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Cell lineage tracing is a powerful tool for understanding how proliferation and

differentiation of individual cells contribute to population behaviour. In the

developing enteric nervous system (ENS), enteric neural crest (ENC) cells

move and undergo massive population expansion by cell division within

self-growing mesenchymal tissue. We show that single ENC cells labelled

to follow clonality in the intestine reveal extraordinary and unpredictable vari-

ation in number and position of descendant cells, even though ENS

development is highly predictable at the population level. We use an agent-

based model to simulate ENC colonization and obtain agent lineage tracing

data, which we analyse using econometric data analysis tools. In all realiza-

tions, a small proportion of identical initial agents accounts for a substantial

proportion of the total final agent population. We term these individuals

superstars. Their existence is consistent across individual realizations and is

robust to changes in model parameters. This inequality of outcome is ampli-

fied at elevated proliferation rate. The experiments and model suggest that

stochastic competition for resources is an important concept when under-

standing biological processes which feature high levels of cell proliferation.

The results have implications for cell-fate processes in the ENS.
1. Introduction
Lineage tracing is a powerful tool for understanding how cells behave within

a biological process, where a single cell is marked (labelled), and this mark is

inherited by all progeny. The contribution of an individual cell lineage can

then be traced within a population of cells [1]. Recent advances in experimental

techniques [2–5], light microscopy and image processing [6–10] have increased

the scope and potential use of lineage tracing methods to address important

developmental questions. For example, are cell-fate decisions hard-wired or

environmentally based, and how do cell-fate decisions result in the morphological

and cytotypic development of complex tissues?

Cell lineage tracing combined with mathematical modelling has been

implemented to understand the interaction between individual cell decisions

and the overall response in the immune system [11,12]. These authors study a

model of intracellular stochastic competition of cell decisions that is able to capture

experimental immune response dynamics. However, the model has no significant

spatial component such as is seen in solid tissues, where balancing of cell differen-

tiation options must be appropriate not only at the scale of the entire population,

but also at the mesoscale of each spatial domain occupied by cells.

In developmental processes, cell movement and division can be affected by

availability and organization of embryonic tissue space, which is not static but

growing. Similar arguments can be made for other spatially distributed micro-

environmental requirements such as growth factors. Therefore, the impact of
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spatial components on individual cell dynamics and resulting

cell lineages needs to be determined. Here, we explore tracing

cell lineage in a colonization process through experiments and

simulation of a fundamental developmental system.

Enteric neural crest (ENC) cells migrate from the vagal

neural crest (NC) to the foregut, and then progress from the

foregut as a strictly timetabled rostrocaudal wave to colonize

the whole of the gastrointestinal tract, forming the enteric

nervous system (ENS). The cell density of the mature ENS

and the proportions of neuronal and glial cell types are con-

sistent between individuals [13]. Although nearly all the ENS

is derived from only three to four segment lengths of NC, the

ENS rivals the spinal cord in neuron number, and has numer-

ous neuron types. This requires massive and controlled

proliferation and differentiation unprecedented in the periph-

eral nervous system. For example, in quail embryos starting

with about 1000 ENC cells [14], the number increases to

350 000 over 5 days. During the development of the ENS,

the ENC cell population moves and proliferates in surround-

ing mesenchymal (gut) tissue, which is simultaneously

elongating through cell division [15].

In both non-growing and growing gut tissues, we perform

organ culture experiments that examine ENC cell colonization

by labelling a single cell in the starting population and count-

ing the cell’s progeny at a later time. At the population level,

the ENS is highly organized, and one might assume that to

produce such a predictable pattern with constancy of neural

distribution, numbers, density and type proportions would

require deterministic processes. By contrast, we show that

cell lineage tracing reveals an extremely large variability in

the number and distribution of progeny of single founder

ENC cells. This variability is further examined using an

agent-based or cellular automata (CA) model.

Over recent years, ENC migration has been simulated

on both a non-growing and growing domain (gut tissue)

[14–18]. Each agent represents an ENC cell, and agent move-

ment and proliferation are determined stochastically, as

claimed in this biological process. The total agent population

was found to be highly predictable. However, we have

observed that individual agent contributions can be highly

variable theoretically [19], although this was not quantified

nor its basis explored. These paradoxical findings provide

the motivation for the modelling and quantitative analysis

of agent lineage tracing and comparison with new ENC cell

lineage tracing data, presented here for the first time.

Econometric data analysis tools, Lorenz curves and Gini

coefficients, are adapted to analyse the agent lineage tracing

data [20–25]. The in silico frequency distributions of clonal

contributions (number of progeny agents derived from a

single agent) exhibit a large proportion of agents having very

few progeny and a very small proportion of agents contributing

a significant proportion of the total population. When analysed

at an individual realization (in silico experiment) level, a consist-

ent and persistent dynamic in the lineage tracings emerges. We

find that in all realizations a small proportion of otherwise iden-

tical initial agents accounts for a substantial proportion of the

total population of agents. We term these individuals superstars.

