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One of the least studied universal deformations
of incompressible nonlinear elasticity, namely the
straightening of a sector of a circular cylinder into a
rectangular block, is revisited here and, in particular,
issues of existence and stability are addressed.
Particular attention is paid to the system of forces
required to sustain the large static deformation,
including by the application of end couples. The
influence of geometric parameters and constitutive
models on the appearance of wrinkles on the
compressed face of the block is also studied. Different
numerical methods for solving the incremental
stability problem are compared and it is found
that the impedance matrix method, based on the
resolution of a matrix Riccati differential equation, is
the more precise.

1. Introduction
The rubber of a car tyre in contact with the road is slightly
flattened, or straightened, with respect to its natural
unloaded configuration. In other words, a portion of
the rubber undergoes a deformation which can be quite
accurately captured by Ericksen’s solution [1] for the
elastic straightening of a circular cylindrical sector into
a rectangular block. Other examples of application for
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this deformation include the local behaviour of rubber-covered rollers in service or of extended
body joints such as knees and elbows. Ericksen’s exact solution is one of only a handful of
universal deformations in incompressible isotropic nonlinear elasticity [2], but it has so far
received scant attention in the literature, beyond the works of Hill [3], Aron et al. [4–6] and our
recent contribution [7]. In this paper, we complete the picture with some additional results for
the (plane strain) large straightening deformation of an incompressible isotropic sector and its
stability with respect to incremental deformations.

In §2, we describe the considered deformation, the parameters it involves and the different
boundary conditions under which it can be achieved, illustrated by use of the neo-Hookean
strain-energy function. In §3, following a brief discussion of strong ellipticity of an incompressible
isotropic strain-energy function, it is shown that if the sector is straightened either by the
application of end couples alone or, in the absence of end couples, by lateral normal forces
alone, then, under the inequalities associated with the strong ellipticity condition, existence of
the straightening deformation is guaranteed irrespective of the particular form of strain-energy
function. For a thin sector, asymptotic formulae in terms of the thickness to (outer) radius ratio,
denoted ε, are then provided for these two cases to give explicit results for certain parameters of
the problem. In particular, it is found that to third order in ε the results are independent of the
choice of energy function.

In §4, we derive the equations of incremental equilibrium in the Stroh form with a view to
solving them numerically in order to investigate the possible appearance of wrinkles (i.e. small
amplitude undulations or instabilities) at a critical threshold of deformation. Then, in §5, the
equations are effectively solved numerically for the corresponding, numerically stiff, two-point
boundary value problem. First, we use the compound matrix method, which must be slightly
modified from its usual form to circumvent a singularity problem. Impedance matrix techniques
are then applied, and this approach proves to be more precise for the problem at hand. The results
are illustrated for homogeneous sectors made of neo-Hookean and of Gent materials, and the
effects of geometrical and constitutive parameters on stability are highlighted.

2. Basic equations
Consider the circular cylindrical sector of incompressible isotropic elastic material shown in
figure 1a in terms of cylindrical polar coordinates (R,Θ , Z), with geometry defined by the
reference region

0<R1 ≤ R ≤ R2, −Θ0 ≤Θ ≤Θ0 and 0 ≤ Z ≤ H, (2.1)

where 0< 2Θ0 < 2π is the angle spanned by the sector. The sector can be deformed into a
rectangular block, as shown in figure 1b with respect to Cartesian coordinates (x1, x2, x3), by the
deformation [2]

x1 = 1
2

AR2, x2 = Θ

A
and x3 = Z, (2.2)

where A =Θ0/l and 2l is the length of the block in the x2-direction. Here, we are restricting the
study to a plane strain deformation, although a uniform stretch could easily be included in
the x3-direction [1,2]. The deformed straightened sector occupies the region described by

a ≤ x1 ≤ b, −l ≤ x2 ≤ l and 0 ≤ x3 ≤ H, (2.3)

where a and b are defined as
a = 1

2 AR2
1 and b = 1

2 AR2
2. (2.4)

The corresponding deformation gradient F has the form

F = AR e1 ⊗ ER + 1
AR

e2 ⊗ EΘ + e3 ⊗ EZ, (2.5)

where ER, EΘ , EZ and e1, e2, e3 are the cylindrical polar and Cartesian unit basis vectors in
the reference and deformed configurations, respectively. It follows that the Eulerian principal



3

rspa.royalsocietypublishing.org
Proc.R.Soc.A470:20130709

...................................................

H

H

R1 R2
x2

x1

b – ax3
2Q0

2l

(a) (b) 

Figure 1. (a) A circular cylindrical sector with internal and external radii R1 and R2, respectively, and sector angle 2Θ0

straightened (b) under plane strain conditions into a rectangular block of thickness b − a and length 2l.

directions of the deformation (defined as the directions of the eigenvectors of the left Cauchy–
Green deformation tensor B = FFT) are the Cartesian basis vectors and that the principal
stretches are

λ1 = AR, λ2 = 1
AR

and λ3 = 1. (2.6)

We consider an incompressible isotropic hyperelastic material with strain energy W =
W(λ1, λ2, λ3) per unit volume, so that the Cauchy stress tensor can be written as

σ = σ1e1 ⊗ e1 + σ2e2 ⊗ e2 + σ3e3 ⊗ e3, (2.7)

where σ1, σ2, σ3 are the principal Cauchy stresses given by [8]

σ1 = λ1
∂W
∂λ1

− p, σ2 = λ2
∂W
∂λ2

− p and σ3 = ∂W
∂λ3

− p, (2.8)

p being a Lagrange multiplier associated with the incompressibility constraint λ1λ2λ3 = 1, which
is automatically satisfied by (2.6).

