represented

as a present value over a relevant time horizon if the choice

between systems involves important fixed costs and it can

also incorporate costs associated with risk or transaction

costs. Opportunity cost v is spatially distributed across the

landscape as a function of prices and other exogenous vari-

ables represented by p. The proportion of farms using

system 2, referred to as the adoption rate of system 2, is given

by the cumulative distribution function for v , a and is

defined as r( p,2,a); the share of farms using system 1 is

r( p,1,a) ; 1 2 r( p,2,a). To simplify the presentation, we

abstract from the dynamics of the adoption process, but

recognize that in reality such changes play out over time.

This model represents a system as a set of production

activities and management practices that have certain com-

ponents in common (e.g. an improved crop variety), but all

farms need not be using those components in the same

manner. In terms of the economic decisions being simulated,

the only meaningful difference between systems 1 and 2 is

that each produces different economic outcomes, giving rise

to a non-degenerate ordering v. This feature of the model is

important because a wide array of management practices

are typically applied to particular technologies, for example,

improved seed varieties. Another important feature of this

model is that the economic behaviour of farmers is likely to

result in a level of adoption between 0 and 100% owing to

the heterogeneity in the conditions in which farms operate

(soils, climate, prices, location, etc.). A substantial literature

on technology adoption argues that incomplete adoption of

‘new’ or ‘improved’ technologies is caused by constraints

on adoption, such as risk aversion and access to information

(for a review, see [35]); yet a growing body of evidence also

points to the fundamental importance of appropriately
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measured, site-specific biophysical and economic hetero-

geneity in explaining technology use (for further critical

discussion, see [11,36]. In the spirit of parsimony, we begin

with a model based on expected returns and interpret it as

predicting economic feasibility, while acknowledging that

other behavioural elements can be introduced as needed

and as feasible with available data.

We consider the case of two outcomes associated with

each system h ¼ 1,2, one economic outcome v(h) and one

environmental outcome z(h). The adoption variable v and

the outcomes k ¼ v, z are influenced by many of the same fac-

tors, and thus are jointly distributed. Antle [8] derives several

key results for this model. First, the sub-population using

each system is characterized by the joint outcome distribution

between v and k ¼ v, z, truncated according to v � a for

system 1 and v , a for system 2. It is important to recognize

that these joint distributions embed the underlying biophysi-

cal and economic processes that link inputs and outputs of

the farm production system and farm household, and these

relationships are embedded in the structure of the other

relationships that are based on these joint outcome distri-

butions. When some farmers choose to use system 1 and

others choose system 2, this behaviour generates outcome

distributions conditional on the adoption threshold a. This

‘selection’ or choice behaviour links the adoption process to

outcome distributions conditional on adoption, and thus pro-

vides the basis for the construction of impact indicators based

on these distributions. Second, Antle [8] defines a class of

indicators that can be constructed using outcome distri-

butions and shows that they exhibit properties similar to

the class of indicators developed by Foster et al. [37] that

are widely used to measure poverty. Measures of vulner-

ability to exogenous environmental changes, for example,

climate change, also can be represented using these indi-

cators. One desirable property of these indicators is that the
value for the whole population is a weighted average of the

values for the non-adopters and adopters, with the weights

given by r( p,1,a) and r( p,2,a) (see appendix A).

Figure 4 illustrates this model’s properties, for the case

where system 1 is interpreted as the system in use initially

by all farms, with system 2 then becoming available for adop-

tion (as in the improved nutrient management example

presented in §2). The indicator variable is defined as the

mean of the economic outcome v(h), under the assumption

that v ¼ v(1) – v(2) and farms choose the system that maxi-

mizes v (implying that the adoption threshold is a ¼ 0). The

right-hand side of the figure shows the construction of

the truncated outcome distributions for farms using each

system, by combining the adoption rate and the joint distri-

butions between v and v (these distributions are represented

as ellipsoids of equal density). The left-hand side of the

figure shows the relationship between the adoption rate for

system 2 and the mean indicator for the users of each system,

and for the overall population. In this model, it can be shown

that the mean economic indicator for the population (in this

case, the mean of v, mv) is maximized at the adoption rate of

system 2, r( p,2,0).

A key feature of this model is the relationship between v

and the outcome variables. This relationship is embodied

in the correlations between v, v and z, and is represented in

figure 4 as the angle of the ellipsoid axis of the joint distribution

of each system. This correlation is translated into the relation-

ships between the adoption rate and the indicators shown in

the left-hand side of figure 4. Antle [8] shows that the slopes

of the indicator functions for the adopter and non-adopter

sub-populations (see the left-hand side of figure 4) are related

to the correlations between v and the outcome variable. Note

that the correlation between v and economic returns for adop-

ters in figure 2 is negative as in figure 4, but the correlation for

non-adopters in figure 2 is positive, whereas it is shown to be
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negative in figure 4; either sign is possible. When the adoption

variable v is uncorrelated with the outcome variable, the indi-

cator curves for the adopter and non-adopter sub-populations

are horizontal lines (i.e. are independent of the adoption rate),

and the overall population indicator is proportional to the

adoption rate (a straight line connecting the means mv( p,1)

and mv( p,2)).

This conceptual framework is a generalization of some

statistical models developed for analysis of observational

experiments (e.g. [10]). In figure 4, for example, the quantity

referred to in this literature as the ‘average treatment effect’

is equal to the difference between the mean values of the

two systems, i.e. mv( p,2) – mv( p,1); similarly, the ‘average

treatment effect on the treated’ (i.e. the change in the indi-

cator for the adopting sub-population) and other treatment

effects can be constructed by calculating the appropriate

counterfactuals for adopter and non-adopter sub-populations

(as elaborated in appendix A). The indicator variables also

can be defined as any functions of the relevant outcome

distributions, including indicators based on thresholds, for

example, the poverty rate, or an environmental risk defined

as the likelihood that an environmental indicator exceeds a

critical threshold.

Following the structure of figure 4, indicators based on

economic and environmental outcomes (and more generally,

for any quantifiable outcome of interest, e.g. nutritional out-

comes) can be constructed. As the adoption threshold a is

varied, the adoption rate of each system varies, and the result-

ing combination of indicators produces what we defined in §2

as the adoption-based trade-off curve A( p) (see appendix A for a

technical definition). These adoption-based curves are con-

structed by varying the adoption threshold a holding the

price vector p fixed (e.g. see curve A( p0) in figure 5, for
the price p0). Thus, there is a family of such curves associated

with the set of feasible prices C.