We show that the existence of a few superstars is consistent

across individual realizations, and is robust to changes of the

model parameters (e.g. domain growth, no domain growth,

initial agent density). Therefore, in silico, clonal dominance is

an emergent property of a homogeneous starting population

subjected to stochastic motility and proliferation rules.
The ENC lineage tracing implies that self-organization

principles of ENS development are predictable at the popu-

lation level, but show stochastic diversity at the level of

individual cells. Comparison of our experimental data with

our agent-based model results suggests that clonal domi-

nance through stochastic competition is a fundamental

feature in the creation of the ENS. Our findings also have

important implications for cell-fate processes. In particular,

the results suggest that cell differentiation occurs after coloni-

zation, as stochastic competition for resources would permit

early fate decisions to lead to highly unpredictable cell-fate

distributions. The methods can be generalized to other bio-

logical processes during and after development, such as

tumour invasion, because stochastic competition for

resources (e.g. space, growth factor, nutrient) is fundamental

to a proliferating invading cell population.
2. Material and methods
2.1. Experimental methods
Quail embryo pre-migratory vagal NC cells are electropora-

ted with a genome-integrating green fluorescent protein (GFP)

plasmid at embryonic age day 1.5 (E1.5), as in Binder et al.
[16]. Vagal NC cells migrate to the foregut by E3 at which

point they acquire the ability to colonize gut mesoderm and

are referred to as ENC cells [26]. At E3.5, a fragment of foregut

(typically 1023 mm3) containing one GFP positive ENC cell is

isolated by microdissection and combined with an E4 foregut

containing an entire unlabelled GFP negative ENC cell popu-

lation (approx. 8000 cells). The foregut at E3.5–4 is about

diameter of 0.3–0.5 mm and length of 1–1.5 mm. This provides

a normal quota of ENC cells for further gut colonization, with

one cell labelled with a marker detectable in all progeny of that

cell. These tissues are placed in line with, and rapidly fuse to,

the rostral end of a chick E4 aneural mid- and hindgut to

permit a rostrocaudal colonization wave of ENC cells [27]. In

some cases, the fragment bearing the GFP positive ENC cell is

sandwiched between the foregut and the aneural gut, so the

GFP positive cell is positioned at the ENC cell wavefront. In

other cases, the foregut is cut into two, and the GFP positive

cell fragment is sandwiched between these halves, placing the

GFP positive cell nominally about 500 mm behind the wavefront.

Figure 1a illustrates the experimental set-up. Owing to frontal

expansion, a cell’s proximity to the wavefront is known to

favour further contribution to the colonizing wave [27,28]. The

combination is grown in catenary culture in vitro for 4 days

(minimal gut growth; [29]) or 8 days in a chorio–allantoic mem-

brane (CAM) graft (near normal gut growth; [14]) to allow

colonization of the midgut, caecum and hindgut, as shown in

figure 1b. In the latter case, the gut is dissected free of the

CAM membranes to display the complex intestinal morphology.

ENC cell derivatives, both GFP positive and GFP negative,

colonize the recipient gut as two layers (myenteric and submucosal

plexuses). Cell types are identified as neurons or glial/ENC cell

types by immunolabelling gut wholemounts for Hu and SoxE,

respectively, as in [16]. Olympus IX70 microscope (Olympus

Optical Co., Tokyo, Japan), spot monochrome camera 2.1.1,

IMAGE PRO PLUS 4.5 and IMAGE PRO ANALYSER 6.1 (MediaCybernetics,

Silver Spring, MD, USA) are used for microscopy, imaging and

analyses. Confocal images are acquired with an Leica CLSP confo-

cal microscope. Cell counts in the CAM grafts include only those

GFP positive cells that had moved into the recipient midgut and

hindgut. In one case (figure 3b) where GFP positive cell numbers

are extremely large but seemingly uniformly distributed, GFP

positive cell numbers are estimated by counting cells in five
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Figure 1. Schematic diagram of the ENS experiments. (a) Diagram of culture system set-up. Quail E4 foregut (FG) with ENC cells (red (mid-grey) dots) is sup-
plemented with a fragment of E3.5 FG with one GFP positive ENC cell (green (light grey) dot). This is placed either centrally or at the distal edge of the FG. This
moiety is fused to an E4 post-umbilical midgut (MG) and hindgut (HG) with bilateral cecae (Cec). This gut region is uncolonized by ENC cells. Colonization then
proceeds in an MG to HG wave of ENC cells (large red arrow). (b) The initial set-up is grown either for 4 days as an organ culture in vitro, where there is minimal
tissue growth, or for 8 days as a CAM graft where the gut grows similarly to normal. The uncolonized MG and HG becomes occupied by ENC cells (red (mid-grey)
dots) including clonal derivatives of the original GFP positive ENC cell. These GFP positive derivatives show unpredictable numbers and distributions at the end of the
growth period. (Online version in colour.)
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squares of 1022 mm2 and estimating the total area of the myenteric

plexus, assuming the intestinal tubes were cylindrical. Note that

this underestimates the actual cell number, because the deeper

and smaller submucosal plexus is not included.