Henceforth, it is convenient to use the notation λ2 = λ, λ1 = λ−1, and to introduce the function
Ŵ of a single deformation variable defined by

Ŵ(λ) = W(λ−1, λ, 1), (2.9)

from which, on use of (2.8), we obtain

σ2 − σ1 = λŴ′(λ). (2.10)

As the deformation depends only on the single variable R (or x1), the second and third
components of the equilibrium equation div σ = 0 in the absence of body forces show that p
is independent of x2 and x3, and the first component yields simply dσ1/dx1 = 0; hence σ1 is a
constant. Then, by taking the boundary R = R1, for example, to be traction free it follows that
σ1 ≡ 0, and hence

σ2 = λŴ′(λ). (2.11)

If required, the value of σ3 needed to maintain the plane strain condition may be obtained in
terms of λ from (2.8)3 with p = λ1∂W/∂λ1.
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Next, we compute the resultant normal force N and moment M (about the origin of the
Cartesian coordinate system) on the end face x2 = l of the block. They are given by

N = H
∫ b

a
σ2 dx1 and M = −H

∫ b

a
σ2x1 dx1. (2.12)

Note that because σ2 is independent of x2, N and M are in fact the same on any section of the
block normal to the x2-direction. By a change of variables, we arrive at

N = HR2λb

∫λa

λb

Ŵ′(λ)
λ2 dλ and M = −HR2λ2

b
2

∫λa

λb

Ŵ′(λ)
λ4 dλ, (2.13)

where

λa = 1
AR1

and λb = 1
AR2

= R1

R2
λa (2.14)

are the values of the stretch λ on the faces x1 = a and x1 = b, respectively, of the straightened block.
Except for large values of |N|, it is expected that the circumferential elements on the ‘inner’ face
of the straightened block are extended and those on the ‘outer’ face are contracted, i.e. λa > 1 and
λb < 1, in which case, by (2.14) and the definition of A, it would follow that l belongs to the interval

R1Θ0 < l<R2Θ0. (2.15)

We do not insist that this ordering holds in general, but it turns out that it gives a necessary
and sufficient condition for the existence of a plane where λ= 1 (with equation x1 = l/2Θ0) in
the straightened block, which we refer to as the neutral plane, or neutral axis in the (x1, x2) plane.
This is the case when either M = 0 or N = 0, the two examples we analyse in §3, if we impose the
physically reasonable requirement that the stress σ2 be positive (negative) when λ> 1 (< 1), i.e.

Ŵ′(λ) � 0 according as λ� 1. (2.16)

These inequalities certainly hold when the strain-energy function W satisfies the strong ellipticity
condition. Indeed, by (2.10) we have

λ2Ŵ′(λ)
λ2 − 1

= σ2 − σ1

λ2 − λ1
> 0 for λ �= 1, (2.17)

because of the Baker–Ericksen inequalities, which are a consequence of the strong ellipticity
condition [2]. Then, clearly, (2.16) readily follows.

As an example of the large straightening deformation, we consider the neo-Hookean material,
for which

W = 1
2μ(λ2

1 + λ2
2 + λ2

3 − 3), (2.18)

where μ> 0 is the ground state shear modulus. For the plane strain problem this reduces to

Ŵ(λ) = 1
2μ(λ2 + λ−2 − 2). (2.19)

We then calculate

N =μHR2λb

[
ln
(

R2

R1

)
− 1

4λ4
b

(
1 − R4

1

R4
2

)]
(2.20)

and

M = −1
4
μHR2

2

[
1 − R2

1

R2
2

− 1

3λ4
b

(
1 − R6

1

R6
2

)]
. (2.21)

Through this explicit example, which as far as we are aware is not available in the literature, it can
be seen that in order to describe the straightening deformation, for any given Θ0, either the loads
can be prescribed, i.e. N (or M) can be prescribed and then the corresponding A and M (or N) can
be computed from equation (2.13) with (2.14), or the deformed geometry can be described, i.e. the
length 2l can be prescribed, hence fixing A, and then N and M deduced from equation (2.13) with
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(2.14). In this paper, following considerations of Hill [3] in respect of a spherical cap, we deal with
three case studies that are important physically:

(i) the sector is straightened by end couples alone (N = 0);
(ii) the sector is straightened by vice-clamps (M = 0); and

(iii) with NM �= 0 in general, the final length 2l of the straightened sector is determined at the
onset of instability.

For instance, if the deformation for the neo-Hookean material is achieved by the application
of moments alone, as in Case (i), then N = 0 and A is determined by

A4 = 4 ln(R2/R1)

R4
2 − R4

1
, (2.22)

in which case M depends on the geometry only through R1 and R2.

3. Examples of straightening
This section is concerned with deformations that are achieved by the application of two
special systems of forces, that corresponding to zero resultant normal force, N = 0, and that
corresponding to zero resultant moment, M = 0, i.e. Cases (i) and (ii) above, respectively. With
reference to (2.12), we see that the difference between these two cases arises from the different
distributions of the stress σ2 with respect to x1 in [a, b].

We focus on constitutive models that satisfy the strong ellipticity condition, which, for plane
strain, consists of the inequalities [8]

Ŵ′(λ)
λ2 − 1

> 0 and λ2Ŵ′′(λ) + 2λŴ′(λ)
λ2 + 1

> 0. (3.1)

These two inequalities are satisfied by many standard strain-energy functions, including the
neo-Hookean model:

WnH = μ

2
(I1 − 3), (3.2)

where I1 = tr B and μ is a constant; the Varga model [9]:

WV = 2μ(i1 − 3), (3.3)

where i1 = tr(B1/2); the Fung–Demiray model [10]:

WFD = μ

2c
{exp[c(I1 − 3)] − 1}, c> 0, (3.4)

where c is a constant and the Gent model [11]:

WG = −μJm

2
ln
(

1 − I1 − 3
Jm

)
, Jm > 0, (3.5)

where Jm is a constant and the range of deformation is limited by the condition that I1 − 3< Jm.
In each case, μ (> 0) is the shear modulus of the material in the undeformed configuration, given
by μ= Ŵ′′(1)/4.