(b) Scaling up: linking heterogeneous populations to
aggregate processes

Thus far the population of farms chooses between two systems,

while taking prices and other exogenous factors (‘drivers’ or

‘boundary conditions’) as given. Now we consider how a

farm population—which may be a mixture of farms, some

using system 1 and some using system 2—is impacted when

prices or other factors change. These changes may be caused

by factors exogenous to the population or may be induced

endogenously when system 2 is introduced. In economic

terms, the regional, national or global economies may cause

changes in prices faced by farmers in a region; moreover,

when new systems are introduced that change quantities pro-

duced locally, there may be market impacts through changes

in local food supply and demand. Similarly, changes in land

management practices induced by adoption of system 2 may

cause changes in environmental conditions, impacting all

farms in the population, e.g. a change in water quality

caused by a collective increase in nutrient or pesticide use.

The linkage of the population to a market is represented

in figure 5. This figure shows, in the northeast quadrant, an

adoption-based trade-off curve A( p0) defined for a particular

price vector p0 [ C. This adoption-based trade-off curve con-

nects two other curves we define as price-based trade-off curves.
These latter curves are defined formally as the combination of

indicator values associated with a particular system, or a

combination of systems, in use as prices are varied, and are

denoted as T(C, h), where h ¼ 0,1,2 indexes the system in

use (see appendix A for a formal definition). T(C, 1)
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corresponds to the case where all farms are using system 1

and T(C, 2) corresponds to the case where all farms are

using system 2. We use T(C, 0) to denote the case where

both systems 1 and 2 are available and the adoption threshold

is a ¼ 0, so that the population comprise some farms using

system 1 and some farms using system 2. Paralleling these

definitions, we denote the corresponding population-level

indicators associated with system h as Ik ( p, h) for k ¼ v,z.

As the figure shows, the two types of trade-off curves are clo-

sely related: the adoption-based trade-off curve defined for a

particular price vector p0 connects the point S on T(C, 1) to

the corresponding point on T(C, 2); similarly, at a lower

price p1 the adoption-based trade-off curve shifts to A( p1)

and connects the points on T(C, 1) and T(C, 2) corresponding

to that price. If farms choose between systems 1 and 2 to

maximize Iv, the economic indicator, with the adoption

threshold a ¼ 0, then the aggregate outcome in the popu-

lation will be at the maximum value of Iv along A( p0), at

point S0; at the lower price p1, the maximum occurs along

A( p1) at S00.

The northwest quadrant of figure 5 shows the relation-

ship between the economic indicator Iv and the aggregate

quantity Q, as the adoption threshold a is varied holding

prices constant. Thus, the curves designated as Iv( p)

attain a maximum at the aggregate quantity Q that corre-

sponds to the maximum value of Iv along A( p). For this

example, we let p represent the price of the output Q,

and the market supply curve defined as Q( p, h) is shown

in the southwest quadrant, where h ¼ 0,1,2 is defined as

above. Note that Q( p, 1) is the market supply function

when only system 1 is in use; Q( p, 0) is the market

supply function when system 2 is introduced, the adoption

threshold is a ¼ 0, and thus 100r( p, 2, 0) per cent of farms

adopt system 2. Figure 5 illustrates two important cases: the

first case is where the region is small relative to the larger

regional or global market for the product Q, hence the price

of Q remains at its initial level p0 (the region faces a horizontal

demand curve for Q because changes in its aggregate output

do not affect the market price p). The second is the case

where the region faces a down-sloping demand for Q (curve

D(p) in figure 5). In this case, when system 2 is introduced

and adopted by some farms, the supply curve shifts outward,

and the ME price declines from p0 to p1. Similarly, changes in

external conditions that impact the market price of Q will be

translated into shifts in the adoption-based trade-off curve.

The linkage from price-based trade-off curves to ME is

discussed further in [12].

The southeast quadrant of figure 5 shows the relationship

between an environmental indicator Iz( p, h) and the price p.
Prices influence the environmental outcomes through the

joint outcome distributions described above: changes in

prices affect opportunity cost v and thus affect the choice

between systems and environmental outcomes. In figure 5,

the indicator Iz( p, 1) and Iz( p, 2) represent the relationship

for the case where only system 1 or 2 is in use. Iz( p0, 0) and

shows this relationship when both systems 1 and 2 are in use.

We conclude by noting that changes in external drivers of

the system, for example climate, will generally impact the

productivity of the production systems 1 and 2, as well as

the relationship between those systems and environmental

outcomes, and thus will shift all of the relationships rep-

resented in figures 4 and 5. By quantifying these shifts, this

framework can be used for the analysis of climate change
impacts, and it can also be used to evaluate how systems

can be modified to facilitate adaptation to climate change

and other environmental changes [9,21].
4. Empirical implementation
In this section, we discuss how the conceptual framework

presented in the previous section can be translated into par-

simonious simulation models. As we noted at the outset, a

major challenge in assessing food and environmental security

implications of agricultural systems is the empirical charac-

terization of these systems and their essential features,

taking into account key system characteristics, while using

the various types of data that are available.
(a) A parsimonious model for multi-dimensional impact
assessment: TOA-MD

The analysis of technology adoption presented in §2 was

implemented using the TOA-MD model (see [4,9]). In this

model, the following definitions are used for distribution, with

economic, environmental and social outcomes indexed by k,

and systems indexed by h¼ 1,2, and k(h) refers to outcome k
for system h: mk(h) ; mean of k(h); s2

kðhÞ ; variance of kðhÞ;
s2
v ; variance of v; rk ; correlation between outcomes k(1)

and k(2); kk(h) ; correlation between outcomes v(h) and k(h)

and uk(h) ; correlation between outcome k(h) and v. Three

correlations play a role in the model: rk represents between-

system correlations of a given outcome k; kk(h) represents

within-system correlations between economic returns v; and

outcome k and uk(h) is the correlation between outcome k(h)

and opportunity cost. As in §2, we define the economic outcome

v(h) for each system, so that the population of farm households

can be ordered according to v¼ v(1) – v(2), and we assume

that v is distributed in the population:

v ¼ mnð1Þ � mnð2Þ þ sv1= mv þ sv1, 1 � N(0,1) ð4:1Þ

and

s2
v ¼ s2

nð1Þ þ s2
nð2Þ � 2rnsnð1Þsnð2Þ: ð4:2Þ

Normality is not an essential assumption, but it is analytically

convenient and appropriate for a parsimonious model because

the normal distribution is itself parsimonious. Antle & Valdivia

[7] and Antle et al. [34] present validation of this model for the

analysis of ecosystem services supply by comparing it to more

elaborate models. To use the results presented in §2, we also

assume that the environmental or social outcomes are normally

distributed. Normality is a particularly useful assumption for

the parametrization of the truncated distributions discussed

in §3, both for its parsimony and for the well-known, tractable

properties of the moments of truncated normal distributions.

If outcome distributions are non-normal, stratification of a

population, e.g. by farm size or system type, or using methods

to identify sub-populations, for example, estimation of finite

mixture models, can be used.