2.2. Cellular automata model
A discrete-time, agent-based CA model on a regular lattice is

used. This model is explained in further detail in Binder &

Landman [18]. Here, a square lattice is used (the choice of lattice

is not important here—a triangular lattice has also been used for

other ENS applications [30]). A two-dimensional rectangular

domain of length L and width Y is appropriate, because the

ENC cells are restricted to a cylindrical surface within the intes-

tinal tissue. For the case of an elongating gut tissue, the length of

the domain (i.e. the lattice) increases exponentially in time t with

growth rate a (to match experimental findings [15]), through

random insertion of new lattice sites [15,18]. This provides the

framework to simulate the ENS colonization, with a single

agent (representing an ENC cell) occupying a single lattice site

at any time t. We simulate the two main mechanisms in the colo-

nization process, ENC cell motility and proliferation [18,31].

(No agent death is included here, because there is little evidence
of ENC cell death during the colonization process [32]. Agent

differentiation from ENC agent to neuronal agent is not explicitly

included here, but could be included with a reduced proliferation

rate [17].)

During a time step from t to t þ 1, an asynchronous updating

scheme is used. The m(t) agents are selected uniformly at random

and given the opportunity to move and then to proliferate. For a

motility event, a chosen agent at (x, y) attempts to move with

probability Pm to one of the four nearest neighbours (x+ 1,

y+ 1) with equal probability (1/4). For a proliferation event, a

mother agent at (x, y) attempts to divide with probability Pp,

and one daughter remains at (x, y), whereas the second daughter

is placed at either (x+1, y) or (x, y+1) each with equal prob-

ability (1/4). (Note that this proliferation rule places daughters

adjacent to each other, as in Binder et al. [16], rather than be sep-

arated by a single site, as in Binder & Landman [18]. Both rules

give qualitatively similar results.) If the target site is occupied for

any motility or proliferation event, then the event is aborted.

Such a process is called an exclusion process [33]. To represent

the cylindrical geometry of the intestine, periodic boundary con-

ditions along the horizontal boundaries and no-flux boundary

conditions along vertical boundaries are imposed. The initial

condition is taken to be 10 fully occupied left-most columns of
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Figure 2. Schematic lineage tracing diagram and a Lorenz curve. (a) Lineage of a single agent at time t. An empty circle represents an agent division event. Only the
grey-filled circles are counted to determine the agent lineage. (b) Lorenz curve and Gini coefficient G, which is twice the shaded region. (Online version in colour.)
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the lattice. Different initial conditions and different agent carry-

ing capacities were considered with no qualitative change in

the results (see the electronic supplementary material).

Parameter values are chosen to be consistent with the ENC

colonization process. A single lattice spacing represents a cell

diameter (10 mm), and the lattice width (Y ¼ 50) represents the

midgut ENS plexus layer circumference (�500 mm). Alternative

gut widths show no qualitative change in results (so our results

are not an artefact of the boundary conditions; see the electronic

supplementary material). The gut length is greater than 500 mm

at E3.5. The simulation time step represents approximately

15 min, representing the average time for a cell to move one

cell diameter (average speed: 40 mm h21 [34,35]). Because cells

move approximately one lattice spacing every time step, we set

Pm ¼ 1. We investigate the effect of varying Pp. Without loss of

generality, other representative length and timescales could be

used. However, the ratio Pp/Pm drives the dynamics, and a

change in Pm is analogous to a change in length or timescales.

The range of values for the domain growth rate a spans the

growth rates obtained experimentally for quail embryos [15].

To obtain agent lineage tracings, each initial agent is uniquely

marked and all its progeny retains the same unique marker. We

define the lineage tracing at a particular time t to be the total

number of agents descended from the original agent present at

t ¼ 0, as illustrated with the grey (filled disc) agents in figure 2a.

Clearly, the distribution of lineage tracings is a function of the

total number of agents and consequently the length of the invasion

wave. The time to reach any particular length is determined by the

speed of the invasion wave, which depends (in a nonlinear way)

on the probability of proliferation Pp (fixing Pm ¼ 1) [31,36].

To independently assess the impact of the proliferation rate on

the clone distribution, rather than on the total number of agents,

the total agent population is fixed instead of the elapsed time

for the simulation. Further, this reduces the variability in the

migration length (instead introducing variability in elapsed simu-

lation time) that occurs when terminating the simulations at some

elapsed fixed time. The relationship between the mean total agent

number versus elapsed time for various proliferation rates is

provided in the electronic supplementary material.

2.3. Quantification tools for lineage distributions
The agent lineage simulation data have a consistent subpopula-

tion whose contribution to the total population is significantly

larger than the contribution of the majority of the population.
This results in a distribution with a long tail. The focus here is

not to classify the exact properties of these distributions, but

rather to determine their qualitative features and to compare

their behaviour across independent samples. In particular, we

are interested in comparing the cumulative contribution of

individuals to the total final population.