(a) Straightening by end couples
The system of loads consists of end couples alone when N = 0, which is the case we consider here.
If N = 0 then σ2 must take both positive and negative signs in the interval [a, b], and, in particular,
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there must be a value of x2 where σ2 = 0, and hence, by (2.16) λ= 1, so that

λa > 1>λb. (3.6)

By virtue of (2.14)1, this leads to the restriction

ρ ≡ R1

R2
<λb < 1 (3.7)

on λb, wherein we have defined, for later convenience, the notation ρ. In this case, by (2.13)1, we
must investigate the existence of positive roots for λb in the interval (3.7) of the equation

∫λa

λb

Ŵ′(λ)
λ2 dλ= 0 (3.8)

with λa = λb/ρ for fixed ρ.
To this end, we introduce the function f (λb) defined by

f (λb) =
∫λb/ρ

λb

Ŵ′(λ)
λ2 dλ. (3.9)

By virtue of (2.16), we have

f (ρ) =
∫ 1

ρ

Ŵ′(λ)
λ2 dλ< 0 and f (1) =

∫ 1/ρ

1

Ŵ′(λ)
λ2 dλ> 0, (3.10)

and by differentiation

f ′(λb) = 1
ρ

Ŵ′(λa)

λ2
a

− Ŵ′(λb)

λ2
b

. (3.11)

By (2.16) and (3.6), this is clearly positive, and we conclude that f is strictly increasing, and so f
has a unique zero, say λ∗

b , in interval (3.7). Consequently, a circular cylindrical sector made of an
incompressible isotropic elastic material can be straightened by applying terminal couples only.
This result is universal to all constitutive models with strain-energy functions Ŵ continuously
differentiable in R

+ and satisfying inequalities (2.16). The corresponding moment is

M∗ = −HR2
2λ

∗
b

2

2

∫λ∗
b/ρ

λ∗
b

Ŵ′(λ)
λ4 dλ. (3.12)

For illustration, we now report some analytical and numerical results for the solution of
equation (3.8).

For the neo-Hookean material (3.2), we obtain

λ∗
b = 4

√
1 − ρ4

4 ln(1/ρ)
and M∗ = −μHR2

2
4

(
1 − ρ2 − 1 − ρ6

3λ∗
b

4

)
. (3.13)

For the Varga material, the explicit solution of (3.8) and the corresponding moment are
given by

λ∗
b =

√
1 + ρ + ρ2

3
and M∗ = −μHR2

2
λ∗

b

(
1 − ρ3

3
− 1 − ρ5

5λ∗
b

2

)
. (3.14)

For Fung–Demiray material (3.4), there are no explicit solutions, and a numerical resolution
is required. Figure 2a,b displays the stretch λ∗

b as a function of the ratio ρ = R1/R2 for the neo-
Hookean, Varga and Fung–Demiray materials. In particular, in plotting figure 2b, we took the
Fung–Demiray energy density with constants used in [12] to model ‘young’ human arteries
(c = 1.0) and ‘old’ arteries (c = 5.5).

As already pointed out, the assumptions that the function Ŵ is continuously differentiable
and satisfies inequalities (2.16) are fundamental for proving the existence and uniqueness of the
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Figure 2. Circumferential stretchλ∗
b as a function of the radii ratioρ = R1/R2 for the straightening of blocks by end-couples

only: (a) Varga and neo-Hookeanmaterials; (b) Fung–Demiraymaterials with stiffening parameters c = 5.5, c = 1.0 and c →
0 (neo-Hookean limit) and (c) Gent materials with stiffening parameters Jm = 0.4, Jm = 2.3, Jm = 20.0 and Jm → ∞ (neo-
Hookean limit). (Online version in colour.)

straightened configuration. We now show that, by means of slight changes, this result can be
extended to Gent materials (3.5). For these materials, the function Ŵ reads

ŴG(λ) = −μJm

2
ln

[
1 − (λ− λ−1)2

Jm

]
, (3.15)

and it is continuously differentiable in the interval (λ−1
m , λm), where

λm =
√

Jm + 2 +√
Jm(Jm + 4)

2
(3.16)

is the upper bound on the stretch in (plane strain) uniaxial tension. Therefore, in order to
straighten a circular cylindrical sector made of a Gent material, the circumferential stretch must
belong to the interval (λ−1

m , λm) throughout the thickness of the block. As a consequence of this
restriction, if λ−2

m <ρ < 1, then the condition λb ∈ (λ−1
m , ρλm) implies that λ ∈ (λ−1

m , λm) throughout
the block. On the other hand, as ŴG satisfies the inequalities (2.16),

fG(λb) :=
∫λb/ρ

λb

Ŵ′
G(λ)

λ2 dλ=
∫λb/ρ

λb

λ4 − 1

λ3(λ2 − λ2
m)(λ2 − λ−2

m )
dλ (3.17)

is an increasing function such that

lim
λb→λ−1

m

fG(λb) = −∞, fG(1)> 0 and lim
λb→ρλm

fG(λb) = +∞, (3.18)

and, if λ−1
m <ρ < 1, fG(ρ)< 0. We may then conclude that fG has a unique zero at

λ∗
b ∈ (max{λ−1

m , ρ}, min{1, ρλm}). (3.19)

It is worth noting that, in the light of (3.19), λ∗
b → λ−1

m as ρ→ λ−2
m (figure 2c).

(b) Straightening by vice-clamps
Now we investigate the existence of positive roots for λb in the interval (3.7) when M = 0, that is

∫λa

λb

Ŵ′(λ)
λ4 dλ= 0. (3.20)
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Figure 3. Circumferential stretchλ∗∗
b as a function of the radii ratioρ = R1/R2 for the straightening of blocks by vice-clamps:

(a) Varga and neo-Hookean materials; (b) Fung–Demiray materials with stiffening parameters c = 5.5, c = 1.0 and c → 0
(neo-Hookean limit) and (c) Gent materials with stiffening parameters Jm = 0.4, Jm = 2.3, Jm = 20.0 and Jm → ∞ (neo-
Hookean limit). Note that different vertical scales are used in the three plots so as to avoid losing information. Thus, although
not immediately apparent, the continuous curves in (a–c) are the same and are for the neo-Hookean model. (online version
in colour.)