Using the above definitions, the correlation between k(h)

and v ¼ v(1) – v(2) is

ukðhÞ ¼
f svð1Þkkð1Þrh�1

k � snð2Þkkð2Þr2�h
k g

sv

: ð4:3Þ

The means and variances of the marginal distributions of

the outcome variables, for the sub-populations of farms
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using system h, with adoption threshold a, are defined as

mk(h,a) and s2
kðh; aÞ: These statistics can be constructed

using the above quantities and standard results from the lit-

erature on truncated bivariate normal distributions.

Thus, the TOA-MD model involves five parameters needed

to construct the distribution of v, the means and variances of

v(1) and v(2) and their correlation. For each non-economic out-

come variable, there are seven additional parameters, a mean

and a variance for each system, and the three correlations

defined above equation (4.1); with m non-economic indicators,

the total number of parameters is equal to 5 þ 7 m. This rela-

tively small number of parameters makes this model easy to

interpret and well suited for out-of-sample analysis.
 rans.R.Soc.B
369:20120280
(b) Crop and livestock simulation models
Crop and livestock productivity play a central role in the analysis

of agricultural systems, and thus crop and livestock simulation

models play a key role in constructing the counterfactuals for

impact assessment. Note that for linkage to the TOA-MD

model, we need to estimate yield distributions for the base

system (system 1) and an alternative or counterfactual system

(system 2) [38]. In some within-sample assessments, systems 1

and 2 are observed in the region, and available site-specific

data allow for the assessment of statistics on the distribution of

the crop and livestock production. But in many within-sample

and all out-of-sample analyses, site-specific data on one or

both systems is lacking. Ideally, crop and livestock simulation

models can be used to assess the productivity of these alternative

systems. However, in practice, researchers face a number of

issues in the use of these models for impact assessment. Here,

we focus on crop growth simulation models, which are the

most widely used models. There are relatively few livestock

models, but similar issues apply [39].

Crop growth simulation models are available only for cer-

tain major crops and incorporate a limited number of processes

[40]. Models for important cash crops, such as coffee and tea,

are lacking but also models for commonly applied intercrops,

such as maize and beans, are not available. In addition,

many models are able to deal with weather conditions, water

constraints and some nutrient constraints but are not able to

deal with other important factors, notably pests and diseases.

These models also do not incorporate any factors related to

the farmer’s management capability. As a result, we often see

that the simulated nutrient-limited or potential yields are

higher than the actual yields obtained by farmers. This dif-

ference, the so-called yield gap, is particularly relevant in

smallholder farming systems where soil fertility and disease

management is suboptimal (from a plant perspective).

The application of the crop growth simulation models

requires detailed data on soil and climatic conditions in the

region. When such data are lacking, a model may provide accu-

rate predictions of relative yield differences between systems,

but is not likely to be a reliable predictor of actual yield

levels. Applying a model for representative conditions and

management in the population and comparing the results to

observed yield levels allows an assessment of the yield gap

[41]. Under the assumption that the yield gap is constant

across sites, we can simulate yields under alternative manage-

ment and correct the simulated yields for the yield gap. The

spatial variability of yield can be estimated from cross-sectional

survey data; assessing the standard deviation in yield using a

simulation model requires data on the spatial variability of
soils, climate and management in the region. However, the

standard deviation of simulated yields under nutrient- or

water-limited conditions is typically smaller than the standard

deviation in actual yield. Thus, although the crop growth simu-

lation models are a powerful tool, and often the only tool for

the assessment of yield distributions out-of-sample, their use

requires substantial skill and adequate data. Whether more

parsimonious crop models could be developed that require

fewer data inputs and be still sufficiently accurate for out-of-

sample counterfactual analysis would be a worthwhile topic

for additional research. It is also important to note that statisti-

cal yield models can also be used to project yield response to

weather, and at some spatial scales may perform better than

process-based models [42].

(c) Environmental data and models
Even when systems can be observed, environmental models

are often necessary to assess environmental outcomes

because measurement across the landscape is prohibitively

expensive; in out-of-sample analysis the use of models is

essential. In contrast to the case of crop growth simulation

models, parsimonious models for environmental processes

have been developed and are applied in a wide range of

cases dealing with soil erosion [43], soil fertility [44] and

carbon [45]. These parsimonious models have been found

to be useful in a wide range of applications, even when

more complex mechanistic simulation models are available

[46]. This is owing to the fact that often the data needed for

the implementation of the more complex models are not

available for calibration and application. The key question

that remains is whether the parsimonious models with their

simplifications in the model structure and the various pro-

cesses provide us with a better insight in the distribution of

environmental outcomes than the complex simulation

models with the problems of data availability.

For the application in TOA-MD, means and variances of

environmental outcome distributions are required, as well as

correlations between the environmental outcomes and expected

returns (see equation (4.3)). Until recently, the importance of

these outcome distribution parameters, and in particular the

correlations with economic outcomes, had not been recognized,

and consequently they have not been measured. Therefore,

further research using field measurements and available simu-

lation models is needed to estimate these correlations. As these

parameters are estimated across many systems and ecoregions,

it will be possible to define plausible ranges for these par-

ameters, similar to the way that ranges of plausible soil

carbon rates have been established and used for analysis of

agricultural greenhouse gas mitigation [36].

(d) Model parametrization for out-of-sample impact
assessment

We consider now the parametrization of the TOA-MD model

for analysis out-of-sample. This is sometimes referred to as

the problem of ex ante evaluation, and in the treatment effects

literature relates to the problem of ‘external validity’ in the

sense that we may view this problem as being solved by

extrapolating from one setting to another. [10, p. 4791] refer

to ‘. . .forecasting the impacts of interventions (constructing

counterfactual states associated with interventions) never his-

torically experienced to various environments. . .’. If we
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interpret the word ‘forecasting’ to mean attempting to predict

what will actually happen, then we can distinguish forecast-

ing from scenario analysis, which explores plausible possible

future states of the world without attempting to predict their

likelihood of occurring, as in the analysis presented in §2

using RAPs. We contrast such scenario analysis with the

conventional problem of within-sample ex post impact assess-

ment that has been addressed extensively in the econometrics

and impact assessment literature, i.e. the case wherein the

consequences of adoption can be directly observed, so that

given such observations the empirical problem is to quantify

the relevant counterfactual [47]. In this discussion, we

assume that data are available so that estimates of the

means, variances and covariances of system 1 components

can be made for the population of interest using standard

statistical methods.

In the context of economic policy analysis, the mid-twen-

tieth century economist Jacob Marschak recognized that in

order to use statistical models to carry out policy analysis,

it is necessary to identify policy-invariant combinations of

parameters, with the relevant combination of parameters

defined relative to the policy question being asked [10]. Com-

plex systems typically embed parameters from a hierarchy of

levels—e.g. a process-based crop simulation model may have

a fundamental genetic parameter for a crop, but this genetic

parameter itself depends on underlying physical and chemi-

cal processes. Similarly, an economic model of a market

depends on the underlying behavioural parameters of

households and firms. Depending on the context, various

combinations of such parameters may be invariant to the

exogenous changes of interest in an impact assessment. For

example, in the TOA-MD model outlined above, there are

five basic economic parameters, and with each non-economic

indicator there are seven parameters. These TOA-MD model

parameters depend on underlying parameters of the pro-

cesses generating the outcome distributions as well as on

the defined exogenous variables of the systems, such as the

climate and soils, the prices of crops produced and their

costs of production, and the social and institutional setting.

