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Abstract

Difficult visual search is often attributed to time-limited serial attention operations, although
neural computations in the early visual system are parallel. Using probabilistic search models
(Dosher, Han, & Lu, 2004) and a full time-course analysis of the dynamics of covert visual search,
we distinguish unlimited capacity parallel versus serial search mechanisms. Performance is
measured for difficult and error-prone searches among heterogeneous background elements and
for easy and accurate searches among homogeneous background elements. Contrary to the claims
of time-limited serial attention, searches in heterogeneous backgrounds instead exhibited nearly
identical search dynamics for display sizes up to 12 items. A review and new analyses indicate
that most difficult as well as easy visual searches operate as an unlimited-capacity parallel analysis
over the visual field within a single eye fixation, which suggests limitations in the availability of
information, not temporal bottlenecks in analysis or comparison. Serial properties likely reflect
overt attention expressed in eye movements.
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Introduction

Visual search for a target among distractor elements — finding a particular object among
many others — is of both theoretical and practical significance. Neural computations in early
visual cortex represent visual inputs simultaneously at distinct retinal locations. Visual
search for a specific target in the visual field requires the further analysis and identification
of each display element as a target or distractor, a process reflecting both attention and
decision (Treisman & Gelade, 1980; Verghese, 2001). One of the most widely studied
paradigms in cognitive science, visual search has also been investigated in neurophysiology
(Chelazzi, Miller, Duncan, & Desimone, 2001; Reynolds & Desimone, 2001), in
computational neuroscience (Corchs & Deco, 2001), and in cognitive psychology (Neisser,
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1967; Treisman & Gelade, 1980; Treisman & Gormican, 1988; Sperling, Budiansky,
Spivak; Johnson, 1971; Wolfe & Friedman-Hill, 1992; Wolfe, 2003) and has applications to
practical situations in screening and human operator environments.

One central theoretical issue is whether human observers are characterized by serial or
parallel search processing architectures, often associated with the processing of complex and
basic visual features respectively (Treisman & Gelade, 1980; Dosher, 1998). Most
behavioral assays of search efficiency evaluate either search time in freely viewed displays
(i.e., Treisman & Gelade, 1980) or search accuracy in time-limited displays (i.e., Palmer,
1994). Search times that increase substantially with added display elements are usually
associated with a covert serial processing architecture (Sternberg, 1966), yet in fact are
ambiguous and may reflect parallel processes (Townsend & Ashby, 1983, Theois, 1973).
Mathematical analyses show that increased average response time (and/or decreased
accuracy) for larger displays do not, by themselves, distinguish the serial or parallel
architecture of visual analysis (Palmer, Verghese, & Pavel, 2000; Sperling & Dosher, 1986,
for reviews). On the other hand, some search accuracy experiments express the performance
as thresholds (either contrast or feature differences) corresponding to a criterion accuracy
(e.g., Allen & Humphreys, 2007), and focus on the relationship between thresholds and
display size. Search accuracy and thresholds can be directly related to one another within
theoretical contexts of observer model (e.g., Lu & Dosher, 2008), and are considered briefly
in the discussion. These studies provide important insights into processing capacity (limited
vs unlimited) but not the temporal architecture (parallel vs serial) of search. Detection
theory-based analyses of decision uncertainty may test for whether ultimately — perhaps at a
delayed processing time — accuracy is consistent with unlimited capacity. However, such
analyses cannot answer questions about the time course of processing.

A true test of the full architecture of visual search requires joint evaluation of both the
accuracy and the temporal properties of search. Here, speed-accuracy tradeoff methods (e.g.,
Reed, 1973; Dosher, 1976) were used to trace the full time course of processing and assess
the serial or parallel nature of visual search. Two previous studies (Dosher, Han, & Lu,
2004; McElree & Carrasco, 1999) measured the full time course of visual search for
different display sizes in demanding searches and made conflicting claims. McElree &
Carrasco (1999) argued that search for a conjunction target defined by color and form (i.e.,
red triangle among red squares and green triangles), often associated with serial search, was
consistent with a limited-capacity parallel process. In contrast, the time-course of a difficult
asymmetry search (Dosher et al., 2004), also often associated with serial search, was
consistent with an unlimited capacity parallel processes. A recent study of isoluminant color
search (Sahti & Reeves, 2004) used a model and response time analysis and also argued for
parallel processing. Which result is the more typical? Is pure parallel processing only rarely
characteristic of difficult search, or do most cases of difficult visual search engage capacity-
limited parallel or serial processes?