Following arguments similar to those used in §3a, we introduce the function g(λb) defined by

g(λb) =
∫λb/ρ

λb

Ŵ′(λ)
λ4 dλ. (3.21)

By virtue of (2.16), we have

g(ρ) =
∫ 1

ρ

Ŵ′(λ)
λ4 dλ< 0 and g(1) =

∫ 1/ρ

1

Ŵ′(λ)
λ4 dλ> 0, (3.22)

and by differentiation

g′(λb) = 1
ρ

Ŵ′(λa)

λ4
a

− Ŵ′(λb)

λ4
b

. (3.23)

which, in view of (2.16) and (3.6), is positive, implying that g is strictly increasing. Therefore,
by virtue of (3.22), g has a unique zero, say λ∗∗

b , in the interval (ρ, 1). Consequently, a circular
cylindrical sector made of an incompressible isotropic elastic material can be straightened by
applying a system of forces with zero resultant moment. By following the same arguments as in
the previous section, one can prove that this result is valid not only for all the constitutive models
with strain-energy functions Ŵ continuously differentiable in R

+ and satisfying the inequalities
(2.16), but also for Gent materials. The corresponding resultant normal force is

N∗∗ = HR2λ
∗∗
b

∫λ∗∗
b /ρ

λ∗∗
b

Ŵ′(λ)
λ2 dλ. (3.24)

For the neo-Hookean and Varga models, the explicit solutions of (3.20), which are illustrated
in figure 3a, and the corresponding total normal force are, respectively,

λ∗∗
b = 4

√
1 + ρ2 + ρ4

3
and N∗∗ =μHR2λ

∗∗
b

(
ln
(

1
ρ

)
− 1 − ρ4

4λ∗∗
b

4

)
(3.25)

and

λ∗∗
b =

√
3(1 − ρ5)
5(1 − ρ3)

and N∗∗ = 2μH(R2 − R1)

(
1 − 1 + ρ + ρ2

3λ∗∗
b

2

)
. (3.26)

For the Fung–Demiray and Gent materials, one can solve equation (3.20) only numerically.
Figure 3b,c shows λ∗∗

b as a function of ρ for different values of the material parameters c and Jm.
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We end this section by pointing out that, independently of the form of the strain-energy
function, we have

ρ < λ∗
b <λ

∗∗
b < 1. (3.27)

We have already shown that λ∗
b and λ∗∗

b belong to the interval (ρ, 1). Furthermore, from (2.16),
(3.9) and (3.21) we deduce that

g(λb) − f (λb) = −
∫λb/ρ

λb

λ2 − 1
λ4 Ŵ′(λ)dλ< 0. (3.28)

Hence, as f and g are increasing in the interval (ρ, 1), inequality (3.27) follows immediately.

(c) Thin sectors
For thin sectors, that is sectors with thickness much smaller than the radius of the (undeformed)
inner face, some general conclusions can be established about the straightened configuration. For
the asymptotic analysis, we introduce the small parameter ε > 0 defined as

ε= 1 − ρ� 1. (3.29)

First we look at the straightening of a sector by the application of end couples, and we rewrite
f in (3.9) as a function of ε, specifically

F(ε) ≡ f (λb) =
∫λb/(1−ε)

λb

Ŵ′(λ)
λ2 dλ. (3.30)

Expanding F(ε) as a Maclaurin series in the parameter ε up to the fifth order, substituting into the
equation f (λb) = 0 and dropping a common factor ε, yields the equation

Ŵ′(λb) + 1
2λbŴ′′(λb)ε + 1

6 [2λbŴ′′(λb) + λ2
bŴ′′′(λb)]ε2

+ 1
24 [6λbŴ′′(λb) + 6λ2

bŴ′′′(λb) + λ3
bŴiv(λb)]ε3

+ 1
120 [24λbŴ′′(λb) + 36λ2

bŴ′′′(λb) + 12λ3
bŴiv(λb) + λ4

bŴv(λb)]ε4

+ O(ε5) = 0. (3.31)

Next, we expand λb in terms of ε to the fourth order

λb = λ(0) + λ(1)ε + λ(2)ε2 + λ(3)ε3 + λ(4)ε4 + O(ε5). (3.32)

Substituting this into the previous expansion and equating to zero the coefficients of each power
in the resulting expression, we obtain, at zero order

Ŵ′(λ(0)) = 0, (3.33)

and hence, by (2.16), λ(0) = 1. Using this result in the first-order term, we obtain

( 1
2 + λ(1))Ŵ′′(1) = 0, (3.34)

and because Ŵ′′(1)> 0, we deduce that λ(1) = − 1
2 . Then, the second-order term yields

(λ(2) + 1
12 )Ŵ′′(1) + 1

24 Ŵ′′′(1) = 0. (3.35)

The resulting expression for λb, to the second order in ε, is therefore

λb = 1 − 1
2
ε − 1

12

(
1 + 1

2
Ŵ′′′(1)

Ŵ′′(1)

)
ε2 + O(ε3). (3.36)

However, for plane strain, there is the universal result Ŵ′′′(1)/Ŵ′′(1) = −3 (e.g. [13]), so that the
above formula reduces to

λb = 1 − 1
2ε + 1

24ε
2 + O(ε3). (3.37)
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Proceeding in a similar way (without showing the lengthy details), we obtain

λb = 1 − 1
2
ε + 1

24
ε2 + 1

48
ε3 + 1

5760

[
427 − 46Ŵiv(1) + 3Ŵv(1)

Ŵ′′(1)

]
ε4 + O(ε5). (3.38)

Note, in particular, that the material properties do not enter until the fourth order, i.e. the results
are independent of the form of strain-energy function up to order ε3.

