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It has recently been shown that structural conditions on the reaction network,

rather than a ‘fine-tuning’ of system parameters, often suffice to impart ‘absol-

ute concentration robustness’ (ACR) on a wide class of biologically relevant,

deterministically modelled mass-action systems. We show here that funda-

mentally different conclusions about the long-term behaviour of such

systems are reached if the systems are instead modelled with stochastic

dynamics and a discrete state space. Specifically, we characterize a large

class of models that exhibit convergence to a positive robust equilibrium in

the deterministic setting, whereas trajectories of the corresponding stochastic

models are necessarily absorbed by a set of states that reside on the boundary

of the state space, i.e. the system undergoes an extinction event. If the time to

extinction is large relative to the relevant timescales of the system, the process

will appear to settle down to a stationary distribution long before the inevita-

ble extinction will occur. This quasi-stationary distribution is considered for

two systems taken from the literature, and results consistent with ACR are

recovered by showing that the quasi-stationary distribution of the robust

species approaches a Poisson distribution.
1. Introduction
The interaction networks of chemical reaction systems of cellular processes are

notoriously complex. Despite this, hidden within the complexity there are often

underlying structures that, if properly quantified, give great insight into the

dynamical or stationary behaviour of the system. In this vein, Shinar & Feinberg

[1] have presented conditions on the structure of biochemical reaction networks

that are sufficient to guarantee absolute concentration robustness (ACR) on a par-

ticular species of the network. When the dynamics of the system are modelled

using ordinary differential equations with mass-action kinetics, a species is

said to possess ACR if its concentration has the same value at every positive

equilibrium concentration permitted by the system of equations, regardless of

total molar concentrations. Such a property, which allows cells to respond in

a uniform, predictable way given varying environments, is fundamental to

many biological processes, including signal transduction cascades and gene

regulatory networks [2].

In the two-component EnvZ/OmpR osmoregulatory signalling system, for

example, it is important that the amount of phosphorylated OmpR, OmpR-P,

which regulates the transcription of the porins OmpF and OmpC, is kept within

tight bounds. It has been observed that while OmpR-P is sensitive to the availability

of ADP and ATP, it is relatively insensitive to changes in the overall concentrations

of the signalling proteins EnvZ and OmpR [3]. Concentration robustness has also

been experimentally observed and studied in the two-component KdpD/KdpE

[4], PhoQ/PhoP [5] and CpxA/CpxR [6] signalling systems, and in the IDHKP-

IDH glyoxylate bypass regulation system [7,8]. Structural sources of robustness

have also been identified in the bacterial chemotaxis pathway [9–11].

Consistent with these empirical results, it has been shown that deterministic

mathematical models (i.e. ODE models) of the EnvZ/OmpR system yield equili-

brium concentrations of OmpR-P that are stable and do not depend on the overall
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Figure 1. State space for the CTMC corresponding to (2.1). The chain X(t) ¼
(XA(t), XB(t)) has a unique absorbing state at ð�XA;�XBÞ ¼ ðM; 0Þ (boxed),
where M :¼ XAð0Þ þ XBð0Þ. (Online version in colour.)
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concentrations of either EnvZ or OmpR [12]. This phenomenon

of equilibrium concentrations being independent of total molar

concentrations was the basis of Shinar & Feinberg [1] where

they presented their conditions on the structure of biochemical

reaction networks which are sufficient to guarantee ACR on a

particular species of the network. Shinar and Feinberg relate

the capacity of a network to exhibit ACR to a structural par-

ameter called the deficiency, which is well studied in Chemical
Reaction Network Theory [13–15]. They do not consider stability

of such equilibria directly, but they do apply their results to

several mass-action models of biochemical networks for

which stability is known, including the EnvZ/OmpR signal

transduction network and the IDHKP-IDH glyoxylate bypass

regulatory system. An interesting recent addition to this frame-

work is the work by Karp et al. [16], where the authors carry out

a linear analysis of formal expressions in a reaction network to

find ACR and more general steady-state invariants.

