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Summary
Eicosanoids, the metabolites of arachidonic acid, have diverse functions in the regulation of cancer
including prostate cancer. This review will provide an overview of the roles of eicosanoids and
endocannabinoids and their potential as therapeutic targets for prostate cancer treatment.
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Prostate cancer is among the most diagnosed malignancies and contributes to cancer-related
mortality rate in men. The vast majority of morbidity and mortality results from spread of
the tumor beyond the prostate gland and/or tumor becoming hormone refractory. The
process of metastasis is a complex multistage process consisting of a series of sequential,
interrelated steps that include growth, vascularization, adhesion, extravasation, and invasion.
The discovery of new molecular targets to inhibit cell proliferation, growth, and invasion/
migration is among the most important endeavors in prostate cancer therapy.

High fat diets, particularly ω-6 polyunsaturated fatty acids, are associated with prostate
cancer development and progression [1, 2] and prostate cancer cell growth [3, 4]. On the
other hand, diets rich in ω-3 fatty acids are associated with the lower incidents of the disease
in some studies [1, 5], whereas other reports indicated no evidence of a significant reduced
risk of prostate cancer [6] or even increased risk [7]. These opposing roles of fatty acids are
consistent with the fact that diet is an important factor in the coincidence of prostate cancer.
The high ratio of ω-3/ω-6 fatty acids in the diet has been suggested to prevent prostate
cancer [8]. Although in one study showed that plant-based foods and fish diets do not reduce
the prostate specific antigen (PSA) levels in prostate cancer patients, they significantly
increase the PSA doubling times [9].

Arachidonic acid (AA, 20:4 ω-6) is one of the major polyunsaturated ω-6 fatty acids. AA is
metabolized by three groups of oxygenases namely cyclooxygenases (COX), lipoxygenases
(LOX) and cytochrome P450s (CYP) to a number of biologically active eicosanoids (Figure
1). This review will focus on the role of these AA metabolites in prostate cancer.
Eicosanoids have diverse roles in the regulation of cellular functions and they have been
extensively studied as important lipid mediators in cardiovascular systems. However, their
roles in cancer, particularly prostate cancer are much less investigated.
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I. Cyclooxygenase (COX) Pathways
There are two well-characterized COX isoenzymes, COX-1 and COX-2. A splice variant of
COX-1 which retains intron one and a frameshift mutation has been named COX-3,
COX-1b, or COX-1 variant (COX-1v) [10]. COX-1 is constitutively expressed in most cells
while COX-2 is an inducible enzyme. The COX pathway is the most studied in prostate
cancer. COX-2 is overexpressed in prostate cancer tissues [11–19]. The
immunohistochemistry staining of COX-2 increases with prostate tumor grade [20],
suggesting that COX-2 has a role in prostate cancer development and progression [21].
Contrarily, several studies did not find a consistent and significant difference in COX-2
expression in normal and prostate cancer tissues [22–24], but the overexpression of COX-2
correlated with the chronic inflammatory lesions [19, 23]. A similar controversy exists
concerning the expression of COX-2 in human prostate cancer cells compared with normal
epithelial cells. Some studies demonstrated the high COX-2 expression in prostate cancer
cells while others reported the low or absent COX-2 expression [21, 24–28]. Similarly, the
effects of nonselective COX inhibitors such as nonsteroidal anti-inflammatory drugs
(NSAIDs) and specific COX-2 inhibitors on prostate cancer cell proliferation and invasion
are complex and not uniform, and their association with reduced risk of prostate cancer is
not conclusive [28–44].

Within the cyclooxygenase active site, COX inserts molecular oxygen at C11 and C15 to
form prostaglandin G2 (PGG2); then, its peroxidase active site reduces PGG2 to PGH2 [45].
Subsequently, specific synthases or isomerases convert PGH2 to various prostaglandins
(PGs) and thromboxanes (TXs) (Figure 2). Common COX metabolites of AA are PGI2,
PGD2, PGE2, PGF2α, PGJ2, and TxA2. PGI2 and TxA2 are unstable and are rapidly
converted to the stable 6-keto-PGF1α and TxB2, respectively.

I.1 Prostaglandins and prostate cancer
The plasma PGI2 concentrations (detected as 6-keto-PGF1α) in normal men are similar to
patients with benign prostatic hypertrophy (BPH) but the levels rise with advancing disease
and varied with the degree of tumor differentiation [46]. Interestingly, PGI2 and its stable
analogs inhibit metastasis of prostate cancer [47–49]. The role of endogenous PGI2 in
prostate cancer is still unclear and has not been studied in recent years.