This paper focuses on time-course measurements, and concludes that the classification of
individual elements as target or distractors is carried out in parallel across the visual field
within any single episode of information acquisition (eye fixation), even in many very
difficult searches. Here we study difficult heterogeneous distractor search and easy
homogeneous distractor search to evaluate the generality of unlimited capacity parallel
mechanisms. The time-course accuracy functions, hits and false alarms, as well as the
previous results on asymmetry searches (Dosher et al., 2004), and a reanalysis of
conjunction search data (McElree & Carrasco, 1999) all show that — within a single eye
fixation — unlimited capacity parallel processing characterized visual search for a wide class
of tasks. These results are consistent with an analysis of multiple-target search (Thornton &
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Gilden, 2007) and with recent computational models of eye fixations in search that assume
parallel processing across the field within a single glance (Najeminik & Geisler, 2005).

Parallel and Serial Visual Search

In serial architectures (Fig. 1A), as the number of elements in a visual display increases,
more elements must be searched one after the other in sequence to find a target. The visual
search terminates as soon as a target is found, or continues through the entire display to
decide that a target is not present. Serial searches show reduced accuracy and slowed time
course (Fig. 1B) for displays with more objects, as well as slower response times and lower
accuracies in a standard response time measurements (x symbols). Many models of visual
search invoke serial processes associated with the capacity-limited deployment of attention,
including feature integration theory (Treisman & Gelade, 1980), selective search models
(Dosher, 1999; Egeth, Virzi, & Garbart, 1984), guided search models (Cave & Wolfe, 1990;
Wolfe, 1994, 2003), and others. In unlimited capacity parallel architectures (Fig. 1C) (e.g.,
Townsend & Ashby, 1973; Dosher, Han, & Lu, 2004; McElree & Dosher, 1989; Ratcliff,
1978), all objects are processed simultaneously, but with variable completion times. Again,
search terminates when a target is found or after all items are evaluated when a target is not
found. Parallel searches may or may not show noticeable reductions in ultimate accuracy,
but exhibit very similar time courses (Fig. 1D) for larger and smaller displays. Even if
standard response times and error rates (o symbols) show increases with display size,
especially if the target is absent, they may nonetheless be consistent with a parallel time-
course.

Pairs of response times and accuracies (RT, d’) for different display sizes can be consistent
with either a serial or an unlimited parallel architecture. Figures 1E and F illustrate this
point, graphing serial and parallel time-courses of search. (This is meant to be illustrative;
consideration of additional display sizes may provide added constraints.) Measuring the full
time course of visual search is a very direct way to distinguish the two temporal architects,
although analysis of response time distributions (Townsend & Nozawa, 1997), and of
multiple-target paradigms (Thornton & Gilden, 2007), also provide converging evidence.
Identical or nearly identical time courses for different display sizes support a conclusion of
parallel processing. Some slowing in time course may still be compatible with unlimited
capacity parallel models. Significant slowing in time course with larger displays requires
formal models to evaluate the adequacy of different serial or capacity limited models.

The full time course of visual search is measured in a speed-accuracy tradeoff paradigm in
which processing time of the observer is manipulated and performance accuracy is the
dependent measure. In the cued-response speed-accuracy tradeoff (SAT) paradigm (e.g.,
Dosher, 1976), the observer is interrupted by a cue to respond — such as a brief tone — and
required to respond as quickly as possible. Usually 6 to 8 interruption times, or cue lags, are
used to measure the full time course of information accumulation. Performance accuracy,
usually d’ (a bias-free measure of discrimination accuracy) is measured as a function of
processing time (average time from the onset of the display to the response, or average total
processing time). A condition that leads to faster response times and higher accuracy in an
RT paradigm may actually differ only in limiting accuracy and not in temporal dynamics
when measured by SAT time-course functions (see Dosher, 1984; Dosher & McElree, 1990;
McElree & Dosher, 1989, Reed, 1973).