In this work, we consider stochastically modelled systems

satisfying essentially the same network conditions used by

Shinar and Feinberg, and we show that strikingly different con-

clusions are reached pertaining to the long-term dynamics of the

systems. For a wide class of biochemical reaction networks with

stable ACR equilibria, we show that trajectories are necessarily

absorbed by a set of states that reside on the boundary of the

positive orthant. Hence, there is necessarily an irreversible

‘extinction’ event in the system. One immediate corollary to

this is that the models admit no stationary distributions with

mass near the equilibrium of the deterministic model. Our

results therefore demonstrate fundamentally different long-

term dynamics than those observed in the corresponding

deterministic models. Stochastic modelling of chemical reactions

is particularly relevant in models of intracellular dynamics

because critical proteins may have a low copy number per cell.

Depending upon the total molecular abundances of the

constituent species, it may be that such an extinction is a

rare event on the relevant timescales of the system. In this

case, and under the assumptions used throughout this

work, the process will very likely seem to settle down to an

equilibrium distribution long before the resulting instability

will appear. This distribution is called a quasi-stationary
distribution, and ACR-like results may still be obtained by

consideration of this distribution. In fact, in two examples

provided here, we observe that the quasi-stationary distri-

bution of the absolutely robust species limits in a natural

way to a Poisson distribution with mean value given by the

concentration predicted by the deterministic model.

Section 2 provides a motivating example for our main

results. In §3, we formally introduce the concept of a species

exhibiting ACR in the deterministic modelling context, and

present both the main theoretical result from [1] together

with the main result being introduced here, theorem

2. A detailed proof of theorem 2, and more general results,

can be found in the electronic supplementary material. In §4,

we consider the quasi-stationary distributions for the example

models considered here. We close with a brief discussion.
2. A motivating example
Consider the two-species activation/deactivation network

R1: Aþ B!a 2B

R2: B!b A;

)
ð2:1Þ
where A is the active form of a protein, B is the inactive form,

and a and b are positive rate constants [1]. Note that the inac-

tive form B regulates both the activation and deactivation

steps of the mechanism. The usual differential equations gov-

erning the time evolution of the molar concentrations of A
and B, denoted cA and cB here, are

_cAðtÞ ¼ �acAðtÞcBðtÞ þ bcBðtÞ
_cBðtÞ ¼ acAðtÞcBðtÞ � bcBðtÞ:

)
ð2:2Þ

Setting the left-hand sides of the above equations to zero and

solving yields the following values for the equilibrium

concentrations:

�cA ¼
b

a
; �cB ¼M� b

a
; ð2:3Þ

where M :¼ cAð0Þ þ cBð0Þ is the total conserved protein con-

centration. Equation (2.3) shows that the deterministically

modelled system (2.1) has ACR for the protein A, as all posi-

tive equilibria, no matter the initial condition, must satisfy

�cA ¼ b/a. It can also be easily checked that these equilibria

are stable. The self-regulation of the mechanism (2.1),

although quite simple, predicts the remarkable property

that the concentration of the active protein is kept within

tight bounds regardless of the value of the total protein

concentration M.

Now consider the usual stochastic model for the network

(2.1), which treats the system as a continuous time Markov

chain (CTMC) (see figure 1). Let XA(t) and XB(t) denote the

individual counts of A and B, respectively, and model the reac-

tions as discrete events which occur stochastically in time.

Under usual assumptions on the rates, or propensities, of the

reactions, the first reaction can only occur if XA(t) . 0 and

XB(t) . 0, and the second only if XB(t) . 0, which implies no

reaction may proceed if B is depleted completely. For a more

thorough introduction to the stochastic models for biochemical

systems, see the electronic supplemental material or [17].

It is not hard to see that the long-term behaviour of this

CTMC is different from that of the deterministic model

(2.2). More specifically, it is possible for all of the inactive

molecule to become active through the self-activation reaction

B! A. This sends the chain to the state

�XA ¼M and �XB ¼ 0; ð2:4Þ

where M :¼ XAð0Þ þ XBð0Þ. After this time, neither reaction

may occur and so no active molecules A may be deactivated.

Therefore, rather than having trajectories of the system spend

most of their time near the value (2.3), over a sufficiently

long time frame the inevitable outcome of the system is

convergence to (2.4).