In an analysis of technology adoption that takes prices as

given, we can derive the adoption-based trade-off curve

A( p) which is a function of the exogenous parameter vector

p which includes market prices of products the farm sells,

but in a market-level analysis those price components of p
become endogenous to the analysis.

Once the fundamental parameters for a particular analy-

sis are identified, we need to estimate the parameters for

the unobservable components of the analysis, i.e. the par-

ameters of system 2 and the covariances between systems.

The use of parsimonious models based on outcome distri-

butions is helpful for this type of analysis because the

parameters of outcome distributions (means, variances and

correlations) can be easily interpreted, and the relatively

small number of parameters makes it relatively easy to

achieve logical consistency among parameters.
(i) Extrapolation methods
One way that model parameters can be generated for out-of-

sample analysis is to assume that there is an underlying

stable relationship between some observable covariates and

the parameters of interest. Then if model parameters have

been estimated under a sufficiently rich set of conditions, it
may be feasible to use statistical methods to construct a

‘meta-model’ for extrapolation. For example, environmental

economists estimate the value of non-market goods in one

environment and then attempt to extrapolate them to other set-

tings [48]. Economists also use statistical meta-models of

process-based models to simulate the impacts of changes in

policy [49]. Another approach that has been used in the climate

change literature is to use spatial or temporal analogues to esti-

mate potential impacts of climate change, e.g. to use large

cross-sectional data bases to estimate statistical models that

are then extrapolated into the future to predict impacts of cli-

mate change on crop yields [42,50]. These methods require

large amounts of data, and also usually depend on strong

and untested assumptions that parameters are stable across

space or time.

(ii) Using process-based models
As discussed above, process-based crop or livestock growth

models and environmental process models can be used to

construct out-of-sample counterfactuals. This approach was

pioneered several decades ago [51,52] and continues to be

used and improved upon [53]. In principle, one could argue

that process-based models might predict out-of-sample better

than statistical models, because their structure and parameters

are invariant to the changes taking place in the physical

environment. However, as discussed above, process-based

models also have substantial limitations. A number of other

methodological issues need to be addressed when these

models are used with economic models, for example, how to

use point-based models to represent aggregate outcomes,

how to use them with gridded spatial input data and how to

account for management variability. Another important issue

is whether spatially referenced soil and climate data needed

for input into crop simulation models are available at the

same sites as economic data so that simulated crop yields can

be linked to economic data [38].

(iii) Economic engineering and expert data
Often system 2 is a relatively simple modification of system 1,

and thus the observed properties of system 1 can provide a

close approximation to system 2 when supplemented with rel-

evant information about the modified part of the system. For

example, when considering the introduction of a new crop var-

iety, the performance of the system may be very similar except

for a change in the mean yield and changes in input use, for

example, the average fertilization rate. Often expert data can

be used to estimate parameters such as population means.

(iv) Minimum-data methods
Antle & Valdivia [7] discuss several methods that can be used

to parametrize the TOA-MD model when, for example, statisti-

cally representative data are not available or only aggregated

data are available. In this latter case, the aggregate data can

be used to estimate population means, but supplemental

data are needed to estimate spatial heterogeneity. For example,

under appropriate assumptions, crop yields or other physical

data can be used to estimate spatial variation in farmers’

expected returns [33].

(v) Pathway and scenario methods
When non-marginal changes are being considered, for

example, in climate change impact assessment, it may be
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appropriate to use new pathway and scenario concepts being

developed by integrated assessment researchers [14–16], as

illustrated in the Machakos case study presented above with

RAPs [17]. Claessens et al. [32] present an application of the

TOA-MD model to climate impact assessment using RAPs.
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5. Conclusion
Assessing the future food and environmental security of farm

populations poses great challenges at regional and global

scales. In this paper, we present conceptual and empirical foun-

dations for a new, parsimonious approach to the development

of simulation models that can be used to assess future food and

environmental security of farm populations. Our conceptual

framework integrates key features of the biophysical and econ-

omic-behavioural processes on which these farming systems

are based and links them with aggregate processes, for

example, changes in market supply and demand conditions,

or environmental conditions, for example, climate. Both bio-

physical and economic data are a critical limiting factor in

modelling these complex systems, particularly for the impor-

tant out-of-sample counterfactuals that must be dealt with in

the assessment of important challenges, for example, climate

change. We propose the use of parsimonious, population-

based simulation methods as a way to make progress in

meeting these challenges. One virtue of this approach is that

it provides a way for researchers to take advantage of the

various observational, experimental, modelled and expert

data that may be available, including information from a new

scenario design concepts, for example, RAPs.

Despite these desirable features, the population-based

approach presented here demands further testing, validation

and generalization. This type of model has been validated

against a more complex system model [34] and has been

used successfully to predict adoption and related economic

and nutritional outcomes out-of-sample [54]. Nevertheless,

several limitations need to be addressed in future research.

First, in implementing the simulation of outcome distributions,

the current version of the TOA-MD model is based on the

assumption of bivariate normality. Yet, distributions of econ-

omic returns at the farm level are typically right-skewed, and

it is likely that other important outcome distributions are sub-

stantially non-normal [54]. Thus, additional research is needed

to quantify the importance of possible biases introduced by

the assumption of normality as well as methods that could

overcome this assumption. Such methods could entail the

use of statistical mixture models to appropriately stratify popu-

lations or the use of non-parametric methods to characterize

and simulate outcome distributions. The second limitation

of the simulation approach is that parameter uncertainty is

typically evaluated using sensitivity analysis, e.g. as in [8].

Alternatively, to the extent that distributions can be assessed

for model parameters, confidence intervals for the simulation

outcomes could be derived using Monte Carlo or boot-

strapping methods. Finally, it is important to emphasize that

while population-based models are useful for policy and

research priority setting, they are not useful as decision sup-

port tools for individuals. Other kinds of tools are needed

to provide management recommendations at the level of an

individual farm operation.