Two measures for investigating such distributions are the

Lorenz curve [20,25] and Gini coefficient [21], arising in the study

of economic data such as income distributions [22]. The Lorenz

curve gives insights into how evenly a measure, such as wealth

or size of lineage distributions, is distributed across a population

with respect to the total pool of this measure (e.g. wealth or total

cell or agent population), represented in figure 2b. Our Lorenz

curves are defined in the following way.

For a single simulation with an initial agent population size n,

we define the sequence xj ( j ¼ 1, 2, . . . , n) to be the ranked non-

decreasing lineage tracings, giving x1 � x2 � . . . � xn. (Note that

the original agent is counted in the tracings—an agent with no pro-

geny has its lineage tracing equal to unity.) The Lorenz curve

[23,24] is the polygon joining the points (h/n, Lh/Ln), for h ¼ 0, 1,

2, . . . , n, where

Lh ¼
0; if h ¼ 0;

Ph
j¼1

xj; if h ¼ 1; 2; . . . ;n:

8><
>:

ð2:1Þ

The line of equality (figure 2b) corresponds to a perfectly

equal number of progeny from each initial agent; hence, any pro-

portion of initial agents, say p, always has proportion p of the

total agent population. For unequal distributions, the Lorenz

curve tells us how much of a total measure (e.g. total agent popu-

lation) is accounted for by a set proportion of the ‘poorest’

individuals in the population, or conversely the proportion

accounted for by a set proportion of the ‘richest’ individuals.

The Lorenz curves are constructed by tracing each starting

agent in 200 simulations. These are almost indistinguishable

from Lorenz curves constructed by tracing every starting agent

in just a single simulation.

Lorenz curves for each column are also determined, where only

agents originating in a particular column are considered. Let i ¼ 0

correspond to the right-most column and i ¼ 21, 22, . . . 29 corre-

spond to agents at position i from the right-most column (starting in

general with 10 columns; figure 4a). Only agents from the lineage of

agents originating in the ith column are used in the calculation of

the Lorenz curve corresponding to the ith column. Hence, the ith
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column Lorenz curve shows the cumulative sum of the ordered con-

tributions of the ith column agents. For a single simulation with ni

initial agents in column i, we define the sequence x(i)j, ( j ¼ 1, 2, . . . ,

ni) to be the ranked non-decreasing lineage tracings, giving x(i)1 �
x(i)2 . . . � x(i)ni

. Then, the column i Lorenz curve is the polygon

joining the points (hi/ni, L(i)h/L(i)ni
), for hi ¼ 1, 2, . . . ni, where

LðiÞhi
¼

0; if h ¼ 0;

Phi

j¼1

xðiÞj; if hi ¼ 1; 2; . . . ; ni:

8><
>:

ð2:2Þ

The Gini coefficient is used to analyse the time evolution of

the inequality in the Lorenz curves [21]. Given the ranked

agent tracing data xj discussed above, the Gini coefficient G is

calculated as [24]

G ¼
Pn

j¼1 ð2j� n� 1Þxj

n
Pn

i¼1 xj
; ð2:3Þ

where 0 � G , 1 (figure 2b). A low Gini coefficient indicates a

more equal distribution, with G ¼ 0 corresponding to complete
equality, whereas a higher Gini coefficient indicates a more

unequal distribution.

We determine the ordered lineage tracings xj(n) as a function

of the total agent population n, or alternatively, xj(t), the ordered

lineage tracings at a particular time t.
3. Results
3.1. Experimental results
The data for the cell lineage numbers (GFP positive cells) from

individual non-growing and growing gut tissue experiments

are presented in tables 1 and 2, where the gut is fully colonized.

The 4 day catenary culture experiments allow minimal gut

growth conditions (table 1), whereas the 8 day CAM grafts

permit massive gut growth equivalent to normal growth

owing to the presence of a blood supply (table 2).

The cell lineage numbers are much smaller for the non-

growing experiments, because both the final time and physical
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Figure 4. Spatial distribution of agent tracings for non-growing and growing (a ¼ 0.003) domain simulations, Pp ¼ 0.05. (a) Initial condition for all simulations.
Each fully occupied column has an index i, where i ¼ 0 corresponds to the right-most column. (b,c) Largest lineage tracing ( pink), second largest lineage tracing
(turquoise) and remaining agent population (blue). (b) Significant differences in the agent numbers between the two largest tracings. (c) The two largest tracings
have a similar number of agent numbers. (d ) The fifth to tenth largest tracings in (c). The total number of agents in (b – d) is the same. For the non-growing case
this occurs at t � 600, whereas for the growing case, t � 400.
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space that the ENC cells colonize is smaller than in the growing

gut experiments. In general, the cell counts are larger when

derived from a labelled cell placed at the wavefront than that

from a cell placed behind the wavefront. We found experimen-

tal evidence of a superstar, with one cell lineage tracing

(progeny) being of disproportionately huge number.