This disparity between the long-term predictions of the

deterministic mass-action model and that of the stochastic

model at first seems to be at odds with the established result
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Figure 2. Hypothetical mechanism for the EnvZ/OmpR signal transduction system in Escherichia coli. The mechanism is represented in (a) where the terminal
(white) and non-terminal (dark blue) complexes are labelled. The parameter values used for numerical simulations are given in (b). (Online version in colour.)
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that the stochastic chain XðtÞ ¼ ðX1ðtÞ,X2ðtÞ, . . . ,XmðtÞÞ is well

approximated by the corresponding deterministic model

when molecular counts are high. However, such results are

valid only on finite time intervals, and therefore stand silent

on the long-term behaviour of the models [18,19]. Isolated

examples of models exhibiting such a fundamental difference

between the long-term behaviour of the corresponding

deterministic and stochastic models are well known in the

biochemical literature [20–23].
3. Results pertaining to absolute concentration
robustness

The main problem we consider here is: what structural con-

ditions on the reaction network yield an absorption event

similar to that of (2.1) for the corresponding stochastic

system? We are particularly interested in networks for

which the deterministic model predicts ACR, and in this con-

text we will use the original theorem due to Shinar &

Feinberg [1]. We briefly introduce some terminology from

chemical reaction network theory, including the network

parameters n, ‘ and s.

We let n denote the number of vertices of the reaction net-

work. These vertices are the linear combinations of the species

at either end of a reaction arrow and are called complexes in the

chemical reaction network literature. We will use this word,

although the reference [1] instead uses ‘nodes’ to avoid con-

fusion with the biological meaning of the word ‘complex’.

Note that we may naturally associate a complex with a

non-negative vector y in which the jth component of y is the

multiplicity of species j in that complex. For example, the com-

plex A þ B in system (2.1) has associated vector (1, 1), whereas

the complex 2B has associated vector (0, 2).

We let ‘ denote the number of connected components of

the reaction network and associate with every reaction a reac-
tion vector, which determines the counts of the molecules

gained and lost in one instance of that reaction. For example,

for the reaction y! y0, the reaction vector is y0 2 y, where we

have slightly abused notation by writing the vector associated

with a complex in the place of the complex itself. We denote

by s the dimension of the span of all of the reaction vectors.

For the activation/deactivation network (2.1), there are four

complexes, fA þ B, 2B, B, Ag, and two connected
components, fA þ B, 2Bg and fB, Ag. It follows that n ¼ 4

and ‘ ¼ 2. We also note that the reaction A þ B! 2B has

associated reaction vector (21, 1), since the system loses

one A molecule and gains a net of one B molecule owing to

one instance of the reaction. The reaction vector for the reac-

tion B! A is (1, 21) so that s ¼ 1.

The deficiency of a network is defined to be d :¼ n� ‘� s.

The deficiency is known to only take non-negative values and

has been used to show a variety of steady-state results for

mass-action systems, both deterministic and stochastic

[13,24–30]. For the network (2.1), we have

d ¼ n� ‘� s ¼ 4� 2� 1 ¼ 1;

so the deficiency is one.

We say two complexes are strongly linked if there is a

directed path of reactions from the first to the second, and

also a directed path from the second back to the first.

A strong linkage class of a reaction network is a maximal

subset of complexes that are strongly linked to each other.

A strong linkage class is furthermore called terminal if no

complex in the class reacts to a complex in another strong

linkage class. Complexes that do not belong to a terminal

strong linkage class are called non-terminal. For example, in

the network (2.1), the complexes A þ B and B are non-

terminal, whereas the complexes 2B and A are terminal. See

also the network in figure 2, where the terminal and non-

terminal complexes are labelled in different colours. Finally,

we say that two complexes ‘differ only in species S’ if the

difference between them is a non-zero multiple of a single

species S. For example, in (2.1), the complexes A þ B and B
are both non-terminal and also differ only in species A.

We can now state the main theorem of [1].

Theorem 3.1. Consider a deterministic mass-action system that
admits a positive steady state and suppose that the deficiency of
the underlying reaction network is one. If, in the network, there
are two non-terminal complexes that differ only in species S, then
the system has ACR in S.

We have already seen the system (2.1) has a positive steady

state if M . b/a, that the underlying network has a deficiency

of one, and that the non-terminal complexes A þ B and B differ

only in the species A. Thus, theorem 3.1 could be used to guar-

antee that the system exhibits ACR in A even if the equilibrium

could not have been calculated explicitly.
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Note that theorem 3.1 stands silent on whether or not the

equilibria of the deterministically modelled systems are

stable, either locally or globally. In fact, there do exist ACR

models for which the set of equilibria is unstable. For example,

Aþ B!k1
2B and 2Aþ B!k2

3A

satisfies the requirements of theorem 3.1, but the equilibrium

�cA ¼ k1/k2 is unstable. The equilibria for the models considered

in this article, however, are known to be globally stable.