PGE2 is the most characterized in prostate cancer. Since early 1980’s, the effects of PGE2 in
prostate cancer has been recognized [50]. In BPH and prostate cancer tissues, PGE2 is the
only major PG that is produced in significant amounts by the prostate and its levels are
higher in prostate cancer tissues [51]. PGE2 stimulates growth of prostate cancer cells
including PC-3 and LNCaP cells [52, 53]. Interestingly, in PC-3 ML cells, exogenously
added PGE2 increases hypoxia inducible factor-1alpha (HIF-1α) protein and induces nuclear
localization of HIF-1α [54], which in turn induces transcription of many genes associated
with cell growth. Conversely, selective COX-2 inhibitors such as meloxicam and NS-398
decrease HIF-1α levels and nuclear translocation. This pathway is supported by the positive
feedback mechanism that PGE2 upregulates the expression of COX-2 mRNA, its own
synthesizing enzyme [52, 53]. These results suggest a cycle of stimulation of COX-2 and
PGE2 that promotes prostate cancer progression. PGE2 stimulates growth and invasion of
prostate cancer cells through multiple signaling pathways. For examples, PGE2 activates
protein kinase A (PKA) pathway to induce the expression of c-fos mRNA and growth in
PC-3 cells [55]. PGE2 increases the secretion of vascular endothelial growth factor (VEGF)
and cyclic adenosine monophosphate (cAMP) in PC-3 cells but less in DU-145 and LNCaP
cells [56]. PGE2 activates the interleukin-6 signaling pathway to promote prostatic
intraepithelial neoplasia cell growth, providing evidence that overexpression of COX-2 and
PGE2 mediate prostate cancer development and progression through the IL-6 signaling
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pathway [57]. NS-398, a specific COX-2 inhibitor, inhibits invasion of PC-3 and DU-145
cells by reducing the matrix metalloproteinases (proMMP-2, MMP-9 and proMMP-9) [58].
In this case, PGE2 alone does not increase cell invasion of PC-3 and DU-145 cells but
reverses the NS-398-reduced cell invasion [58]. In a later study, PGE2 does not stimulate
invasion of low invasive PC-3 cells but induces invasion of high invasive PC-3 cells [59].
These results suggest that the endogenous PGE2 may be necessary for rendering cell
invasion; however, cells may require a high level of exogenous PGE2 or cooperation with
other factors to induce cell invasion [59].

PGD2 is transformed to 15-deoxy-Δ12,14-PGD2 (15-d-PGD2) and 15-deoxy-Δ12,14-PGJ2 (15-
d-PGJ2) in some cells. PGD2 produced by normal prostate stromal cells suppresses the
growth of prostate cancer PC-3, DU-145, and LNCaP cells [60]. PGD2 and its metabolites
inhibit prostate cancer cell growth by the activation of peroxisome proliferator-activated
receptor γ (PPARγ) in the order of 15-d-PGJ2 > 15-d-PGD2 > PGD2 [60]. 15-d-PGJ2 is an
effective ligand for PPARγ and it induces apoptosis and nonapoptotic cell death in prostate
cancer cells dependent and independent of PPARγ activation [61–66]. Interestingly, 15-d-
PGJ2 increases the expression of PPARγ and VEGF in PC-3 cells [67]. However, in a later
study, 15-d-PGJ2 did not increase the expression of PPARγ but blocked the serum-induced
COX-2 expression in PC-3 cells [65]. Exogenous PGD2 is an antiinvasive factor and inhibits
invasion of PC-3 cells in a concentration-dependent manner [59]. The importance of
endogenous PGD2 is not clear.