A major finding of the approach and example we have pre-

sented here is the importance of combining the adoption (or
selection) behaviour of heterogeneous farm populations with

the behaviour-modifying effects of aggregate processes, for

example, market interactions. No doubt, similar conclusions

can be drawn with respect to important environmental pro-

cesses. By necessity, environmental and economic models

operating on the global scale cannot effectively represent this

essential heterogeneity. One possible solution we see is to

couple models similar to TOA-MD to regional or global-scale

models that capture important aggregate interactions. Aggre-

gate agricultural market models can be interpreted as

providing population mean outcomes for important variables,

such as crop and livestock production, for agro-ecologically

defined regions; however, they do not provide information

about the spatial heterogeneity within those regions. Some

economic models use crop growth simulation models on a

gridded basis to predict changes in crop production. Using

some of the ‘minimum-data’ methods we have developed for

parsimonious economic models, it may be possible to couple

global model outputs with a model similar to TOA-MD to

assess consistently the aggregate and distributional implica-

tions of climate change and also to incorporate more realistic

adaptation scenarios. We foresee these types of enhanced

modelling capabilities as the next generation of integrated

modelling that will improve the quality and relevance of infor-

mation that integrated assessment modelling can provide to

decision-makers at global and regional scales.
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Appendix A
Following §3, farms are ordered according to an index v such

that for the adoption threshold a, v � a for those farms using

system 1 and v , a for those using system 2, for v ¼ v(1) –

v(2), where v(h) is the economic outcome for system h. The

variable v is spatially distributed according to the density

w(vjp), which is generally a function of prices and other

exogenous variables represented by p. The proportion of

farms using system 2, referred to as the adoption rate of
system 2, is given by the cumulative distribution function

rð p; 2; aÞ ;
ða

�1

fðvjpÞdv; ðA 1Þ

and the share of farms using system 1 is r( p, 1, a) ; 1 –

r( p,2,a). We also consider other environmental or social out-

comes z(h). Several relevant results can be derived using

this framework [8]. First, the sub-population using each

system is characterized by a the joint outcome distribution

between v and k ¼ v,z, truncated according to v � a for

system 1 and v , a for system 2, denoted here as f(v,kj
p,h,a). Second, the joint distribution of v and k ¼ v,z in a

population using both systems is a mixture of the distri-

butions for each system with mixing proportions r( p,h,a).

Third, integrating f(v,kjp,h,a) over the interval v � a for

system 1 and over v , a for system 2 gives the marginal out-

come distributions x(kjp,h,a) for outcome k, conditional on the

adoption threshold a. These results link the adoption process

to the marginal outcome distributions conditional on adop-

tion, and thus provide the basis for the construction of
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impact indicators based on these outcome distributions.

Antle [8] defines the indicators

Ikðp; h; a; tÞ ;
ð
t

iðkÞxðkjp; h; aÞdk; k ¼ v; z; ðA 2Þ

where i(k) is a function of k, and t defines the range of the

variable considered for a threshold effect. The outcome distri-

bution in the entire population is a mixture of the outcome

distributions conditional on adoption:

xðkjp; aÞ ¼ rðp; 1; aÞxðkjp; 1; aÞ þ rðp; 2; aÞxðkjp; 2; aÞ: ðA 3Þ

Combining (A 2) and (A 3), it follows that the impact

indicator for the entire population is

Ikðp; a; tÞ ;
ð
t

iðkÞxðkjp; aÞdk

¼ rðp; 1; aÞIkðp; 1; a; tÞ þ rðp; 2; aÞIkðp; 2; a; tÞ:
ðA 4Þ

Note that in the text and figures 4 and 5, we define the

indicators such that Ik(p,1) ; Ik(p,21,t), Ik(p,2) ; Ik(p,þ1,t)

and Ik(p,0) ; Ik(p,0,t).

As the adoption threshold a is varied, the adoption rate of

each system varies, and the resulting combination of indicators

can be graphed as what we call an adoption-based trade-off curve:

AðpÞ ; fIvðp; a; tvÞ; Izðp; a; tzÞj �1 , a , þ1; p [ Cg; ðA 5Þ

where C is the set of feasible prices. Note that A( p) depends on

the threshold parameters tv and tz which we suppress hence-

forth to simplify notation. These adoption-based trade-off

curves are defined by varying the adoption threshold, holding

fixed the price vector p; thus, there is a family of such curves

associated with the set of feasible prices C. Price-based trade-
off curves are defined as the combination of indicator values

associated with a particular system, or a combination of

systems, in use as prices are varied:

TðC; aÞ ; fIvðp; a; tvÞ; Izðp; a; tzÞjfor all p [ Cg; ðA 6Þ

generated by varying p over the set of prices C, where

Ik(p,a,tk) ¼ r(p,1,a) Iv(p,1,a,tv) þ r(p,2,a) Iv(p,2,a,tv) is the indi-

cator for outcome variable k ¼ v,z in the population with

adoption threshold a (again we suppress the threshold par-

ameters to simplify notation). In §2, we focus specifically on

three special cases of these price-based trade-off curves. In

the case where a ¼ 21, all farms use system 1, in which case

we obtain the price-based trade-off curve T( p, 1); and for

a ¼ þ1, all farms use system 2, giving the price-based trade-

off curve T( p, 2). For the case in which farms choose between

systems 1 and 2 to maximize the economic value of the

system in use, i.e. a ¼ 0, we obtain the trade-off curve defined

as T( p, 0).

The expected output from system h with adoption

threshold a is

qð p; h; a; tÞ ;
ð
t

qxðqjp; h; aÞdq; ðA 7Þ

where p represents the price of the output q. Expected output

from all farms is given by the aggregate or market supply curve

Qðp; aÞ ¼ frðp; 1; aÞqðp; 1; a; tÞ þ rð p; 2; aÞqðp; 2; a; tÞgN; ðA 8Þ

where N is the number of farms in the population. Note that

Q( p,21) is the market supply function when only system 1

is in use; Q( p,0) is the market supply function when system 2

is introduced, the adoption threshold is a ¼ 0, and thus

100r(p,2,0) per cent of farms adopt system 2.
The northwest quadrant of figure 5 shows the relationship

between the economic indicator Iv and the aggregate quantity

Q of an output produced in the market in which the popu-

lation participates. Define the net returns expected by an

individual farm given output price p as i(q) ¼ pq – c(q),

where c(q) is cost of production, so that Ik( p,a,t) is the popu-

lation mean net returns defined for adoption threshold a
(see A 2). As the adoption threshold is varied over its range

from 21 to þ1, we obtain the curve Iv( p) shown in the

northwest quadrant of figure 5, which is the correspondence

between Ik(p,a,t) and Q(p,a) with price p.
(a) Calculating treatment effects
In the ‘treatment effect’ literature, the analysis is based on the

change in an outcome caused by treatment in the treated

and untreated sub-populations. Counterfactuals correspond-

ing to the indicators defined in (A 2) can be constructed as

an extension of the results presented in [8]. Here, we present

results for mean indicators under normality; extension to

threshold indicators follows the same logic. Also we suppress

the parameter p, which is held constant, to simplify the pres-

entation. Under normality, the conditional mean of outcome

k, given v, is

mkðv; hÞ ¼
mkðhÞ þ ðv� mv)skðhÞukðhÞ

sv

; ðA 9Þ

where mk(h) is the unconditional mean of k for system h, and

other parameters are defined in equations (4.1)–(4.3) and

related text. For a standard normal density f*, the inverse

Mills’ ratio for the truncated distribution of v associated

with each system is

lða; hÞ ¼ f � ½ða� mvÞ/sv�
rðh; aÞ : ðA 10Þ

The means of the truncated distributions of v for each

system are

mvðh; aÞ ¼ mv � ð�1Þhsvlða; hÞ: ðA 11Þ

Taking the expectation of (A 9) with respect to the trunca-

ted distribution of v, and using (A 10) and (A 11), the

means of the truncated outcome distributions for systems

h ¼ 1,2 are

mkðh; aÞ ¼ mkðhÞ � ð�1ÞhskðhÞskðhÞlða; hÞ: ðA 12Þ

For system 1, the counterfactual mean ~mkðh, aÞ is constructed

by taking the expectation with respect to the distribution of k
for system 2, over the interval (a,þ1), thus