Additionally, the probability of not migrating into the initially

aneural recipient gut is elevated (i.e. count is zero) when start-

ing behind the wavefront. However, some individual grafts

still showed relatively large numbers of GFP positive cells.

The GFP positive progeny or cell lineage tracings formed

multiple loose patches of both ENC cells and neurons mixed

with GFP negative ENS cells. The number and spatial distri-

bution of GFP positive cells are completely unpredictable

and variable, although the ENS viewed as a whole is always

highly uniform. Figure 3a illustrates the large spatial extent of

neural progeny. Figure 3b illustrates the progeny of the super-

star (with more than 20 000 progeny shown in table 2). In this

experiment, the descendants of this one superstar accounted

for about one-third of all ENS cells. Figure 3c shows an example

where there was only one labelled cell after 8 days, and this

single cell had no progeny. This one cell, located at a distance

from the original site, is a neuron with a prominent axon.

3.2. Model results
The simulations are terminated when the total agent popu-

lation evolves to a fixed number of 6524. The target agent

number occurs at a much earlier time for the growing
domain than for the non-growing domain, because fewer

proliferation events are aborted owing to the addition of

extra lattice sites throughout the wave. In §3.2.3, only the

non-growing case is discussed, because the growing case

shows the same principle characteristics.
3.2.1. Quantifying agent lineage tracings
Starting with a small number of agents at the left end of the

lattice (figure 4a), the agent colonization evolves and moves

progressively to the right for both the non-growing and grow-

ing domain cases (figure 4). For the non-growing domain,

the column-averaged lattice-site occupancy averaged over

many identically prepared realizations evolves to a travelling

density wave which moves from left to right with a constant

speed, dependent on the probabilities associated with agent

motility and proliferation [31]. Discrete-time mean-field

arguments and continuum limits for the agent-based probabil-

istic model produce a partial differential equation for the

average occupancy [37]. This equation is the well-known

Fisher equation [38], which exhibits travelling wave solutions

moving with a constant speed. The Fisher wave speed matches

the mean wave speed in the agent-based model when the pro-

liferation rate is low (relative to motility). Corrected mean-field

arguments can be used for large proliferation rates [36,39].

When the domain grows, the wave no longer moves linearly

with time [40,41].

Realizations with the largest (pink) and second largest

(turquoise) lineage tracing, together with all progeny from



Table 1. Four day catenary culture experiments with no gut growth (24
explants). In each a single GFP ENC cell was placed at or behind the
wavefront.

cell
count

placement of GFP cell

at wavefront,
number of explants

behind wavefront,
number of explants

0 – 9 6 5

10 – 19 1 1

20 – 29 0 1

30 – 39 1 0

40 – 49 1 2

50 – 59 1 0

60 – 69 1 1

70 – 79 1 0

80 – 89 0 0

90 – 99 2 0

.100 0 0

Table 2. Eight day CAM graft experiments with gut growth (62 grafts). In
each a single GFP ENC cell was placed at or behind the wavefront. Note
the uneven cell count intervals.

cell
count

placement of GFP cell

at wavefront,
number of explants

behind wavefront,
number of explants

0 – 99 24 18

100 – 199 1 0

200 – 299 0 0

300 – 399 0 0

400 – 499 1 0

500 – 599 2 0

600 – 699 1 0

700 – 799 2 0

800 – 899 1 1

900 – 999 1 0

1000 – 1999 0 4

2000 – 2999 3 1

3000 – 3999 0 0

4000 – 4999 1 0

5000 – 20 000 0 0

.20 000 1 0
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the remaining initial agents (blue) are illustrated in figure 4b,c.

The progeny of two superstars is evident, where combining the

largest two tracings accounts for roughly the same proportion

of the total population. However, figure 4c shows an almost

equal split between the two tracings, unlike that seen in

figure 4b. As time increases, the colonization in figure 4b
continues to evolve from only one lineage tracing (pink),

whereas in figure 4c, it will arise by stochastic competition

from the two largest superstars (see the electronic supplemen-

tary material, video S1). Note that there is a larger proportion

of non-superstar blue agents in figure 4b,c for the growing

domain case, because additional space is continually being

made behind the wavefront, allowing agents to proliferate in

that region [19].

By way of contrast, the fifth to tenth largest contributors

to the total population are shown in figure 4d. Their total

numbers are modest and they lie well behind the wavefront.

These agent tracings are stretched longitudinally, similar to

many GFP positive cell assemblies in our experiments.

To analyse the agent lineage tracings, we begin with exam-

ining the frequency distributions and scatter plots (showing the

huge spread in the 500 data points) of a single realization for a

non-growing and growing domain (figure 5). They are charac-

terized by a large proportion of agents with low contributions,

a long tail and the presence of superstars. However, for the

non-growing domain case, there are a large number of agents

that do not proliferate at all, and in the growing domain case,

there is a far greater proportion of agents having between

two and 15 progeny. This is expected, because additional

space is continually being made in the growing domain simu-

lations, allowing agents to proliferate in the already colonized

part of the domain [19]. (Note that these histograms when

plotted using a log scale also show the same features, and

therefore do not help with the analysis.)