I.2 Thromboxane and prostate cancer
Only few studies addressed the association of thromboxane and prostate cancer. For
example, UK 38485, a thromboxane synthase (TxS) inhibitor reduced the pulmonary
metastasis in prostate cancer bearing rats [47] and oestrogen therapy reduced the urinary
concentrations of 2,3-dinor TxB2 and increased the ratio of PGI2 to TxB2 in prostate cancer
patients [68]. The expression of TxS and TxA2 receptor (TP) are elevated in less
differentiated or advanced tumor tissues [69, 70], suggesting the roles of TxS, TP and TxA2
in prostate tumorigenesis. Differential expression of TxS was observed in different types of
human prostate cancer cells with high expression in PC-3, PC-3M, and ML-2 cells and low
expression in normal prostate epithelial, DU-145 and LNCaP cells [69]. TxS and TxA2 may
regulate prostate cancer progression through the activation of cell motility as the inhibition
of TxS reduces motility of PC-3 cells while overexpression of TxS increases motility of
DU-145 cells [69]. In PC-3 cells, TxA2 activates extracellular signal-regulated kinases
(ERKs), transactivates EGF receptor (EGFR), and stimulates the release of MMPs [71].
These signaling pathways are important in the regulation of cell proliferation and invasion.

I.3 Prostanoid receptors and prostate cancer
Prostanoid receptors are G-protein coupled receptors that are activated by prostanoids. Each
prostanoid can activate its own receptor namely DP, EP, FP, IP and TP for PGD2, PGE2,
PGF2α, PGI2, and TxA2, respectively. There are only one type of FP and IP receptors but
two subtypes for DP (DP1 and DP2) and TP (TPα and TPβ) receptors and four subtypes for
EP (EP1, EP2, EP3, and EP4) receptors [72]. Among these receptors, EP and TP receptors
have been characterized in prostate cancer. The immunostaining of EP1 receptor is higher in
cancer cells of prostate tissues than in nontumor containing glands and correlated with
Gleason scores [73]. EP2 and EP4 are higher in cancer tissues than nontumor glands but
neither receptor correlate with the pathologic features. These findings suggest that EP
receptors, particularly EP1 receptor, may have an important role in prostate cancer
progression. Interestingly, EP2 and EP4 receptors but not EP1 and EP3 receptors, are present
in prostate cancer cell lines [55, 56]. Thus, the cell lines do not express the same EP receptor
subtypes as prostate tumors. The activation of EP2, and possibly EP4, receptor in PC-3 cells
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by PGE2 activates PKA pathway to increase cell growth but are less effective in DU-145
and LNCaP cells [55, 56]. Calcitriol (1,25-dihydroxyvitamin D3) inhibits prostate cancer
cell growth and differentiation by down regulating the expression of COX-2 and EP2 and FP
receptors [74–80]. These studies further indicate that COX-2 and prostanoid receptors have
important role in prostate cancer.

Activation of TP by thrombin-induced TxA2 release or U46619 enhances cell invasion of
PC-3 and DU-145 cells by the activation of the small GTPase RhoA [81]. This observation
was further confirmed by a recent study that RhoA is activated by TP activation leading to
an increase of cell motility and cytoskeleton reorganization of prostate cancer cells [82].
These studies suggest that the function of TxA2 in prostate cancer progression is mainly
through the regulation of RhoA-mediated cell motility.

II. Lipoxygenase (LOX) Pathways
Lipoxygenases (LOX) are a family of non-heme containing oxygenases that insert molecular
oxygen into polyunsaturated fatty acids such as AA at specific double bond positions. There
are four LOXs, namely 5-LOX, 8-LOX, 12-LOX, and 15-LOX that metabolize AA to
corresponding hydroperoxides (HPETEs). The HPETEs are reduced to their corresponding
hydroxyeicosatetraenoic acids (HETEs) (Figure 3). Recent studies have demonstrated that
LOXs are diversified enzymes in different species or organs including platelet 12-LOX,
leukocyte 12-LOX, epidermal 12-LOX, 12(R)-LOX, 15-LOX-1, and 15-LOX-2. In recent
years, LOXs have gained more attention as regulators of cancer and strong evidence
indicates that 5-LOX, platelet 12-LOX and 15-LOX-1 are tumorigenic while 8-LOX and 15-
LOX-2 are potentially anti-tumoricgenic.

II.1 5-LOX and prostate cancer
In 5-LOX pathway, 5-LOX metabolizes AA to 5-HPETE and then to 5(S)-HETE. 5-HPETE
is also converted to the unstable epoxide leukotriene A4 (LTA4), which is further hydrolyzed
to LTB4, and other leukotriene metabolites. LTA4 is also metabolized to cysteinyl
leukotrienes (Cys-LTs) such as LTC4, LTD4, and LTE4, and these Cys-LTs can be further
metabolized to numerous leukotriene derivatives [83].