Similarly, with an asymptotic analysis in the case of straightening by applying a resultant force
only (M = 0), we find that, for thin cylindrical sectors, the result analogous to (3.38) is

λb = 1 − 1
2
ε + 5

24
ε2 + 5

48
ε3 +

[
15
128

− 62Ŵiv(1) + 3Ŵv(1)

5760Ŵ′′(1)

]
ε4 + O(ε5). (3.39)

The universal result used in (3.38) and (3.39) can be confirmed by, for example, expanding the
strain-energy function in terms of the Green strain tensor E = (FTF − I)/2 in the form

W =μ tr(E2) + A
3

tr(E3) + D(tr(E2))2 + · · · , (3.40)

where μ, A and D are the second-, third- and fourth-order elastic constants, respectively (see
Destrade & Ogden [14] and references therein). For the plane strain specialization, we have

tr(E2) = 1
4 [(λ2 − 1)2 + (λ−2 − 1)2] and tr(E3) = 1

8 [(λ2 − 1)3 + (λ−2 − 1)3], (3.41)

and by computing the successive derivatives of Ŵ we obtain

Ŵ′(1) = 0, Ŵ′′(1) = 4μ, Ŵ′′′(1) = −12μ,

and Ŵiv(1) = 156μ+ 48A + 96D and Ŵv(1) = −120(11μ+ 4A + 8D).

⎫⎬
⎭ (3.42)

Note that we established the last identity by expanding W to one order further than in (3.40) [15].
However, the next order terms do not contribute to the expression for Ŵv(1).

4. Incremental stability
We now study the stability of the deformed rectangular configuration by considering a
superimposed incremental displacement u, with components (u1, u2, u3). We denote the
displacement gradient gradu by L, which has components Lij = ∂ui/∂xj. When linearized
the incremental incompressibility condition reads

tr L ≡ Lii = ui,i = 0. (4.1)

in the usual summation convention for indices, where a subscript i following a comma signifies
differentiation with respect to xi.

The corresponding linearized incremental nominal stress referred to the deformed
configuration, denoted ṡ0, is given by [8]

ṡ0 = A0L + pL − ṗI, (4.2)

where a superposed dot signifies an increment, the zero subscript indicates evaluation in the
deformed configuration, I is the identity tensor and A0 is the fourth-order tensor of instantaneous
elastic moduli. In components, this reads

ṡ0ij =A0ijklul,k + pui,j − ṗδij, (4.3)

where δij is the Kronecker delta. Referred to the Eulerian principal axes of the underlying
deformation, the only non-trivial components of A0 are given by [8]

A0iijj = λiλjWij, i, j ∈ {1, 2, 3} (4.4)
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and

A0ijij =A0ijji + λiWi = λiWi − λjWj

λ2
i − λ2

j

λ2
i , i �= j, λi �= λj (4.5)

with Wi = ∂W/∂λi, Wij = ∂2W/∂λi∂λj, noting the major symmetry A0piqj =A0qjpi. For λi = λj, the
specializations of (4.5) can be obtained by taking the limit λj → λi but are not needed here.

For the neo-Hookean material (2.18), these reduce to

A0iiii =μλ2
i =A0ijij and A0iijj =A0ijji = 0, i �= j. (4.6)

In the absence of body forces, the incremental equilibrium equation has the general form

div ṡ0 = 0, (4.7)

but here we consider plane incremental deformations with u3 = 0 and u1 and u2 independent of
x3, in which case the linearized incremental incompressibility condition becomes

u1,1 + u2,2 = 0. (4.8)

Furthermore, as p and the deformation, and hence the components of A0, depend only on x1, the
components of equation (4.7) reduce to

ṡ011,1 + ṡ021,2 = 0, ṡ012,1 + ṡ022,2 = 0 and ṗ,3 = 0. (4.9)

Therefore, ṗ is independent of x3. From (4.2), the components of the incremental nominal stress
ṡ0 appearing in (4.9) are

ṡ011 = (A01111 + p)u1,1 + A01122u2,2 − ṗ, (4.10)

ṡ012 =A01212(u1,2 + u2,1), (4.11)

ṡ021 =A02121u1,2 + (A02121 − σ2)u2,1 (4.12)

and ṡ022 =A02211u1,1 + (A02222 + p)u2,2 − ṗ, (4.13)

in the second of which we have used σ1 = 0.
We seek solutions of the form

{u1, u2, ṗ} = {U1(x1), U2(x1), P(x1)}einx2 , (4.14)

where n = kπA/Θ0 is the mode number and the integer k is the number of wrinkles. Then, the
components of incremental nominal stress (4.13) have a similar form, which we write as

ṡ0ij = Sij(x1)einx2 , i, j = 1, 2, (4.15)

with

S11 = (A01111 + p)U′
1 + inA01122U2 − P, (4.16)

S12 = inA01212U1 + A01212U′
2, (4.17)

S21 = inA02121U1 + (A02121 − σ2)U′
2 (4.18)

and S22 =A02211U′
1 + in(A02222 + p)U2 − P, (4.19)

and incremental incompressibility condition (4.8) yields

U′
1 = −inU2. (4.20)

From (4.17), we obtain

U′
2 = −inU1 + S12

α
, (4.21)

where

α =A01212 = λ

λ4 − 1
Ŵ′(λ). (4.22)
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On use of the above equations followed by elimination of S21 and S22 in favour of U1, U2, S11 and
S12, incremental equilibrium equations (4.9) yield expressions for S′

11 and S′
12 in terms of U1, U2,

S11 and S12.
Then, by introducing the four-component displacement–traction vector η= [U1, U2, iS11,

iS12]T, we can cast the governing equations in the Stroh form

d
dx1

η(x1) = iG(x1)η(x1), (4.23)

where the real Stroh matrix G has the form

G =

⎛
⎜⎜⎜⎜⎝

0 −n 0 0

−n 0 0 − 1
α

n2σ2 0 0 −n
0 n2ν −n 0

⎞
⎟⎟⎟⎟⎠ , (4.24)

with

ν =A01111 + A02222 + 2A01212 − 2A01122 − 2A01221 = λ2Ŵ′′(λ). (4.25)

We consider the incremental traction to vanish on the inner and outer faces, i.e.