A Lorenz curve is a useful tool to quantify the distributions

where inequality is a feature. We determine the Lorenz curves

for the agent lineage data and investigate their dependence on

agent proliferation rate and domain growth rate.
For all proliferation rates, the final population is dominated

by the progeny of superstars, indicated by the sharp curvature

in the distribution at high cumulative proportions in figure 6a.

As the proliferation rate increases (relative to motility), the

distribution of agent traces becomes more unequal (although

the decrease in equality appears to occur at a diminishing

rate, with the Lorenz curves converging). By contrast, as the

domain growth rate increases, the bulk of the population con-

tributes a larger percentage to the final agent population. This

observation is reflected in the Lorenz curves for increasing

values of a given in figure 6b. The Lorenz curves change over

a broad range of the proportion of initial agents. Although

we provide Lorenz curves obtained over 200 simulations

here, the Lorenz curves from a single simulation are largely

indistinguishable from the ones shown.

We note that in fixed elapsed time (as opposed to total agent

number shown here) simulations, the growing domain case has

a much larger final population of agents, resulting in a sub-

stantially enhanced agent progeny potential relative to the

non-growing domain case. Additionally, we see that the pro-

portion of agents that contribute to the final agent population

increases as the exponential domain growth rate a increases.

For the non-growing case, we calculate the corresponding

Gini coefficients (figure 7a). The Gini coefficient increases as

the average total agent number increases, and hence show

that the lineage tracings become more unequal. However, it

does not vary with proliferation rate significantly (except for

Pp ¼ 0.01), as also noted for the Lorenz curves. Alternatively, the

Gini coefficient monotonically increases with time (figure 7b).

For each time point, the Gini coefficient increases as the
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proliferation rate increases. When the proliferation rate is

sufficiently small, there is a gradual increase towards high

inequality with time, but when the proliferation rate is suffi-

ciently large, there is a sharp increase towards high levels of

inequality within a short time. From figure 7a, we deduce that

the differences observed in figure 7b are largely owing to the var-

iance in the total agent number in the case of the fixed elapsed

time analysis.

The 95% confidence intervals for the Gini coefficient

suggest that lineage tracings across simulations are consistently

unequal and that inequality is an essential feature of all simu-

lations. (The normality assumption appears to be valid here

owing to the individual Gini indexes being independent and

bounded.) This is also consistent with the fact that the Lorenz

curves obtained from either a single simulation or from 200

simulations are largely indistinguishable. The variance of the

Gini coefficient decreases with increasing proliferation rates,

indicating that the process becomes more consistent in terms

of its inequality as the proliferation rate increases.
In summary, the agent lineage tracing distributions

are characterized by consistent large inequality. This inequal-

ity increases with both proliferation rate and total agent

number (and as a proxy time), and decreases as the domain

growth decreases.
3.2.2. Superstars are present across individual realizations
Lorenz curves and Gini coefficients of data from 200

simulations show that the invasion process is characterized

by a few superstars contributing to a large proportion

of the population. To ascertain whether this is a feature of

each simulation, we examine the percentage of agents in

each simulation that account for a fixed percentage of the

final population, as the proliferation rate and the domain

growth rate are varied.

In the non-growing domain case (figure 8a), a low prolifer-

ation rate (Pp ¼ 0.01), 1% of the original population accounts

for 50% of the final population, whereas for a larger
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proliferation rate (Pp ¼ 0.1), 0.25% of the original population

accounts for 50% of the final population. In addition, the

data variance is small; for example, when Pp ¼ 0.01, between

two and eight agents account for 50% of the population. As

expected, the percentage of agents required to account for

90% of the final population is greater, but again shows surpris-

ingly small variance, with the exception of two small peaks for

the higher proliferation case.

When comparing the growing and non-growing domain

results, figure 8b, the percentage accounting for a fixed percen-

tage of the final numbers increases markedly for the growing

domain. This again emphasizes that a larger number of

agents are contributing the bulk of the population.
This analysis illustrates that the existence of superstars is a

ubiquitous feature of the invasion process.
3.2.3. Superstars are not an artefact of agent starting position
In the analysis so far, all initial agents have been treated as

equal, regardless of their starting position. However, agents

initially in the right-most column are more likely to be able to

proliferate than those in the remaining nine columns to the

left. Because a single starting agent can account for half the

population (figure 8a), we know that the starting position

will not be the only factor in determining the presence of

inequality. Indeed, there are 50 initial agents in the right-most



1.0

i = −4
i = −3
i = −2
i = −1
i = 0

6 
13 
%

26 
%

47 
%

75 
%

17 
%

83
%

11 
%

90 
%

5 

0.5

0

1.0

0.5

1.00.50 01.00.5

(a) (b)