Probabilistic Models of Visual Search

The time course data are evaluated using a probabilistic serial search model and a
probabilistic parallel search model of visual search (Dosher, Han, & Lu, 2004), illustrated
schematically in Figures 1A and C, respectively. The models are analogous in all respects
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save the temporal scheduling of evaluations of display elements. Observers begin a visual
search trial in a neutral, or no-information, state. If any item, correctly (for targets) or
incorrectly (for distractors) is classified as a target, the observer enters a positive
information state. If all items, correctly (for distractors) or incorrectly (for the target) are
classified as distractors, the observer enters a negative information state. If the observer is
interrupted early in the search, s/he is likely to be in the neutral state, and will guess. Later in
the search, more responses will be based on informed classifications, though some may be
erroneous. These models are a significant extension of previous analyses because they
incorporate the consequences of possible errors in identification of display elements into
time course predictions. For example, misclassification of the target as a distractor may
prolong the search processes in target-present displays, while misclassification of a
distractor (as a target) in a target-absent display shortens search times.

The limiting accuracy for each condition depends on the probability of correctly classifying
the target, P, the probability of correctly classifying a distractor, Pp, and a guessing
probability g. Correct classifications of individual display elements are shown as solid lines
while dashed lines indicate possible classification errors (Figures 1A and C). For both the
serial and parallel models, the time course of search reflects a probabilistic mixture of
completion times — the first target present classification (OR) or the last target absent
classification (AND). In the serial model, the completion times are approximated by the
Gamma distribution G(t| z,a), with a stages determined by the number of serial evaluations,
and a time constant t. In the parallel model, the time to evaluate each element, beginning
simultaneously, is drawn from a fixed Gamma distribution G(t| z;a), where variation in t and
a control the mean and skew. The probabilities of yes or no responses and search times are
computed from the combinatorics over individual element decisions (e.g., a distractor false
alarm in the third evaluation following the correct rejection of two previous distractors in
serial search, etc.). The equations for these models, developed in Dosher, Han, & Lu (2004),
are detailed in Appendix A. These models are fit directly to the time course data.

While time-accuracy (or SAT) functions may reflect either a continuous accrual of
information over time, or the cumulative distribution of completion times of a discrete
process (e.g., Dosher, 1976, 1979, 1981), the probabilistic parallel and serial models of
visual search are developed here as completion time models. However, this analysis is also
consistent with continuous diffusion information accumulators where information becomes
available only when a decision or classification boundary is reached (i.e., Ratcliff, 1998;
Thornton & Gilden, 2007) in which case the distribution G(t| z,a) approximates the
completion time distribution of individual comparisons.

Heterogeneous and Homogeneous Search

Duncan and Humphreys (1989) were among the first to systematize the observation that
search efficiency depended both upon the similarity of the target and distractors and on the
heterogeneity of different distractors. In homogeneous conditions, all distractor elements are
identical. In heterogeneous conditions, distractor elements are of at least two types.
Homogeneous visual search is usually associated with pre-attentive parallel evaluation. Even
when the target is known, as in the current case, heterogeneous visual search is usually
claimed to involve attention-demanding serial search processes (Duncan & Humphreys,
1989; Wolfe, et. al, 1992; Rosenholtz, 2001). In order to guarantee that only covert
information processing is evaluated, the SAT study uses time-limited displays to guard
against eye movements during search. All the experiments and analyses testing signal
detection accounts of search accuracy (without reaction time) also use brief time-limited
displays (e.g., Palmer, 1994; Palmer, Verghese, & Pavel, 2000).
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In these experiments, the target was always a line of shallow right tilt (8° clockwise of
vertical). In homogeneous search, all distractors had a sharper right tilt (25° clockwise of
vertical). In heterogeneous search, distractors were equally often tilted sharp right or
somewhat left (25° clockwise or 15° counter-clockwise of vertical). So, a single boundary in
orientation space separated the target and distractors in the homogeneous condition; the
heterogeneous condition required multiple or non-linear boundaries in orientation space,
although some researchers might claim a unique category for the target as a steep angle
(Wolfe et al., 1992). Annular search layouts controlled for eccentricity (Carrasco, Evert,
Chang & Katz, 1995; Carrasco, McLean, Katz, & Frieder, 1998) and density effects (see
Dosher, Han, & Lu, 2004). A sample trial and layout are illustrated in Figure 2.

Experiment 1 documented the typical reaction time effects of display size for heterogeneous
search in a standard response time paradigm with display until response (Wolfe, et. al,
1993). Experiment 2 evaluated time-course of heterogeneous and homogeneous visual
search using the cued-response SAT paradigm for brief displays of 200 ms or 50 ms.
Experiment 3 measured response times for the practiced observers of Experiment 2 in
standard response time and in brief displays.