5-LOX protein is slightly detected in benign prostatic hyperplasia (BPH) and normal
prostate tissues but it is markedly increased in prostatic intraepithelial neoplasia (PIN) and
prostate cancer tissues [84]. 5-LOX is also present in human prostate cancer cell lines and 5-
LOX inhibitors effectively inhibit cell growth through the induction of apoptosis [84–87].
Specific 5-LOX inhibitors, AA861 and 5-lipoxygenase activating protein (FLAP) inhibitor,
MK886, strongly inhibit the AA-stimulated growth of PC-3 and LNCaP cells [88, 89].
Conversely, exogenously added 5-HETE enhances cell growth similar to AA. 5-HETE also
reverses the inhibitory effect of MK886, suggesting that the AA-induced prostate cancer cell
growth is from the 5-LOX metabolism of AA to 5-HETE. The activation of apoptosis by
MK886 is from its inhibition of 5-HETE production, stimulation of the mitochondrial
permeability, externalization of phosphatidylserine, and degradation of DNA [89]. In PC-3
cells, 5-HETE activates extracellular signal-regulated kinases and Akt, and these responses
are blocked by pertussis toxin, suggesting that 5-HETE stimulates cell growth by a receptor-
dependent mechanism [90].

5-HETE can undergo dehydrogenated to 5-oxoeicosatetraenoic acid (5-ox-ETE). 5-oxo-ETE
and its precursor, 5-HETE, reverse the selenium-induced apoptosis in human prostate cancer
cells [91]. A G-protein coupled receptor for 5-oxo-ETE with less affinity for 5-HETE has
been recently identified [92–94]. This 5-oxo-ETE receptor is expressed in PC-3 cells in
higher amounts than in LNCaP cells [95]. Inhibiting expression of 5-oxo-ETE receptor by
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siRNA significantly reduces cell viability of PC-3 cells, suggesting that 5-oxo-ETE and its
receptor have a critical role in prostate cancer cell survival [95].

Among the Cys-LTs, LTD4 is the most potent agonist for cysteinyl LT receptor type 1
(CysLT1R) and type 2 (CysLT2R) [96]. LTD4 activates different intracellular signaling
pathways through these receptors to promote cell growth and survival. Interestingly,
CysLT1R is present in prostate tissues and prostate cancer cells [97]. Low expression of
CysLT1R is detected in BPH and normal prostate tissues but highly expressed in PIN and
prostate cancer tissues with a correlation with grades of tumor. Furthermore, CysLT1R
antagonist induces early apoptosis in prostate cancer cells, indicating its antiproliferative
potential in prostate cancer [97].

II.2 12-LOX and prostate cancer
Platelet-type (P-), leukocyte-type (L-) and epidermal-type (E-) 12-LOX metabolize AA to
12(S)-HETE [98, 99]. 12(R)-LOX has been cloned from human keratinocytes [100], and
produces 12(R)-HETE from AA. P-12-LOX mRNA levels are elevated in prostate cancer
cells and in about 40% prostate cancer tissues compared to the matching normal prostate
tissues from the same patients [101, 102], suggesting that it may be a diagnostic marker for
prostate cancer advancement. 12-LOX protein is slightly detected in BPH and normal
prostate tissues but it is markedly increased in PIN and prostate cancer tissues [84]. P-12-
LOX may regulate prostate cancer development and progression by promoting angiogenesis
[103–108], and it increases the metastatic potential of prostate cancer cells [109, 110]. On
the other hand, L-12-LOX is expressed in human cancer tissues and cells [111] including
PC-3 cells [112]; however, its role in prostate cancer is not clear.

The role of 12(S)-HETE in promoting prostate cancer growth and metastasis is well-
established [106, 107] while the role of 12(R)-HETE in prostate cancer is not known.
Urinary levels of 12(S)-HETE are elevated in prostate cancer and BPH patients but
decreased to the levels in normal men following radical prostatectomy. These findings
suggest that 12(S)-HETE may have a potential role as a marker in prostatic diseases [113].
12-LOX inhibitors, baicalein and N-benzyl-N-hydroxy-5-phenylpentamide (BHPP) decrease
proliferation of PC-3 and DU-145 cells, suppress cyclin D1 and D3, and arrest cell cycle at
G0/G1 phase and exogenous 12(S)-HETE blocks the baicalein-induced apoptosis in DU-145
cells [105]. The activity of 12(S)-HETE in proliferation, motility and angiogenesis in PC-3
cells is mediated by the activation of nuclear factor-kappa B (NF-κB) via the degradation of
IkappaB and NF-κB translocation to the nucleus initiating NF-κB-induced transcription
[106]. Overexpression of 12-LOX in PC-3 cells or treatment of cells with 12(S)-HETE also
increases expression of ανβ3 and ανβ5 integrins [107], increases the PI-3K activity and
VEGF expression. These effects of 12-LOX are blocked by either baicalein or LY294002, a
PI-3K inhibitor [114]. These treatments lead to prolonged cell survival of prostate cancer
cells. Role of other 12-LOX metabolites of AA such as hepoxilins in prostate cancer is not
known.