(c) (d)

i

i

Pp = 0.01 Pp = 0.05

Pp = 0.1 Pp = 0.3

L
(i

) h i
L

(i
) h i

hi/ni hi/ni

Figure 9. Column Lorenz curves L(i)hi
for different proliferation rates Pp. The position i indicates the position relative to the wavefront, where i ¼ 0 corresponds to the

wavefront. The stacked bar chart on the right of each subfigure indicates each column’s average percentage contribution to the final population. (a – d ) Pp ¼ 0.01, 0.05,
0.1, 0.3. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20130815

10
column (and all agents within a column are equivalent owing

to the boundary conditions), but at most one agent from the

right-most column accounts for over 50% of the population.

We determine the Lorenz curves for equivalent starting

positions, that is those with the same-column position. The

superstar dynamics in the lineage tracings of the right-most

column of agents is still very pronounced for all proliferation

rates (figure 9). Hence, within the right-most column, only a

very small proportion of agents account for a substantial pro-

portion of the total final number of agents. Consequently,

superstar behaviour is not simply a function of agents

having different initial positions, but also of stochastic com-

petition through volume exclusion. For increasing distance

from the wavefront (increasing i), the lineage distributions

become more equal, and this occurs more rapidly as the pro-

liferation rate increases.

The stacked bar chart in each of the subfigures in figure 9

shows us the relative size of each column subpopulation to

the total population. We observe that superstars dominate

in the Lorenz curve for each column that contributes a signifi-

cant proportion to the final population. Furthermore, as the

proliferation rate increases, the contribution to the final agent

population becomes increasingly dominated by the first few col-

umns. These contributions to the final population align with the

changes in the equality of the curves, with those columns that
contribute insignificant progeny to the population having an

equal Lorenz curve (e.g. i ¼23 in Pp ¼ 0.3), whereas those

with substantial contributions show asymmetric distributions.

At lower proliferation rates, motility is more dominant and

a larger proportion of mixing occurs relative to proliferation,

thus increasing the probability that agents behind the wave-

front will later move to the wavefront and into unoccupied

regions. Consequently, wherever substantial agent proliferation

occurs, it happens in a stochastically competitive way, giving

superstar contributors from a population of equivalent agents.

Figure 10 confirms these results by showing the relative

frequency of the starting columns for superstar agent trac-

ings (taken here as the largest 2% of agent lineage tracings

across 200 simulations, cf. figure 8). For the lower prolifer-

ation rate (Pp ¼ 0.01), superstars most often originate from

the right-most column, but with half of them coming from

behind the right-most column, whereas, when the prolifera-

tion rate is increased (Pp ¼ 0.1), the superstars originate

largely from the right-most column.
3.3. Comparing model results with experimental data
In a single model simulation, the lineage traces of all agents

within the invasion wave are recorded at all times, whereas, in

each ENC experiment, there is a single traced ENC cell, and
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data are collected for a single time point across numerous speci-

mens. Therefore, in a biological experiment, each data point

arises from an independent invading population, because

every starting cell cannot be individually identified and

uniquely labelled. By contrast, every agent can be tagged in

our simulations, allowing for vastly more efficient data collection

techniques. Therefore, it is appropriate to assess the differences

of these related datasets in the following quantitative way.

At the start of each in silico experiment (simulation), a

single agent is randomly chosen; the experiment is termina-

ted when the total agent number reaches the required target

(6524). We repeat this experiment 25 times, and in this way,

we collect 25 agent lineages, giving us ranked lineage data

xj, j ¼ 1, 2 . . . , n, where n ¼ 25. A single Lorenz curve is con-

structed from these data. This sampling process is repeated

10 times, and in this way, 10 Lorenz curves are produced,

illustrated in figure 11a. These curves (blue) exhibit large varia-

bility, and differ greatly from the single simulation where every

initial agent is traced (figure 11a, red curve). Even though the

underlying Lorenz curve of each independent simulation is

remarkably stable, the sampling from independent experiments

introduces significant variability (even when the total number
of agent lineages is the same). This behaviour occurs because

only a small proportion of the equivalent same-column agents

will be superstars. Consequently, random samples will result

in a highly variable number of these superstars being chosen

across independent experiments, thus introducing the variabil-

ity observed in figure 11a, despite the population behaviour

being predictable. It is worth noting that the total final

number of agents is different in each of the 10 Lorenz curves,

unlike our previous analysis. This increases the variability. Simi-

lar behaviour occurs for growing domain simulations.

This provides insight into the difficulty of performing

detailed analysis on individual lineage tracings as given by

the ENS experimental results. Furthermore, this sampling

issue and the mathematical modelling provides strong motiv-

ation for undertaking experiments where the lineage of all

biological cells is traced.

We calculate the Lorenz curves for the n experiments for the

non-growing and growing gut data presented in tables 1 and 2.