S11 = S12 = 0 on x1 = a, b. (4.26)

If a solution of the incremental equations can be found subject to these boundary conditions, then
possible equilibrium states exist in a neighbourhood of the straightened configuration, signalling
the onset of instability of that configuration. The value of 1/(AR2) = λb at this point is referred to
as the critical value for the stretch and denoted by λcr. Then, from (2.4) it follows that

A(b − a) = 1 − ρ2

2λ2
cr

, (4.27)

which allows for the complete determination of the straightened geometry just prior to instability.
In particular, the lengths of the block in the x1 and x2 directions are, respectively, given by

b − a = 1 − ρ2

2λcr
R2 and 2l = 2Θ0λcrR2. (4.28)

Note that if λ∗
b >λcr, where λ∗

b is the unique positive solution of (3.8), then the cylindrical
sector can be straightened by applying a moment alone without encountering any instability
phenomenon. Similarly for a cylindrical sector straightened by vice-clamps, if λ∗∗

b >λcr (this case
is illustrated in figure 4 for a neo-Hookean material).

5. Numerical results
In this section, we investigate the possibility of solving numerically the incremental instability
problem. The Stroh form of the governing equations is numerically stiff and calls for the
implementation of a robust algorithm. In the incremental stability literature, the compound
matrix method has been used successfully to solve a variety of stiff problems, including eversion
[16,17] and compression [18] of cylindrical tubes, bending [12,19,20] and combined bending and
compression [21] of a straight block, bending of a sector [22], and pressurization of a spherical
shell [23]. It turns out that for the problem considered here the compound matrix is itself
singular, a feature that seems to be unique to the straightening stability problem. We manage
to circumvent this problem by constructing a reduced, non-singular, compound matrix. We then
use the impedance matrix method, which proves to be more precise numerically for this problem.
It also provides for a complete field description of the incremental displacement solution.
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(a) Compound matrix method
Let η(1)(x1), η(2)(x1) be two linearly independent solutions of (4.23), and from them generate the
six compound functions φi, i ∈ {1, . . . , 6}, defined by

φ1 =
∣∣∣∣∣η

(1)
1 η

(2)
1

η
(1)
2 η

(2)
2

∣∣∣∣∣ , φ2 =
∣∣∣∣∣η

(1)
1 η

(2)
1

η
(1)
3 η

(2)
3

∣∣∣∣∣ and φ3 = i

∣∣∣∣∣η
(1)
1 η

(2)
1

η
(1)
4 η

(2)
4

∣∣∣∣∣ (5.1)

and

φ4 = i

∣∣∣∣∣η
(1)
2 η

(2)
2

η
(1)
3 η

(2)
3

∣∣∣∣∣ , φ5 =
∣∣∣∣∣η

(1)
2 η

(2)
2

η
(1)
4 η

(2)
4

∣∣∣∣∣ and φ6 =
∣∣∣∣∣η

(1)
3 η

(2)
3

η
(1)
4 η

(2)
4

∣∣∣∣∣ . (5.2)

Now, computing the derivatives of φi with respect to x1 yields the so-called compound equations

dφ
dx1

= A(x1)φ(x1), (5.3)

where φ = (φ1, . . . ,φ6)T and A, the compound matrix, has the form

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − 1
α

0 0 0

0 0 −n −n 0 0
−n2ν n 0 0 n 0

n2σ2 n 0 0 n − 1
α

0 0 −n −n 0 0
0 0 n2σ2 −n2ν 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.4)

Compound equations (5.3) must be integrated numerically, starting with the initial condition

φ(a) = φ1(a)[1, 0, 0, 0, 0, 0]T (5.5)

and aiming at the target condition
φ6(b) = 0, (5.6)

according to (4.26).
However, we observe that det A = 0, the first case in solid mechanics to our knowledge where

a compound matrix is singular. Because of this situation, the numerical integration of Cauchy
problem (5.3)–(5.5) will obviously encounter severe difficulties. In any event, the difficulty can be
by-passed by noting that from (5.3) to (5.5) it follows that

φ2 = φ5 and
dφ6

dx1
= −n2α(σ2 + ν)

dφ1

dx1
+ nν

dφ2

dx1
. (5.7)

It then follows that we can construct a reduced compound matrix Â by introducing five reduced
compound functions ψi, i ∈ {1, . . . , 5}, defined by

ψi = φi, (i = 1, 2, 3, 4) and ψ5 = φ6 + n2α(σ2 + ν)φ1 − nνφ2, (5.8)

so that from (5.3) and (5.7)2, the governing equations can be written as

dψ
dx1

= Â(x1)ψ(x1), (5.9)

where ψ = (ψ1, . . . ,ψ5)T and Â has the form

Â =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 − 1
α

0 0

0 0 −n −n 0
−n2ν 2n 0 0 0

n2(2σ2 + ν) n
(

2 − ν

α

)
0 0 − 1

α

f1 f2 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (5.10)
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Here,

f1 = n2 d
dx1

[α(σ2 + ν)] and f2 = −n
dν
dx1

. (5.11)

It is easy to check that det Â �= 0. Hence, we may now integrate numerically the non-singular
initial value problem (5.9) and (5.10) instead of the original compound equations with singular
Jacobian. Finally, in view of (5.5) and (5.8), the initial condition for this system is

ψ(a) =ψ1(a)(1, 0, 0, 0, n2α(a)[σ2(a) + ν(a)])T, (5.12)

and in view of (5.6) and (5.8)2, the target condition is

ψ5(b) = n2α(b)[σ2(b) + ν(b)]ψ1(b) − nν(b)ψ2(b). (5.13)

To implement the (reduced) compound matrix method, we first non-dimensionalized
equations (5.9)–(5.12) and specialized them to the neo-Hookean model. Then we applied an initial
value solver (ode45 or ode15s routines in Matlab), together with the dichotomy method in order
to satisfy target condition (5.13).

This approach is a shooting-like technique for which convergence and stability can depend
on the well- or ill-conditioning of the underlying boundary value problem and of the target
root finder problem. The numerical drawbacks and challenges of the shooting techniques are
highlighted in many textbooks (e.g. [24]).