II.3 15-LOX and prostate cancer
There are two isoforms of 15-LOX, 15-LOX-1 and 15-LOX-2 [115, 116]. Both isoforms
metabolize AA to 15(S)-HETE, although AA is the preferred substrate for 15-LOX-2 and
linoleic acid (LA) is the preferred substrate for 15-LOX-1. 15-LOX-1 is present in PC-3
cells and human normal prostate tissues and its expression is significantly higher in prostate
cancer tissues [117]. 15-LOX-1 is localized in secretory cells of peripheral zone of glands,
prostatic ducts and seminal vessels, but not in the basal layer or stroma. These findings
suggest that 15-LOX-1 is tumorigenic. Overexpression of 15-LOX-1 increases cell
proliferation in PC-3 cells which is reversed by the specific 15-LOX-1 inhibitor, PD146176
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[118]. In 15-LOX-1 transfected PC-3 cells, insulin-like growth factor-1 (IGF-1) and insulin-
like growth factor-1 receptor (IGF-1R) are increased [119]. IGF-1R in normal and prostate
cancer tissues is correlated well with expression of 15-LOX-1, suggesting that 15-LOX-1
promotes prostate tumorigenesis by mediating IGF-1R expression and activation. A recent
study identified methylation of a CpG island in 15-LOX-1 promoter in prostate cancer cells
and prostate cancer tissues but much less methylation in normal tissues [120], suggesting the
requirement for promoter methylation for 15-LOX-1 expression in prostate cancer.

In benign prostate tissues, 15-LOX-2 protein is located mainly in secretory cells of
peripheral zone glands and large prostatic ducts, and is not detected in the basal cell layer,
stroma, ejaculatory ducts, seminal vesicles, or transitional epithelium [121]. Thus, its
distribution differs from 15-LOX-1. Interestingly, 15-LOX-2 is absent in the majority of
prostate cancer tissues, and the reduction of staining is greater in higher Gleason scores
[122]. This leads to the implication that 15-LOX-2 may function as a prostate cancer
suppressor [123]. The expression of 15-LOX-2 correlates well with the concentration of 15-
HETE, which is high in normal tissues and markedly reduced or undetectable in prostate
cancer tissues [121]. In PC-3 cells, exogenous 15-HETE inhibits cell proliferation and
reduces PPARγ expression but upregulates the PPAR response element [124]. These
findings indicate that 15(S)-HETE is a ligand for PPARγ and the loss of 15-LOX-2 may
contribute to an increase of cell proliferation and a decrease of differentiation in prostate
cancer. The cross talk between 15-LOX-2 gene and PPARγ has been identified, which is
mediated by 15(S)-HETE and it may contribute to the diverse effects in normal and prostate
cancer cells [125, 126].

Factors that contribute to the opposing effects of 15-LOX-1 and 15-LOX-2 are not well
understood. One possibility is that 15-LOX-1 metabolizes the preferred substrate, LA, to
13(S)-hydroxyoctadecadienoic acid (13(S)-HODE). 13-HODE has been shown at higher
amounts in prostate cancer tissues than adjacent normal tissues [117, 127]. More compelling
evidence is from the study that demonstrated exogenous 13(S)-HODE increases the PPARγ
phosphorylation while 15(S)-HETE decreases the PPARγ phosphorylation in PC-3 cells
[115].

Whether other 15-LOX metabolites of AA such as lipoxins have role in prostate cancer is
not known.