3.1. Stochastic differences in robustness
The network (2.1) demonstrates that biochemical reaction net-

works satisfying the hypotheses of theorem 3.1, and in which

the ACR equilibria are known to be stable, may fail to exhibit

similar stability when modelled stochastically. This disparity

in the long-term dynamics is not restricted to only a few sys-

tems. In this section, we provide a theorem proved in the

electronic supplemental material which demonstrates that a

large class of biochemical reaction networks satisfying the

assumptions of theorem 3.1, and thereby exhibit ACR when

modelled deterministically, have absorbing boundary states.

In that case, when the deterministic ACR equilibria are

stable, the stochastic model exhibits fundamentally different

long-term dynamics.

In order to state the result corresponding to theorem 3.1

for stochastically modelled systems, we need a few more

basic definitions. A chemical reaction network is said to be

conservative if there is a vector w with strictly positive com-

ponents for which w . (y0 2 y) ¼ 0 for all reactions y! y0.
Note that in this case, there is necessarily a conserved quan-

tity M . 0 so that for the given species set fS1, S2, . . . , Smgwe

have that

M :¼ w1c1ðtÞ þ w2c2ðtÞ þ � � � þ wmcmðtÞ

is invariant to the dynamics of the system. For example,

we have already seen that M :¼ cAðtÞ þ cBðtÞ is a conserved

quantity for the system (2.1).

Enumerating the reactions arbitrarily, we denote by lk(x)

the rate, or propensity, function of the reaction yk! y0k, and

note that it is reasonable to assume that lk(x) . 0 if and only

if xi � yki, which says a reaction may only occur if there are a

sufficient number of molecules in the system. We say any

family of rate functions satisfying this simple condition is

stoichiometrically admissible. For example, the rate function

lk(x) ¼ xB would be stoichiometrically admissible for the reac-

tion B! A, but not for the reaction A þ B! 2B. A common

choice for the propensities lk(x) is stochastic mass-action

lkðxÞ ¼
kk

Vjyk j�1

Ym
j¼1

xj
ykj

� �
if xj � ykj � 0 for all j

0; otherwise,

8><
>:

where jykj ¼
Pm

j¼1 ykj, kk is the rate constant and V is the

volume of the reaction vessel. Note that under the assumption

of mass-action kinetics, the propensity function is proportional

to the number of ways in which one can choose the molecules

necessary for the reaction to occur. Also, note that stochastic

mass-action kinetics is stoichiometrically admissible.

We say a complex yk is turned off at a particular state value

x if xi , yki for at least one i; otherwise, we say the complex is

turned on. Note that lk(x) ¼ 0 for all x at which yk is turned

off. Next, we say that a complex y is dominated by the complex

y0 (denoted y� y0) if y0i � yi for all i ¼ 1, . . . , m. In particular,
whenever two complexes differ in only one species, one

necessarily dominates the other. The intuition here is that if

y0 is ever turned off, then so is y.

Finally, we remind the reader that a state X of a CTMC is

recurrent if the chain satisfying X(0) ¼ X returns to X with

probability one, and that a recurrent state is positive recurrent
if the expected value of the return time is finite. It is also a

basic fact that stationary distributions only give mass to posi-
tive recurrent states, showing that the long-term dynamics are

restricted to those states.

The following is the main theoretical result of the paper

and should be compared with theorem 3.1. It, along with

more general results allowing for higher deficiency, is proved

in the electronic supplemental material.

Theorem 3.2. Consider a reaction network which is conservative,
has a deficiency of one, and for which the deterministically modelled
mass-action system admits a positive equilibrium for some choice of
rate constants. Suppose that, in the network, there are two non-
terminal complexes, y1 and y2 say, for which y1 � y2. Then, for
any choice of stoichiometrically admissible kinetics, all non-
terminal complexes of the network are turned off at each positive
recurrent state of the stochastically modelled system.

Hence, a trajectory of the stochastically modelled system

will, with a probability of one, be absorbed by a set of states

for which all of the non-terminal complexes are turned off. In

particular, the propensity of reactions out of the complexes y1

and y2 will be zero.