In our case, for a set of fixed values of ρ = R1/R2 ∈ (0, 1), the bisection technique yields a
sequence of values λj to approximate λcr and stops the iterations when: (a) the residual |F(λj)| =
|ψ5(b; λj)| ≤ tolr and (b) the error estimate |λj − λj−1| ≤ tole. Both criteria must be used to check the
goodness of the approximation. If the usual assumptions of the bisection method are satisfied on
the starting localization interval I0 = [λ0, λ1] (that is F(λ0)F(λ1)< 0) then the method will converge,
i.e. by definition the criterion (b) will be always be satisfied. We set tole = 10−12 and tolr = 10−4,
and included a control on the maximum number of iterations allowed (itmax = 40). We applied the
same shooting approach when using the compound matrix method and the impedance matrix
method (next section). Both methods yielded the same results, although the former gave quite
high residuals when k> 2 and ρ is small. However, the values of λcr identified by the two methods
were the same up to at least four significant digits even in the worst case of high residuals. For
all intents and purposes, both the compound matrix and the impedance matrix methods provide
the desired level of precision for the critical stretch of compression. The latter has the advantage
of also providing a complete description of the incremental fields, as we now see.

(b) Impedance matrix method
Here, we follow Shuvalov [25] and introduce the matricant solution M(x1, a) of (4.23) and (4.24)
defined as the matrix such that

η(x1) = M(x1, a)η(a) and M(a, a) = I(4), (5.14)

which has the following 2 × 2 block structure

M(x1, a) =
(

M1(x1, a) M2(x1, a)
M3(x1, a) M4(x1, a)

)
, (5.15)

I(4) being the fourth-order identity matrix.
We now use the incremental boundary condition S(a) = 0 in (5.14) and (5.15) to establish that

S(x1) = Za(x1)U(x1), where Za = −iM3M−1
1 (5.16)
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is the conditional impedance matrix. Substituting this impedance matrix into the incremental
equilibrium equations (4.23) and (4.24) gives

dU
dx1

= iG1U − G2ZaU

and
d

dx1
(ZaU) = G3U + iG1ZaU,

⎫⎪⎪⎬
⎪⎪⎭ (5.17)

where

G1 =
(

0 −n
−n 0

)
, G2 =

⎛
⎝0 0

0 − 1
α

⎞
⎠ and G3 =

(
n2σ2 0

0 n2ν

)
, (5.18)

are the 2 × 2 sub-blocks of G. Eliminating U between the two equations in (5.17) results in the
following Riccati matrix differential equation for Za:

dZa

dx1
= i(G1Za − ZaG1) + ZaG2Za + G3. (5.19)

It is well behaved and can be integrated numerically in a robust way, subject to the initial
condition,

Za(a) = 0, (5.20)

which follows from (5.16)2 and (5.14)2. The target condition is

det Za(b) = 0, (5.21)

which is met by adjustment of the critical value λcr for the stretch λb, by using a bisection
approach as described in §4a, with the same tolerance values for the stopping criteria. Then,
S(b) = Za(b)U(b) = 0 means that

U2(b)
U1(b)

= −Za11(b)
Za12(b)

= −Za21(b)
Za22(b)

, (5.22)

and this ratio determines the form of the wrinkles on the outer face of the straightened block.
To proceed, we introduce the dimensionless quantities

y = x1

b
∈ [ρ2, 1], n� = kπ

2Θ0
, α� = α

μ
, ν� = ν

μ
, σ�2 = σ2

μ
,

and U�
i = Ui

b
, i = 1, 2, S�1j = S1j

μ
, j = 1, 2 and Z�a = b

μ
Za,

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(5.23)

where μ= Ŵ′′(1)/4 is again the shear modulus in the reference configuration. Substitution of
(5.23) into equations (4.23) and (4.24) yields

dη�

dy
= iG�η�, (5.24)

with η� = [U�
1, U�

2, iS�11, iS�12]T and

G� =

⎛
⎜⎜⎜⎜⎜⎝

0 −n�λ−2
cr 0 0

−n�λ−2
cr 0 0 − 1

α�

n�2λ−4
cr σ

�
2 0 0 −n�λ−2

cr

0 n�2λ−4
cr ν

� −n�λ−2
cr 0

⎞
⎟⎟⎟⎟⎟⎠ . (5.25)
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Figure 4. Critical value of the stretch λcr as a function of the radii ratio ρ = R1/R2 for the straightening of a neo-Hookean
material, for different anglesΘ0. (Online version in colour.)

The dimensionless version of the Riccati equation (5.19) is then

dZ�a
dy

= i(G�
1Z�a − Z�aG�

1) + Z�aG�
2Z�a + G�

3, Z�a(ρ2) = 0, (5.26)

where

G�
1 =

(
0 −n�λ−2

cr

−n�λ−2
cr 0

)
, G�

2 =
⎛
⎝0 0

0 − 1
α�

⎞
⎠ (5.27)

and

G�
3 =

(
n�2λ−4

cr σ
�
2 0

0 n�2λ−4
cr ν

�

)
. (5.28)

The target condition to append to (5.26) for finding the critical stretch λcr is det Z�a(1) = 0. Finally,
in order to determine the entire displacement field U throughout the straightened block once
equation (5.26) is solved and the critical value λcr has been found, we integrate the equation

dU�

dy
= iG�

1U� − G�
2Z�aU� (5.29)

numerically (again using the ode45 Matlab solver) from the initial conditions

U�
2(1)

U�
1(1)

= −Z�a11(1)
Z�a12(1)

= −Z�a21(1)
Z�a22(1)

, (5.30)

at y = 1 to the face at y = ρ2.