III. Cytochrome P450 Pathways
Cytochrome P450s (CYPs) are a large class of heme-containing enzymes that metabolize a
variety of endogenous and exogenous substrates. CYP hydroxylases and CYP epoxygenases
metabolize free AA to biologically active eicosanoids (Figure 4). CYP hydroxylases
including CYP2E, 3A, 4A, and 4F convert AA to 20-, 19-, 18-, 17-, or 16-HETE [128–130].
Among these HETEs, 20-HETE (the metabolite of CYP ω-hydroxylases) has been intensely
studied and it activates many signaling pathways to regulate vascular functions. CYP
epoxygenases including CYP1A, 1B, 2C, 2D, and 2J convert AA to 14,15-, 11,12-, 8,9-, and
5,6-epoxyeicosatrienoic acids (EETs) [131–134]. EETs can be further metabolized by
soluble epoxide hydrolase to their corresponding regioisomeric dihydroxyeicosatrienoic
acids (DHETs). In human, CYP2C8, 2C9 and 2J2 have prominent roles in AA metabolism
[135]. Only recently roles of these HETEs and EETs in cancer received attention.

Recent studies have demonstrated that CYPs and particularly the EETs have roles in many
types of cancer. CYP2C and 3A are variably expressed in normal and neoplastic tissues of
different human organs [136]. CYP2C9 has been associated with an increased risk of
colorectal cancer [137] and lung cancer [138, 139]. CYP2J2 expression is detected in many
types of human cancer tissues and cancer cell lines while it is not detected in adjacent
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normal tissues and normal cells [140]. Overexpression of CYP2J2 or addition of exogenous
EETs in cancer cells increases cell proliferation and inhibits apoptosis by the activation of
MAPK and PI-3 kinase-Akt signaling pathways and the EGFR phosphorylation [140].
CYP2J2 and EETs also promotes cancer cell migration and invasion through the
upregulation of MMPs and CD44 and down regulation of the antimetastatic genes CD82 and
nm-23 [141]. A comprehensive analysis of CYP2C8, 2C9, and 2J2 in human cancer tissues
and their surrounding normal tissues using tissue microarrays has been reported [142].
Interestingly, these enzymes exhibit diverse expression patterns in different organ tissues.

Numerous studies have demonstrated the roles of CYPs in prostate cancer but not in the
association with the synthesis of eicosanoids. CYP1A, 2C, and 3A are present in 63, 25, and
61% of human prostate cancer tissues, respectively [143]. A genetic polymorphism of
CYP1A1 has been proposed to associate with prostate cancer susceptibility [144].
Interestingly, CYP2C8 and 2C9 are detected in prostate cancer tissues but CYP2J2 is not
detected in those tissues [142]. In prostate cancer cells, PC-3, DU-145, and LNCaP cells
express CYP1A1 and 1A2 while normal prostate cells do not express CYP1A1 [145].
Although roles of these CYPs in prostate cancer are not currently understood, their presence
in prostate cancer cells and tissues suggest that they may play roles in AA metabolism and
regulation of prostate cancer. A clinical implication of CYP eicosanoids in prostate cancer
has been demonstrated by higher urinary levels of 20-HETE in BPH and prostate cancer
patients than normal men [113]. Radical prostatectomy reduces the urinary levels of 20-
HETE to the values in normal men, suggesting that 20-HETE may be involved in prostatic
diseases. The CYP pathway may prove to be important in prostate cancer progression and
deserves further investigation.

IV. Endocannabinoids and Prostate Cancer
Endocannabinoids (eCBs) are endogenously produced lipids and bind to cannabinoid (CB)
receptors to initiate signaling pathways. These lipid mediators are derivatives of fatty acids.
Two well characterized AA-containing eCBs are arachidonylethanolamide (anandamide,
AEA) [146] and 2-arachidonoylglycerol (2-AG) [147, 148] (Figure 5). A putative
endocannabinoid, 2-arachidonylglyceryl ether (noladin ether, NE) is more enzymatically
stable [149–151] and it has been used for investigating pharmacological functions of eCBs.
Although NE was first identified in porcine brain [152] and rat brain regions [153], it was
not detected in the brains of various mammalian species [154, 155].