For instance, in the simple system (2.1), we have

Aþ B� A, and theorem 3.2 states that the complexes A þ B
and B are turned off at any positive recurrent state. This

is easily verified since the only positive recurrent state is

given by (2.4). In the electronic supplementary material, we

also provide a theorem characterizing the limiting behaviour

of the system after the absorption event. In particular, we

show that the reduced network is weakly reversible and has

a deficiency of zero, and so admits a stationary distribution

which is a product of Poisson random variables [25]. We also

provide in the electronic supplementary material an example

in which the conclusions of the theorem do not hold if only

the conservation requirement is dropped.
3.2. EnvZ/OmpR signalling system
In order to demonstrate theorem 3.2 on a more complicated

example, we now consider a model of the two-component

EnvZ/OmpR signalling system in Escherichia coli [3], which

was also studied in [1]. The histidine kinase EnvZ is sensitive

to extracellular osmolarity, the input of the system, and in its

active phosphorylated form EnvZ-P is able to phosphorylate

the response regulator OmpR into the active form OmpR-P.

OmpR-P in turn signals the transcription of the porins

OmpF and OmpC. The level of OmpR-P can therefore be

thought of as the output of the system. EnvZ is also known

to play a role in the regulation of the level of OmpR-P

through dephosphorylation [31].

Multiple mechanisms have been proposed for the EnvZ/

OmpR system [3,12,32]. We will consider the mechanism

given in figure 2 which was proposed in [1,12]. Here, it is

imagined that ADP (D) and ATP (T ) interact with EnvZ

(X ) to produce bound complexes, but that only ATP can suc-

cessfully transfer the phosphate group (P) to EnvZ to form



0 20 40 60 80 100

0.02

0.04

0.06

0.08

molecules of A

pr
ob

ab
ili

tie
s

b = 20, M = 40
b = 20, M = 100

b = 40, M = 60
b = 40, M = 100

b = 60, M = 80
b = 60, M = 100
b = 60

b = 40

b = 20

Figure 3. Quasi-stationary distributions of XA with a ¼ 1 and various values
of b and M. As M!1, the quasi-stationary distributions approach the
overlain Poisson distributions (4.3) (solid line). The iterative procedure of
[33,34,40] was used to construct the plots. (Online version in colour.)

rsif.royalsocietypublishing.org
J.R.Soc.Interface

11:20130943

5
EnvZ-P (Xp). EnvZ-P may then transfer the phosphate group

to OmpR (Y ) to form OmpR-P (Yp) while the modified

EnvZ–ADP complex regulates the dephosphorylation of

OmpR-P. Assuming [D], [T ] and [P] are of sufficient quantity

to be relatively unchanged by the course of the reaction, we

may incorporate them into the rate constants, yielding the

network contained in figure 2.

Note that the non-terminal complexes XD and XD þ Yp

differ only in the species Yp. As the network also has

deficiency one (see the electronic supplemental material),

by theorem 3.1 we may conclude that the deterministically

modelled mass-action system exhibits ACR in Yp. It is

shown in the electronic supplemental materials of [1] that

the ACR value is

Yp ¼
k1k3k5ðk10þ k11Þ½T�
k2ðk4 þ k5Þk9k11½D�

: ð3:1Þ

The corresponding equilibrium is stable and, consequently, the

deterministic model predicts that the active form of the

response regulator, OmpR-P, is robust to the overall level of

the signalling proteins EnvZ and OmpR. That is to say, the pre-

diction is that the system will exhibit a similar response

regardless of differences in these internal characteristics.

We now consider the stochastic model for the network

in figure 2. It can be seen that, in addition to satisfying

the assumptions of theorem 3.1, the network has the

conservation relations

Xtot :¼ X þ XDþ XT þ Xp þ XpYþ XDYp

Ytot :¼ Yþ XpYþ XDYp þ Yp:

)
ð3:2Þ

As the sum of these two relations has support on all

species, it follows that the network is conservative. By theo-

rem 3.2, the stochastic model converges in finite time to a

state (or set of states) for which all non-terminal complexes

are turned off.

Note that, as the species X, XD, XT, XpY and XDYp are

also non-terminal complexes, theorem 3.2 guarantees that

each will be zero after the inevitable absorption event. As

Xtot is conserved, we may also conclude that Xp ¼ Xtot at

this time. Finally, as Xp þ Y is also non-terminal, we may

also conclude that Y ¼ 0. In this way, the unique sink of the

stochastic chain is seen to be

Yp ¼ Ytot;
Xp ¼ Xtot

X ¼ XD ¼ XT ¼ XpY ¼ XDYp ¼ Y ¼ 0:

9=
; ð3:3Þ
4. Time until absorption and quasi-stationary
distributions

A disparity between the long-term behaviour of deterministic

and stochastic models of some reaction networks is well

known in the literature [20–23]. The activation/deactivation

network (2.1) is a canonical example that mimics the well-

studied stochastic susceptible–infected–susceptible (SIS)

epidemic model [33–36], where A and B correspond to the

number of healthy and infected individuals, respectively.