General Methods

Observers—In Experiment 1, 10 observers participated in a one-hour session for
undergraduate course credit. Four new observers participated in Experiments 2-3 and were
paid for their service. Experiment 2 required a series of 10-12 sessions, while Experiment 3
required 4 sessions. Observers reported normal or corrected to normal vision.

Stimuli—The target was a shallow line tilted 8° clockwise of vertical. Homogeneous
distractors were tilted 25° clockwise of vertical. Heterogeneous distractors were either tilted
25° clockwise of vertical or tilted 15° counter-clockwise of vertical, with equal probability.
These values were chosen based on piloting to optimize asymptotic accuracies in the SAT
data. The dark tilted lines were rendered as gray scale images with anti-aliasing on a 32 x 32
pixel grid displayed on a Leading Edge Technology 1230V monitor controlled by a Vista
image board on a PC computer. A special circuit combined two output channels to produce
4096 grey levels (12 bits), linearized to yield 256 programmable luminance levels. The tilted
lines were specified as the minimum luminance (1 cd/m2) with the background luminance of
71 cd/m? (luminance range 1 cd/m? to 144 cd/m?2). The lines were rendered in regions
subtending 0.98 x 0.98 degrees at a viewing distance of approximately 60 cm, and were
arranged on a 4.12 deg radius with fifteen possible equally spaced positions on the annulus,
randomly rotated on each trial. Elements of displays of size 4, 8 and 12 consisted of 1, 2, or
3 sets of 4 adjacent locations, with a space between sets (Figure 2A-C), thus equating
eccentricity and the density for all displays (one half of elements are adjacent to a space, and
one half are internal items). Lastly, the position of each element was randomly “jittered” (a
uniform distribution from -4 to +4 pixels) in the horizontal and vertical directions to
introduce some irregularity into global contour cues.

Design—Homogeneous and heterogeneous displays were tested in separate blocks and
alternated. For all display sizes, half the trials included a target and half did not. In
heterogeneous trials, the two types of distractors appeared in randomized locations in the
display; a target replaces one of these items when it is present. Trials with different display
size and target presence/absence were presented in a random order within blocks.

Experiment 1 tested display sizes of 4, 8, and 12 for target present and target absent
conditions for separate blocks of heterogeneous and homogeneous displays. Blocks were
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480 trials with 80 trials per condition per subject. The displays remained on until the
observer responded.

Experiment 2 tested display sizes of 4 and 12 for target present and target absent conditions
for separate blocks of heterogeneous and homogeneous displays. Processing time was
manipulated with 7 cue delays of 0.0, 0.050, 0.150, 0.300, 0.500, 1.150 and 1.800 s after
display offset, for net cue delays from stimulus onset of these values plus the display
duration. All trial types within a block were tested in random order. Following one or two
sessions of SAT training with display duration set at 150 ms, observers participated for 6
sessions (n=60 trials in each of the 28 conditions, or 1680 trials) with display duration of
100 ms, followed by 6 sessions with a display duration of 50 ms.

Experiment 3 tested display sizes of 4, 8, and 12 for target present and target absent
conditions for separate blocks of heterogeneous and homogeneous displays. In one
condition, the displays remained on until the observer responded. In another, a brief display
of 50 ms was used. Observers ran one session each of the homogeneous and heterogeneous
search tasks, four sessions total, to yield a sample size per observer per condition of 80 in
each condition.

Procedure—On each trial, a fixation plus appeared for 250 ms, followed by the test
display. For Experiment 1 and the free response version of Experiment 3, the display
remained available until the observer responded by pressing the “j” key with the right hand
for target present trials, and the “f” key with the left hand for target absent trials; the
handedness of the observers was not controlled. In the brief-display version of Experiment
3, the array was displayed for 50 ms. Observers were instructed to respond “as quickly and
accurately as possible” in the response time paradigms. For Experiment 2, the cued-response
SAT task, the display was presented briefly (150 ms in practice, then 100 ms or 50 ms) and
a tone occurred at a delay of 0-1.8 s after display offset, and finally, the response time after
the tone cue was displayed for 500 ms. Observers were instructed to respond as quickly as
possible following the tone cue, and also that cued response times less than 90 ms suggested
anticipation of the cue while cue response times greater than 400 ms were too slow. Sessions
lasted slightly less than one hour.