~mkð1; aÞ ¼ mkð2Þ � skð2Þukð2Þlða; 1Þ: ðA 13Þ

Similarly, the counterfactual mean for system 2 is

~mkð2; aÞ ¼ mkð1Þ þ skð1Þukð1Þlða; 2Þ: ðA 14Þ

Using these results and the standard definitions of treatment

effects [10], we have the average treatment effects on the

treated (TT) and untreated (TU) for outcome k at adoption

threshold a

TTkðaÞ ¼ mkð2; aÞ � ~mkð2; aÞ
and

TUkðaÞ ¼ ~mkð1; aÞ � mkð1; aÞ:

Treatment effects on the treated and untreated groups can

be derived for threshold indicators as well (for example, the
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poverty rates given in table 1). The average treatment effect

(ATE) for the entire population is the difference in the uncondi-

tional means for systems 1 and 2, ATEk ¼ mk(2) – mk(1). It also

follows that the ‘local average treatment effect’, i.e. the ATE

taken over some range of adoption rates can be similarly con-

structed. Finally, observe that any ‘policy-relevant treatment

effect’ can be constructed from these results, that is, the
treatment effect for a policy-defined value of the adoption

threshold a or a policy-constrained range of the adoption

rate. For example, in an analysis of a subsidy or tax on the

use of system 2, the adoption of system 2 will deviate from

the point a ¼ 0 to a point where a equals the subsidy or tax,

and treatment effects can be constructed at the adoption rate

for system 2 at that value of a.
 blishing.org
References
Phil.Trans.R.Soc.B
369:20120280
1. Pingali PP. 2012 Green revolution: impacts, limits
and the path ahead. Proc. Natl Acad. Sci. USA 109,
12 302 – 12 308. (doi:10.1073/pnas.0912953109)

2. Hochman E, Zilberman D. 1978 Examination of
environmental policies using production and
pollution microparameter distributions.
Econometrica 46, 739 – 760. (doi:10.2307/1909747)

3. Just R, Antle J. 1990 Interaction between
agricultural and environmental policies: a
conceptual framework. Am. Econ. Rev. 80,
197 – 202.

4. Crissman CC, Antle JM, Capalbo SM (eds). 1998
Economic, environmental and health tradeoffs in
agriculture: pesticides and the sustainability of
Andean potato production. Dordrecht, The
Netherlands: Kluwer Academic Publishers.

5. Antle JM, Capalbo SM. 2001 Econometric-process
models for integrated assessment of agricultural
production systems. Am. J. Agric. Econ. 83,
389 – 401. (doi:10.1111/0002-9092.00164)

6. Stoorvogel JJ, Antle JM, Crissman CC, Bowen W.
2004 The tradeoff analysis model: integrated bio-
physical and economic modeling of agricultural
production systems. Agric. Syst. 80, 43 – 66. (doi:10.
1016/j.agsy.2003.06.002)

7. Antle JM, Valdivia R. 2006 Modeling the supply of
ecosystem services from agriculture: a minimum-
data approach. Aust. J. Agric. Resour. Econ. 50,
1 – 15. (doi:10.1111/j.1467-8489.2006.00315.x)

8. Antle JM. 2011 Parsimonious multidimensional
impact assessment. Am. J. Agric. Econ. 93,
1292 – 1311. (doi:10.1093/ajae/aar052)

9. Antle JM, Valdivia RO. 2011 TOA-MD 5.0: tradeoff
analysis model for multi-dimensional impact
assessment. See http://tradeoffs.oregonstate.edu.

10. Heckman JJ, Vytlacil EJ. 2007 Econometric
evaluation of social programs. I. causal models,
structural models and econometric policy
evaluation. Handb. Econ. 6B, 4780 – 4808.

11. Suri T. 2011 Selection and comparative advantage in
technology adoption. Econometrica 79, 159 – 209.
(doi:10.3982/ECTA7749)

12. Valdivia RO, Antle JM, Stoorvogel JJ. 2012 Coupling
the tradeoff analysis model with a market
equilibrium model to analyze economic and
environmental outcomes of agricultural production
systems. Agric. Syst. 110, 17 – 29. (doi:10.1016/j.
agsy.2012.03.003)

13. Lesschen JP, Stoorvogel JJ, Smaling EMA, Heuvelink
GBM, Veldkamp A. 2007 A spatially explicit
methodology to quantify soil nutrient balances and
their uncertainties at the national level. Nut. Cycl.
Agroecosyst. 78, 111 – 131.

14. Moss RH et al. 2008 Towards new scenarios for
analysis of emissions, climate change, impacts, and
response strategies. Geneva, Switzerland:
Intergovernmental Panel on Climate Change.

15. Moss RH et al. 2010 The next generation of
scenarios for climate change research and
assessment. Nature 463, 747 – 756. (doi:10.1038/
nature08823)

16. Kriegler E, O’Neill BC, Hallegatte S, Kram T, Lempert
RJ, Moss RH, Wilbanks T. 2012 The need for and use
of socio-economic scenarios for climate change
analysis: a new approach based on shared socio-
economic pathways. Glob. Environ. Change 22,
807 – 822. (doi:10.1016/j.gloenvcha.2012.05.005)

17. Antle JM, Valdivia R, Claessens L, Nelson J,
Rosenzweig C, Ruane A, Vervoort J. 2013
Representative agricultural pathways for agricultural
model intercomparison, improvement and climate
impact assessment. See http://tradeoffs.oregonstate.
edu.

18. Marenya PP, Barrett CB. 2009 State-conditional
fertilizer yield response on western Kenyan farms.
Am. J. Agric. Econ. 91, 991 – 1006. (doi:10.1111/j.
1467-8276.2009.01313.x)

19. Karanja DK, Renkow M, Crawford E. 2003 Welfare
effects of maize technologies in marginal and high
potential regions of Kenya. Agricult. Econ. 29,
331 – 341.

20. Kamau FK. 2000 A Kenyan experience on R&D
efforts linking crop and livestock improvement, NRM
and human health. In Agro-ecosystems, natural
resources management and human health related
research in East Africa (eds MA Jabbar, DG Peden,
MA Mohamed Saleem, H Li Pun), pp. 81 – 87.
Proceedings of an IDRC – ILRI international
workshop held at ILRI, Addis Ababa, Ethiopia, 11 –
15 May 1998. ILRI (International Livestock Research
Institute), Nairobi, Kenya.