We see that the results for the growing gut show greater inequal-

ity than the non-growing case (figure 11b). Because the

proliferation rates of the ENC will be the same in both cases,

this result is the opposite of the result documented in figure 6b
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when all agents are tagged. This most likely occurs because of

the large variability introduced by tagging a single cell in the

biological experiments and also because the total final cell

number differs greatly between growing and non-growing

cases. This result is, indeed, consistent with figure 11a.
(b)

(c)

Figure 12. Two simulation results if agents have a predetermined fate before
the invasion process commences (non-growing case). (a) Initial condition
with three cell fates. (b,c) Two realizations with very different outcomes.
Here, Pp ¼ 0.05.
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4. Discussion and conclusion
An agent-based model of a cell invasion process was devel-

oped to give individual agent contributions to the resulting

invasion wave. These were analysed using Lorenz curves and

the Gini coefficient. These econometric tools, used to measure

inequality in wealth distributions, have also been used to

assess plant size and fecundity [24], carbon emissions [42]

and industrial planning [43]. To the best of our knowledge,

this is the first application to the area of cell biology and in par-

ticular cell lineage tracings.

The agent-based model encoding movement, proliferation

and gut growth provides insights into the development of

the ENS. The well-described, stereotyped pattern of ENS devel-

opment at the population level emerges from the local

stochastic rules governing agents. However, at the same time,

the individual agent lineage contributions exhibit large varia-

bility. Across all simulations a very small proportion of the

agent lineages can account for a majority of the final popu-

lation. This individual variability has been observed in our

ENS experiments.

These results have similarities with the stochastic evolution

of the epithelial cell populations of intestinal crypts to a mono-

clonal origin [44,45]. However, there are significant differences

between the two biological systems. The achievement of local

clonal dominance in a crypt occurs in a context of cell

death and replacement in a non-growing domain, with non-

dispersed and non-intermixed cell populations. By contrast,

in the ENS, the attainment of disproportionate clonal expan-

sion of a few clones occurs without significant cell death in a

growing domain with mesenchymal ENC cells that continue

to move independently and are dispersed, and which are at

all times intermixed with ENS cells of different clonal origins,

as well as with cells of different lineages (mesoderm cells).

The Lorenz curves for agent lineage demonstrate that the

major proportion of the total population are derived from a

very small proportion of the founder agents. The presence

of superstars in individual simulations is robust to changes

in possible experimental conditions (see the electronic sup-

plementary material for further details). The simulation

results suggest that ENS experimental superstar lineages are

not ‘one offs’ or freaks, but must simply be those experiments

where the large contributors just happen to be marked. A sig-

nificant insight from the modelling results suggests that the

data collected for the non-growing experiments have not

identified a superstar. However, a superstar has been ident-

ified for the growing domain case—this was by pure chance.

The analysis highlights the difficulties of inferring cell

lineage behaviour when only a single cell is tracked in each

experiment (even when, as in our case, the underlying

dynamics across all simulations appears to be very stable).

Our analysis points to the advantage of tracing every lineage

simultaneously within a biological process. Recently, progress

in this direction has been possible across different experimental

systems through unique inheritable imprinting [5], multi-

spectral cell labelling systems [2–4,44] and advances in light
microscopy and image processing [6,8]. However, at present,

they are limited to a relatively small number of cells able to

be marked in parallel (compared with about 8000 starting

cells in this assay), and are not available for the ENS.

The basic assumptions in our modelling approach are that

ENS cell movement and proliferation is stochastic within the

bound of an exclusion rule, and with cell density limited to a

local maximum via proliferation governed by competition for

resources such as growth factors (see the electronic supple-

mentary material). (ENS cell numbers are not regulated by

competitive cell death, unlike the rest of the nervous system

[32].) The experimental and modelling results presented here

suggest that the stochastic competition for resources is an

important concept to be considered when understanding

biological processes which feature high levels of cell prolifer-

ation, especially in a developmental context. Recent advances

in cell lineage tracing and computational modelling have also

increased our research capacity to further explore these con-

cepts in new systems, and in unprecedented detail, making

this a new and exciting research area.

Our model results combined with our experimental evi-

dence have implications for cell-fate processes in the ENS.

Figure 12 shows two identical in silico experiments where

the initial population is partitioned equally into three differ-

ent groups (blue, white and red). (The growing domain

case is similar and shown in the electronic supplementary

material, figure S5.) This is used to represent a ‘hard-wired’

agent/cell-fate model, whereby the initial agents all have pre-

determined fates. The two identical in silico experiments

show completely different final population group dynamics.

This indicates that such a cell-fate control mechanism is

incompatible with our model of the ENS migration process.

Therefore, it seems likely that cell fate is determined after

the migration wave process, and that local environment-

based cell decisions at a later stage results in the highly

regular cell-type proportions that are observed in developed
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ENS [17]. Indeed, in any developmental system with early

fate decisions, tight regulation between intercellular spatial

distributions and proliferation cycles would seem to be

required to preserve cell-type proportions.
 ls
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