(c) Neo-Hookean materials
For a neo-Hookean material with strain-energy function (2.18), we obtain the non-dimensional
quantities

α� = y

λ2
cr

, ν� = λ4
cr + 3y2

λ2
cry

and σ�2 = λ4
cr − y2

λ2
cry

, (5.31)

which depend only on y and λcr.
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Figure 5. Instability of a straightened homogeneous circular cylindrical sector modelled by the Gent strain-energy function.
(a–c) The critical stretchλcr for wrinkling versus the radii ratioρ = R1/R2 for different open anglesΘ0, in the cases where the
Gent stiffening parameter is (a) Jm = 20 (rubber), (b) Jm = 2.3 (old aorta) and (c) Jm = 0.4 (young aorta). As summarized in
table 1, the number of wrinkles k depends on the constitutive parameter Jm, on the angleΘ0 andρ . For instance, for Jm = 20,
Θ0 = π andρ = 0.15, the number of wrinkles is k = 4; see (a) and (d). (Online version in colour.)

In figure 4, we provide plots of the critical value λcr versus ρ = R1/R2 corresponding
to loss of stability of some straightened sectors of neo-Hookean materials. We take in turn
Θ0 = π , 2π/3,π/2,π/3,π/4,π/5,π/6. The number of wrinkles k appearing on the compressed
side of the block depends on the angle Θ0 and on ρ. Hence, for Θ0 = π there are four
wrinkles when ρ < 0.1469 and only one when ρ > 0.1469. For Θ0 = 2π/3, there are three wrinkles
when ρ < 0.1131, two wrinkles when 0.1131<ρ < 0.1717 and one wrinkle when ρ > 0.1717. For
Θ0 = π/2, there are two wrinkles when ρ < 0.1833 and one wrinkle when ρ > 0.1833. For all the
other values of the opening angle, there is only one wrinkle for any value of ρ in (0, 1). These
results are summarized in the legend on the right of figure 4.

In the thick sector–small wavelength limit (i.e. as ρ→ 0 and Θ0 → 0), we recover the critical
threshold for surface instability in plane strain of Biot [26] (i.e. λcr → 0.544).

We also plot the curves for λ∗
b and λ∗∗

b , giving the circumferential stretch of a cylindrical sector
straightened by end couples and by vice-clamps, respectively. We see that a sector straightened by
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Table 1. Description of the results displayed in figure 5 for the bifurcation curves of straightened Gent materials. There are
three different types of Gentmaterials (Jm = 20, rubber; Jm = 2.3, young artery; Jm = 0.4, old artery) and four different angles
(Θ0 = π/3,π/2, 2π/3,π ). Each curve is made of several pieces, each corresponding to the earliest bifurcation mode for a
given value ofρ of the sector, with corresponding number of wrinkles k in the third column.

Jm angle number of wrinkles

20 Θ0 = π/3 k = 1 for 0.045<ρ ≤ 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 Θ0 = π/2 k = 1 for 0.045<ρ < 0.11 and 0.21<ρ ≤ 1

k = 2 for 0.11<ρ < 0.21
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 Θ0 = 2π/3 k = 1 for 0.045<ρ < 0.11 and 0.21<ρ ≤ 1

k = 2 for 0.11<ρ < 0.12 and 0.13<ρ < 0.21

k = 3 for 0.12<ρ < 0.13
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

20 Θ0 = π k = 1 for 0.045<ρ < 0.10 and 0.19<ρ ≤ 1

k = 2 for 0.10<ρ < 0.11

k = 3 for 0.11<ρ < 0.12 and 0.17<ρ < 0.19

k = 4 for 0.12<ρ < 0.17
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3 Θ0 = π/3 k = 1 for 0.25<ρ ≤ 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3 Θ0 = π/2 k = 1 for 0.25<ρ < 0.28 and 0.30<ρ ≤ 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3 Θ0 = 2π/3 k = 1 for 0.25<ρ < 0.28 and 0.31<ρ ≤ 1

k = 2 for 0.28<ρ < 0.31
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

2.3 Θ0 = π k = 1 for 0.25<ρ < 0.27 and 0.31<ρ ≤ 1

k = 2 for 0.27<ρ < 0.28

k = 3 for 0.28<ρ < 0.31
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.4 Θ0 = π/3 k = 1 for 0.54<ρ ≤ 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.4 Θ0 = π/2 k = 1 for 0.54<ρ ≤ 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.4 Θ0 = 2π/3 k = 1 for 0.54<ρ ≤ 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

0.4 Θ0 = π k = 1 for 0.54<ρ ≤ 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

applying a system of forces and no moment (vice-clamps) never buckles on its outer face because
λ∗∗

b is always greater than λcr. However, a sector straightened by moments alone and no normal
forces (end couples) can buckle when ρ is smaller than 0.09 (see the zoom in figure 4). When ρ is
greater than 0.09, a cylindrical sector straightened by end-couples does not present wrinkles on
its outer face.

(d) Gent materials
To investigate the influence of material parameters on the behaviour of straightened blocks, we
use the Gent model (3.5). For its non-dimensional quantities in the Riccati equation (5.26), we find

α� = Jmy2

Jmyλ2
cr − (λ2

cr − y)2
, ν� = 2σ�2

2

Jm
+ σ�2 (λ4

cr + 3y2)

λ4
cr − y2

and σ�2 = Jm(λ4
cr − y2)

Jmyλ2
cr − (λ2

cr − y)2
,

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(5.32)

highlighting the role played by the stiffening parameter Jm; see the illustrations in figure 5.
As a circular cylindrical sector made of a Gent material can be straightened provided that

λ−2
m <ρ < 1 and the circumferential stretch on the outer face λb belongs to the interval (λ−1

m , ρλm),
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as indicated in §3a, λcr tends to λ−1
m as ρ→ λ−2

m . Consequently, when Jm is large enough but finite,
the marginal stability curves for Gent and neo-Hookean materials are qualitatively similar in the
interval [λ−1

m , 1), whereas they differ in the range (λ−2
m , λ−1

m ); compare, for instance, figure 5a with
figure 4. As Jm → ∞, the behaviour of neo-Hookean material is recovered.

Finally, we integrated (5.29) for a case in which four wrinkles appear on the straightened face
to generate the entire incremental displacement field (up to an arbitrary multiplicative factor), as
illustrated in figure 5d.
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