21. Valdivia RO, Stoorvogel JJ, Antle JM. 2012 Economic
and environmental impacts of climate change and
socio-economic scenarios: a case study on a semi-
subsistence agricultural system. Int. J. Climate
Change: Impacts Responses 3, 157 – 176.

22. Tiffen M, Mortimore M, Gichuki F. 1994 More
people, less erosion: environmental recovery in
Kenya. Sussex, UK: Wiley & Sons.

23. Gachimbi LN et al. 2005 Nutrient balances at farm
level in Machakos (Kenya), using a participatory
nutrient monitoring (NUTMON) approach. Land Use
Policy 22, 13 – 22. (doi:10.1016/j.landusepol.2003.
07.002)

24. Donovan G, Casey F. 1998 Soil fertility management
in sub-Sahara Africa. World Bank Technical Paper
no. 408. Washington, DC: World Bank.

25. United Nations Development Program (UNDP). 2001
Human development report 2001. New York, NY:
Oxford University Press, Inc.

26. Freeman AH, Omiti JM. 2003 Fertilizer use in semi-
arid areas of Kenya: analysis of smallholder farmer’s
adoption behavior under liberalized markets.
Nutrient Cycling Agroecosyst. 66, 23 – 31. (doi:10.
1023/A:1023355011400)

27. Antle JM, Stoorvogel JJ, Valdivia RO. 2006 Multiple
equilibria, soil conservation investments, and the
resilience of agricultural systems. Environ. Dev. Econ.
11, 477 – 492. (doi:10.1017/S1355770X06003056)

28. Government of Kenya. 2004 Strategy for Revitalizing
Agriculture 2004 – 2014. The Ministry of Agriculture,
the Ministry of Livestock and Fisheries Development
and the Ministry of Cooperative Development and
Marketing, Nairobi, Kenya, 124 p.

29. Lee DR, Barrett CB (eds). 2001 Tradeoffs or
synergies? Agricultural intensification, economic
development and the environment. Papers presented
at an Int. Conf. in Salt Lake City, Utah, July – August
1998. Wallingford, UK: CABI Publishing.

30. Natural Capital Project. 2010 Integrated valuation of
environmental services and tradeoffs toolbox. See
http://www.naturalcapitalproject.org/InVest.html
(accessed 17 October 2012).

31. AgBalance. 2012 AgBalance: measuring agricultural
sustainability. See http://www.agro.basf.com/agr/
AP-internet/en/content/sustainability/measuring_
sustainability/agbalance/index (accessed 17 October
2012).

32. Claessens L, Antle JM, Stoorvogel JJ, Valdivia RO,
Thornton PK, Herrero M. 2012 A method for
evaluating climate change adaptation strategies for
small-scale farmers using survey, experimental and
modeled data. Agric. Syst. 111, 85 – 95. (doi:10.
1016/j.agsy.2012.05.003)

33. Immerzeel W, Stoorvogel J, Antle J. 2008 Can
payments for ecosystem services secure the water
tower of Tibet? Agric. Syst. 96, 52 – 63. (doi:10.
1016/j.agsy.2007.05.005)

34. Antle JM, Diagana B, Stoorvogel J, Valdivia R. 2010
Minimum-data analysis of ecosystem service supply in
semi-subsistence agricultural systems: evidence from
Kenya and Senegal. Aust. J. Agric. Resour. Econ. 54,
601 – 617. (doi:10.1111/j.1467-8489.2010.00511.x)

http://dx.doi.org/10.1073/pnas.0912953109
http://dx.doi.org/10.2307/1909747
http://dx.doi.org/10.1111/0002-9092.00164
http://dx.doi.org/10.1016/j.agsy.2003.06.002
http://dx.doi.org/10.1016/j.agsy.2003.06.002
http://dx.doi.org/10.1111/j.1467-8489.2006.00315.x
http://dx.doi.org/10.1093/ajae/aar052
http://tradeoffs.oregonstate.edu
http://tradeoffs.oregonstate.edu
http://dx.doi.org/10.3982/ECTA7749
http://dx.doi.org/10.1016/j.agsy.2012.03.003
http://dx.doi.org/10.1016/j.agsy.2012.03.003
http://dx.doi.org/10.1038/nature08823
http://dx.doi.org/10.1038/nature08823
http://dx.doi.org/10.1016/j.gloenvcha.2012.05.005
http://tradeoffs.oregonstate.edu
http://tradeoffs.oregonstate.edu
http://tradeoffs.oregonstate.edu
http://dx.doi.org/10.1111/j.1467-8276.2009.01313.x
http://dx.doi.org/10.1111/j.1467-8276.2009.01313.x
http://dx.doi.org/10.1016/j.landusepol.2003.07.002
http://dx.doi.org/10.1016/j.landusepol.2003.07.002
http://dx.doi.org/10.1023/A:1023355011400
http://dx.doi.org/10.1023/A:1023355011400
http://dx.doi.org/10.1017/S1355770X06003056
http://www.naturalcapitalproject.org/InVest.html
http://www.naturalcapitalproject.org/InVest.html
http://www.agro.basf.com/agr/AP-internet/en/content/sustainability/measuring_sustainability/agbalance/index
http://www.agro.basf.com/agr/AP-internet/en/content/sustainability/measuring_sustainability/agbalance/index
http://www.agro.basf.com/agr/AP-internet/en/content/sustainability/measuring_sustainability/agbalance/index
http://www.agro.basf.com/agr/AP-internet/en/content/sustainability/measuring_sustainability/agbalance/index
http://dx.doi.org/10.1016/j.agsy.2012.05.003
http://dx.doi.org/10.1016/j.agsy.2012.05.003
http://dx.doi.org/10.1016/j.agsy.2007.05.005
http://dx.doi.org/10.1016/j.agsy.2007.05.005
http://dx.doi.org/10.1111/j.1467-8489.2010.00511.x


rstb.royalsocietypublishing.org
Phil.Trans.R.Soc.B

369:20120280

15
35. Sunding D, Zilberman D. 2001 The agricultural
innovation process: and technology adoption in a
changing agricultural sector. In Handbook of
agricultural economics (eds BL Gardner, GC Rausser),
pp. 207 – 261. Amsterdam, The Netherlands: Elsevier.

36. Antle JM, Valdivia RO, Crissman CC, Stoorvogel JJ,
Yanggen D. 2005 Spatial heterogeneity and
adoption of soil conservation investments:
integrated assessment of slow formation terraces in
the Andes. J. Int. Agric. Trade Dev. 1, 29 – 53.