Endocannabinoids function through the activation of CB receptors. However, several
biological effects of eCBs occur through non-CB receptor mechanisms [156, 157]. In either
case, the balance between synthesis and metabolism of eCB is critical to maintaining the
endogenous concentrations of eCBs. Hydrolysis of eCBs is an important regulatory step that
limits the actions of eCBs in many physiological and pathological processes. AEA is
hydrolyzed by fatty acid amide hydrolase (FAAH) [158–160] and 2-AG is hydrolyzed by
FAAH and monoacylglycerol lipase (MGL) [161–163] to free AA. Hydrolysis of AEA and
2-AG will decrease the activity of eCBs and will liberate free AA as the substrate for the
enzymes in the AA cascade discussed above. It is now recognized that the inhibition of
hydrolysis is a potential therapeutic target for cancer treatment [160, 164, 165].

Endocannabinoids regulate growth and migration of a variety of cancer cells and have
therapeutic potential in cancer treatment [160, 164–177]. In prostate cancer, AEA, acting
through the CB1 receptor, inhibits the EGF-induced proliferation of prostate carcinoma cells
[178] by decreasing EGFR expression and increasing ceramide production. LNCaP cells are
the least sensitive to AEA and PC-3 cells are the most sensitive to AEA in the inhibition of
proliferation. These observations correlated well with the high expression of FAAH
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(enzyme hydrolyzing AEA) in LNCaP cells and extremely low expression of FAAH in PC-3
cells [179]. AEA, 2-AG and HU-210 (a synthetic CB receptor agonist) inhibit prolactin-
induced proliferation of DU-145 cells through the activation of CB1 receptors [180].
However, (R)-methanandamide (a synthetic AEA analog) increases proliferation of
androgen-dependent LNCaP cells through CB1 and CB2 receptors and the PI3K pathway to
increase androgen receptor expression [181]. NE and CB1 receptor agonists inhibit invasion
of PC-3 and DU-145 cells [182] and AEA inhibits invasion of PC-3 cells [179]. Inhibition of
eCB hydrolysis by either pharmacological inhibitors or siRNA knockdown of the FAAH
inhibits invasion of these cells [179, 183]. The combination of eCB hydrolysis inhibition and
treatment with exogenous eCBs further inhibit cell invasion [179]. LNCaP cells, with high
eCB hydrolytic activity, are not sensitive to treatments with eCBs or CB1 receptor agonists
unless the eCB hydrolysis is blocked [179]. Furthermore, 2-AG can increase cell invasion
due to its hydrolysis to AA and subsequent metabolism to 12-HETE [112], but it will inhibit
invasion in the presence of the hydrolysis inhibitors [179]. These studies demonstrated that
eCBs regulate prostate cancer proliferation and invasion, and their hydrolysis can dictate the
differential effects of eCBs and responses.

Conclusions
The ω-6 polyunsaturated fatty acid, AA, plays various important roles in prostate cancer.
AA can be metabolized to numerous metabolites and act as endogenous lipid signaling
molecules that may have diverse effects on prostate cancer cells. The balance and/or specific
pathways of synthesis, degradation, and signal transduction activation will dictate prostate
cancer cell fate and cancer development and progression.

Future perspective
The AA metabolism is complex and consists of multiple pathways to produce numerous
eicosanoids by specific oxygenases. In prostate cancer, some of these enzymes and
eicosanoids are tumorigenic and some are antitumorigenic. Several of them are potential
targets in clinical applications. Although the AA pathways have been demonstrated as
regulators in prostate cancer for several decades, their functions are not fully understood and
merit further study. In particular, a better understanding of signaling pathways by these lipid
mediators is needed to advance the field for cancer prevention and treatment. A new
pathway of AA metabolism by CYP in cancer may be important in prostate cancer. Lastly,
endocannabinoids, endogenous AA-containing signaling molecules have significant roles in
proliferation and migration/invasion of prostate cancer cells. Thus, further studies will
elucidate their function as therapeutic targets for prostate cancer.
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Executive summary

Introduction

• Prostate cancer cell growth and invasion/migration leads to significant
morbidity and mortality.

• Arachidonic acid (AA) has been recognized as protumorigenic.

• AA is metabolized by COX, LOX, and CYP to biologically active eicosanoids.
These enzymes and eicosanoids have diverse cellular functions.

Cyclooxygenase pathway

• COX-2 is a prostate cancer promoter and it is expressed in prostate cancer
tissues and cells. PGE2 is the major COX metabolite of AA in prostate cancer
cells and tissues.

• PGI2 and PGD2 are antitumorigenic while PGE2 and TxA2 are tumorigenic by
acting through their prostanoid receptors.