In that setting, the state (2.4) corresponds to a true ‘extinction

state’. A similar extinction effect is also achieved in many

population biology models where stochastic effects may

irreversibly drive a population to zero [37].
Although the chain associated with (2.1) will inevitably

converge to the extinction state (2.4), such an event may be

exceedingly rare on biologically reasonable timescales. In

such situations, the absorbing state is not of practical concern,

and, in fact, the process may seem to settle to a stationary dis-

tribution. This distribution is called the quasi-stationary
probability distribution, and it is useful in analysing the transi-

ent behaviour of a model before the absorption event. We

suspect that stable ACR-like behaviour may still be attained

in the present context by consideration of this distribution.

Suppose we denote the absorbing states of a process X(t)
by @A. If we define pxðtÞ ¼ P{XðtÞ ¼ x}, where x is an arbi-

trary state in the state space, and P@AðtÞ ¼
P

x[@ApxðtÞ, then

the transition probabilities conditioned upon non-extinction,

qx(t), are given for t � 0 by

qxðtÞ ¼ P{XðtÞ ¼ x j XðtÞ � @A} ¼ pxðtÞ
1� p@AðtÞ

: ð4:1Þ

The limiting vector p :¼ limt!1qðtÞ, if it exists, is the quasi-
limiting distribution of the process, which equals the

quasi-stationary distribution in the present context. See [38]

for proofs of the facts that such a distribution exists, and is

unique, in the setting of our theorem 3.2. See [37] for a

recent survey article on quasi-stationary distributions in the

context of population processes.

Reconsider the activation/deactivation system (2.1). We

begin by reimagining the chain XðtÞ ¼ ðXAðtÞ;XBðtÞÞ as a

birth–death process following XB(t) with the extinction

state XB ¼ 0 corresponding to (2.4). The first reaction corre-

sponds to a ‘birth’ since B is increased by one while the

second reaction corresponds to a ‘death’ since B is decreased

by one. The chain for XA can then be determined by the con-

servation relation XAðtÞ ¼M� XBðtÞ. Under mass-action

kinetics, the corresponding birth and death propensities,

l(i) and m(i), respectively, are given by

lðiÞ ¼ aiðM� iÞ
mðiÞ ¼ bi;

)
ð4:2Þ

where i ¼ 0, . . . , M corresponds to the state with i molecules

of B. Note that l(0) ¼ l(M ) ¼ m(0) ¼ 0 so that XB ¼ 0 is an

absorbing state and XB ¼M is a reflecting state. Up to rescal-

ing of the rate constants, this chain is identical to the

stochastic SIS epidemic model considered in [33–35].
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Figure 4. Results of numerical simulation for the EnvZ/OmpR mechanism of figure 2. In (a), we display the approximate probability distribution of the chain
X(t) at four time points, computed by averaging 105 independent realizations of the process with Xtot ¼ 1 and Ytot ¼ 35, and initial conditions X(0) ¼ Xtot

and Y(0) ¼ Ytot. The corresponding quasi-stationary distribution is overlain (solid). In (b), we display approximations of the quasi-stationary distributions for various
values of Ytot and Xtot in the ratio 35 : 1. Details of the simulations are provided in the electronic supplementary material. For comparison, a Poisson distribution with
mean 25 is overlain (black). Convergence to the Poisson distribution as the total molecularity increases is apparent. (Online version in colour.)
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We are interested in whether the quasi-stationary distri-

bution displays a form of robustness in XA with respect to

changes in overall molecularity M. Furthermore, we are inter-

ested in the case of large M, as that is when the time to

extinction is large. In the electronic supplemental material,

we prove that as M! 1, the quasi-stationary distribution

for XA approaches the Poisson distribution

pðiÞ ¼ e�(b=a)

i!
b

a

� �i

; ð4:3Þ

which has previously been shown to be the limit of one

commonly used approximation to the quasi-stationary distri-

bution [39]. In figure 3, we graphically demonstrate the

convergence by providing realizations of the quasi-stationary

distribution for different values of b and M.