37. Foster J, Greer J, Thorbecke E. 1984 A class of
decomposable poverty measures. Econometrica 52,
761 – 766. (doi:10.2307/1913475)

38. Rosenzweig C et al. 2013 Assessing agricultural
risks of climate change in the 21st century in
a global gridded crop model intercomparison.
Global climate impacts: a cross-sector, multi-model
assessment special feature – biological sciences –
agricultural sciences – social sciences –
sustainability science. Proc. Natl Acad. Sci. USA.
1 – 6. (doi:10.1073/pnas.1222463110)

39. Thornton PK, van de Steeg J, Notenbaert A, Herrero
M. 2009 The impacts of climate change on livestock
and livestock systems in developing countries: a
review of what we know and what we need to
know. Agric. Syst. 101, 113 – 127. (doi:10.1016/j.
agsy.2009.05.002)

40. Jones JW et al. 2003 The DSSAT cropping system
model. Eur. J. Agron. 18, 235 – 265. (doi:10.1016/
S1161-0301(02)00107-7)

41. Van Ittersum MK, Cassman KG, Grassini PB, Wolf J,
Tittonell P, Hochman Z. 2013 Yield gap analysis
with local to global relevance: a review. Field Crops
Res. 143, 4 – 17. (doi:10.1016/j.fcr.2012.09.009)

42. Lobell DB, Burke MB. 2010 On the use of statistical
models to predict crop response to climate change.
Agric. For. Meteorol. 150, 1443 – 1452. (doi:10.
1016/j.agrformet.2010.07.008)

43. Renard KG, Foster GR, Weesies GA, Porter JP. 1991
RUSLE revised universal soil loss equation. J. Soil
Water Conserv. 46, 30 – 33.

44. Stoorvogel JJ, Smaling EMA, Janssen BH. 1993
Calculating soil nutrient balances in Africa at
different scales. 1. Supra-national scale.
Fertilizer Res. 35, 227 – 235. (doi:10.1007/
BF00750641)

45. Petersen BM, Jensen LS, Berntsen B, Hansen S,
Pedersen A, Henriksen TM, Sørensen P, Trinsoutrot-
Gattin I. 2005 CN-SIM: a model for the turnover of
soil organic matter. II. Short term carbon and
nitrogen development. Soil Biol. Biochem. 37,
375 – 393. (doi:10.1016/j.soilbio.2004.08.007)

46. Parton WJ, McKeown R, Kirchner V, Ojima DS. 1992
CENTURY Users Manual. Fort Collins, CO: Colorado
State University, NREL Publication.

47. Walker T, Maredia M, Kelley T, La Rovere R,
Templeton D, Thiele G, Douthwaite B. 2008
Strategic guidance for ex post impact assessment of
agricultural research. Report prepared for the
Standing Panel on Impact Assessment, CGIAR
Science Council. Rome, Italy: Science Council
Secretariat.

48. Nelson J, Kennedy P. 2009 The use (and abuse)
of meta-analysis in environmental and natural
resource economics: an assessment. Environ.
Resour. Econ. 42, 345 – 377. (doi:10.1007/s10640-
008-9253-5)

49. Wu JJ, Adams RM, Kling CL, Tanaka K. 2004 From
micro-level decisions to landscape changes: an
assessment of agricultural conservation policies.
Am. J. Agric. Econ. 86, 26 – 41. (doi:10.1111/j.0092-
5853.2004.00560.x)

50. Schlenker W, Roberts MJ. 2009 Non-linear
temperature effects indicate severe damages to U.S.
crop yields under climate change. Proc. Natl Acad.
Sci. USA 106, 15 594 – 15 598. (doi:10.1073/pnas.
0906865106)

51. Adams RM et al. 1990 Global climate change and
U.S. agriculture. Nature 345, 219 – 224. (doi:10.
1038/345219a0)

52. Rosenzweig C, Parry M. 1994 Potential impact of
climate change on world food supply. Nature 367,
133 – 138. (doi:10.1038/367133a0)

53. Rosenzweig C et al. 2012 The agricultural model
intercomparison and improvement project
(AgMIP): protocols and pilot studies. Agric. Forest.
Meteorol. 170, 166 – 182. (doi:10.1016/j.agrformet.
2012.09.011)

54. Antle J, Murshed-E-Jahan K, Crissman C.
2013 Moving along the impact pathway:
improved methods for estimating
technology adoption and multi-dimensional
impact: the case of integrated aquaculture-
agriculture in Bangladesh. Report to the Standing
Panel on Impact Assessment. See http://tradeoffs.
oregonstate.edu.

http://dx.doi.org/10.2307/1913475
http://dx.doi.org/10.1073/pnas.1222463110
http://dx.doi.org/10.1016/j.agsy.2009.05.002
http://dx.doi.org/10.1016/j.agsy.2009.05.002
http://dx.doi.org/10.1016/S1161-0301(02)00107-7
http://dx.doi.org/10.1016/S1161-0301(02)00107-7
http://dx.doi.org/10.1016/j.fcr.2012.09.009
http://dx.doi.org/10.1016/j.agrformet.2010.07.008
http://dx.doi.org/10.1016/j.agrformet.2010.07.008
http://dx.doi.org/10.1007/BF00750641
http://dx.doi.org/10.1007/BF00750641
http://dx.doi.org/10.1016/j.soilbio.2004.08.007
http://dx.doi.org/10.1007/s10640-008-9253-5
http://dx.doi.org/10.1007/s10640-008-9253-5
http://dx.doi.org/10.1111/j.0092-5853.2004.00560.x
http://dx.doi.org/10.1111/j.0092-5853.2004.00560.x
http://dx.doi.org/10.1073/pnas.0906865106
http://dx.doi.org/10.1073/pnas.0906865106
http://dx.doi.org/10.1038/345219a0
http://dx.doi.org/10.1038/345219a0
http://dx.doi.org/10.1038/367133a0
http://dx.doi.org/10.1016/j.agrformet.2012.09.011
http://dx.doi.org/10.1016/j.agrformet.2012.09.011
http://tradeoffs.oregonstate.edu
http://tradeoffs.oregonstate.edu
http://tradeoffs.oregonstate.edu

	New parsimonious simulation methods and tools to assess future food and environmental security of farm populations
	Introduction
	Assessing food-environment synergies and trade-offs: nutrient management in Kenya
	Scenario definition
	Trade-off curves
	Modelling approach and results
	Representative agricultural pathways and socio-economic scenarios

	Conceptual foundations: linking population- and market-based models
	Outcome distributions, system choice and impact assessment
	Scaling up: linking heterogeneous populations to aggregate processes

	Empirical implementation
	A parsimonious model for multi-dimensional impact assessment: TOA-MD
	Crop and livestock simulation models
	Environmental data and models
	Model parametrization for out-of-sample impact assessment
	Extrapolation methods
	Using process-based models
	Economic engineering and expert data
	Minimum-data methods
	Pathway and scenario methods


	Conclusion
	Funding statement
	Appendix A
	Calculating treatment effects
	References