Lipoxygenase pathway

• 5-LOX and its metabolites such as 5-HETE, 5-oxo-ETE and Cys-LTs are
tumorigenic. 5-HETE and 5-oxo-ETE activate 5-oxo-ETE receptor and Cys-LTs
are ligands for Cys-LT1R and Cys-LT2R.

• 12-LOX is highly expressed in prostate cancer tissues and cells. 12-LOX and it
metabolite, 12-HETE are tumorigenic.

• 15-LOX-1 is highly expressed in prostate cancer tissues but 15-LOX-2 is not
detected in prostate cancer tissues. 15-LOX-1 is tumorigenic while 15-LOX-2 is
antitumorigenic. The major 15-LOX-1 metabolite from LA is 13(S)-HODE and
the major 15-LOX-2 metabolite form AA is 15(S)-HETE. 15(S)-HETE is a
ligand for PPARγ.

Cytochrome P450 pathway

• AA is metabolized by CYP hydroxylases to HETEs and by CYP epoxygenases
to EETs.

• Some isoforms of CYP epoxygenases and EETs have been shown to stimulate
cancer progression. Their roles in prostate cancer are not known.

Endocannabinoids

• Endocannabinoids, acting through CB1 receptor inhibit proliferation and
invasion of prostate cancer cells.

• Hydrolysis of endocannabinoids affects the activity of endocannabinoids in the
regulation of prostate cancer cells because it reduces the ligand concentrations
and liberates the free AA.

• Endocannabinoids may regulate prostate cancer cells by non-receptor-mediated
mechanisms.
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Figure 1.
Arachidonic acid metabolic pathways. Free arachidonic acid (AA) is formed mainly from
the metabolism of membrane phospholipids by phospholipase A2 (PLA2). Free AA is
metabolized by cyclooxygenases (COX) to prostaglandins (PGs) and thromboxane (Tx), by
lipoxygenases (LOX) to hydroxyeicosatetraenoic acids (HETEs) and leukotrienes (LTs), and
by cytochrome P450s (CYP) to HETEs and epoxyeicosatrienoic acids (EETs).

Nithipatikom and Campbell Page 20

Future Lipidol. Author manuscript; available in PMC 2014 February 19.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
Cyclooxygenase pathway of AA. Cyclooxygenase active site of COX converts AA to PPG2
and peroxidase active site of COX converts PGG2 to PGH2. Then, specific prostaglandin
synthases or isomerases convert PGH2 to their corresponding PGI2, PGD2, PGE2, PGF2α,
PGJ2, and TxA2. In prostate cancer, PGI2 and PGD2 are antitumorigenic while PGE2 and
TxA2 are tumorigenic.
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Figure 3.
Lipoxygenase pathway of AA. LOX metabolizes AA to their corresponding isomeric
hydroperoxyeicosatetraenoic acids (HPETEs). 5-HPETE is reduced by peroxidase to 5-
HETE, then, 5-HETE is converted to 5-oxo-eicosatetraenoic acid (5-oxo-ETE). 5-HETE and
5-ox-ETE are tumorigenic. Role of 8-HETE in prostate cancer is not known while 12-HETE
is tumorigenic. 15-LOX-1 metabolizes the major substrate, linoleic acid (LA) to 13-
hydroxyoctadecadienoic acid (13-HODE) (inset). 15-LOX-1 is tumorigenic. 15-LOX-2
metabolizes AA to 15-HETE, which is antitumorigenic in prostate cancer.
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Figure 4.
Cytochrome P450 pathway of AA. CYP hydroxylases metabolize AA to HETEs and CYP
epoxygenases metabolize AA to four regioisomeric epoxyeicosatrienoic acids (EETs). At
present, roles of HETEs and EETs in prostate cancer are not known.
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Figure 5.
Endocannabinoids (eCBs) in prostate cancer. (A) Structures of some of well-characterized
endocannabinoids (shown are AA-derived eCBs), anandamide (AEA), 2-
arachidonoylglycerol (2-AG), and noladin ether (NE). (B) Mechanistic pathways for eCBs.
Hydrolysis of eCBs produces free AA which is further metabolized by oxygenases to
eicosanoids in the AA pathways. The eCBs bind to cannabinoid receptor type 1 (CB1
receptor) to inhibit prostate caner cell proliferation and invasion/migration; however, the
role of CB2 receptor is not clear. The eCBs can inhibit prostate cancer proliferation by a
non-receptor-mediated pathway.
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