Now consider the EnvZ/OmpR signalling system from

figure 2. As in the simple activation/deactivation network,

the expected time before entering the state (3.3) may be very

large. We therefore consider the quasi-stationary distribution

of the process. This distribution cannot be computed using a

simple analytic formula, so we approximate it numerically

and point the reader to the electronic supplementary material

for the details of our computational methods. We use the par-

ameter values given in the table in figure 2b, which have been

chosen to be in close agreement with the values in [32]. It was

found in [41] that a typical E. coli cell has roughly 100 total mol-

ecules of EnvZ and 3500 molecules of OmpR. Therefore, for our

simulations we chose a ratio of Ytot : Xtot of 35 : 1. Based on the

deterministic model, the anticipated mean of the ACR species

Yp in the quasi-stationary distribution is 25.

The results of the simulations are shown in figure 4. In

figure 4a we see that, for low molecularity of EnvZ and

OmpR (1 and 35, respectively), the chains converge to the

boundary state (3.3), even while the quasi-stationary distri-

bution becomes apparent. In figure 4b, we see that the

quasi-stationary distribution of Yp appears to converge to a

Poisson distribution centred around the deterministic steady

state as the total molecularity grows.
5. Discussion
Robustness and stability in the face of varying environments

are of fundamental importance to the proper functioning of

many biological processes, and understanding this behaviour

is one arena where mathematics can play a role in elucidating

biological phenomena. In this paper, together with its elec-

tronic supplemental material, we have outlined a class of

structural conditions that are sufficient to guarantee conver-

gence of trajectories of stochastically modelled systems to

an absorbing boundary set. Notably, these conditions overlap

significantly with a set of structural conditions that are

known to confer ACR on the corresponding deterministic

models. For such ACR models with stable equilibria, our

results present a significant disparity in the predictions for

the limiting behaviour of the systems.

This work highlights several points. First, it is surprising

that the long-term behaviour of such a large class of systems

considered in [1] is fundamentally different for the stochastic

and deterministic models. Second, deterministic models are

typically unable to capture trapping phenomena such as

those described here unless they are artificially modified,

for instance by adding degradation terms. We have shown

here that for a wide range of models no such ad hoc modifi-

cations are necessary for stochastically modelled systems.

Third, in regions where the time to absorption for the sto-

chastic model is large relative to the timescale of the

system, the proper object of study when considering the sto-

chastic analogue of ACR behaviour is the quasi-stationary

distribution, as opposed to the stationary distribution.

This work suggests a number of promising avenues for

future research. First, finding more general conditions for

which the conclusions of theorem 3.2 hold will be a focus.

In particular, weakening the requirement that the system pos-

sesses a conservation relation will allow the results to be

applicable to more models arising in ecology and population

processes, which typically do not satisfy such an assumption,

though do often possess low numbers of the constituent

species [42]. Second, the question of when equilibria
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exhibiting ACR in the deterministic modelling context are

stable or unstable is, to the best of the authors’ knowledge,

currently open and has to date received surprisingly little

consideration in the literature. Third, we have observed in

the two examples considered here the recurrence of the Pois-

son distribution when analysing a certain limiting behaviour

of their quasi-stationary distributions. It is a suspicion of the

authors that this phenomenon applies more generally to

other systems satisfying ACR, and this will be investigated.

Results of the type presented here are not only of theoreti-

cal interest. In particular, they are exactly the types of results

required in order to automate the multi-scale reduction

methods for stochastic models of biochemical processes cur-

rently being explored in the probability literature [43]. For

example, in order to determine the behaviour of species oper-

ating on a timescale that is slower than other species, it is

necessary to first understand the long-term dynamics of the

species on the fast timescale in order to perform either the

necessary stochastic averaging, or to recognize that some

species will have gone extinct.
This work is part of a growing research field in which math-

ematical methods are developed in order to rise above the

bewildering complexity of biochemical processes. Algebraic

methods, for example, have been successfully employed in a

number of areas related to the equilibria of mass-action sys-

tems, where the steady states of such systems form a real

algebraic variety [26,44,45]. We believe there is significant pro-

gress to be made towards the understanding of stochastically

modelled systems through analysis of the underlying network,

and we hope to uncover the important substructures hidden in

the complexity of biochemical networks that inform system

behaviour, both on short and long time frames.
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