Analyses—~Percent yes (target present) responses and mean response times (from display
onset) were tabulated for each display size, cue delay, and target present/absent condition.
For the cued-response data, the discrimination measure, d’, was calculated from the percent
yes data (d’ = zpj; —zf,). Probabilities of zero or one were corrected (Macmillan & Creelman,
1991) by 1/(2n)to yield measurable d’ values. Time-course functions graph d’ as a function
of total processing time, the average time between display onset and response.

Both the probabilistic serial and parallel search models (Appendix A) and an exponential
models were fit to time-accuracy d’ data by minimizing the squared deviations between the
> (0-d) A
model and the data ;= , where the d; are the observed d’ value and the d; are the
predicted d’ values. The exponential approach to a limit, d’ = A(1 — e A=9)for t > §; and 0
otherwise, provides an excellent empirical summary of time-accuracy functions and also
allows comparison to other published data (Dosher, 1976; Sutter & Graham, 1995; Sutter &
Hwang, 1999). In this equation, A is the asymptotic (maximal) accuracy, the intercept & is
the point where accuracy first rises above chance, and the rate § describes the speed of rise
from chance to asymptote. Error minimization was programmed in Matlab using fminsearch.
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The quality of fit was summarized by: Z <d d) /(= 1)) where d; and dI are
as described above, d is the observed mean, n is tiie total number of predicted data values,
and k is the number of model parameters. The fidelity index r? is the proportion variance
accounted for by the model (replace (n — k) in the R2 equation by (n — 1)). RZ is the percent
variance accounted for by the model, adjusted by the number of free parameters. Nested
models are tested for significance using nested-F tests (Wannacott & Wannacott, 1981):

(RSSTeduced RSSfull) (RSSfull)

(K futt— K reduced) 1) With degrees of freedom sy — Kreduced and n = ke,
where RSS is the residual sum of/ squared errors for the model. Model comparisons used r2,
R? and nested F-tests. The probabilistic parallel model was fit to the percent yes data by
maximizing the likelihood of the proportion yes data over all curves simultaneously:

N

L .

Hc '(nfc )'pl (I=p; where =1 is the product over N observed percent yes
pomts over all conditions, pj is the predicted percent yes n; is the number of trial per point, c;
is the number of yes trials and so n;j — ¢; is the number of no trials.

F=

)ni Ci

Experiment 1 Results

Response times increased with display size for the heterogeneous condition, while display
size had minimal effects in the homogeneous condition (Figure 3A). All main effects and
interactions of distractor condition, number of display elements, and target presence were
significant for response times (all p < .01 except p<.05 for the main effect of target
presence) and errors (all p < .01, except p < .08 for the interaction of target presence and
display size). The details of the analysis of variance for response times are: distractor

condition F(1,9) = 66.22, p < .001, n2 = 0.761, partial 7712,:0.880; target presence F(1,9) =
6.43, p < .05, 12 = 0.022, n>=0.412; display size F(2,18) = 70.40, p < .001, 12 = 0.108,
77,2,20.887; distractor condition x target presence F(1,9) = 9.18, p < .01, 2 = 0.0186,
77;2,:0-505; distractor condition x display size F(2,18) = 58.57, p < .001, n2 = 0.079,
n2=0.867; target presence x display size F(2,18) = 15.82, p <.001, 12 = 0.009, 7=0.638;

and the three way interaction F(2,18) = 5.64, p <.013, 12 = 0.023, n§:0.385. The details of
the analysis of variance for errors are: distractor condition F(1,9) = 23.95, p < .001, 12 =

0.427, 1,=0.727; target presence F(1,9) = 19.81, p <.002, n? = 0.321, 7,=0.688; display
size F(2,18) = 11.51, p < .001, 12 = 0.024, 77;2;=0-520; distractor condition x target presence
F(1,9) = 11.08, p < .01, n2 = 0.149, 77,2,20.552; distractor condition x display size F(2,18) =
20.98, p <.001, 12 = 0.036, n§:0.700; target presence x display size F(2,18) = 2.78, p < .09,
1?2 = 0.009, 77=0.236; and the three way interaction F(2,18) = 4.68, p < .05, 12 = 0.012,

n2=0.342. The n}, or partial etas, divide the sum of squares for each factor by the relevant
sum of squares plus sum of squared errors for that factor in the multi-way analysis of

variance. The 77,27 reflects the percent variance accounted for by any factor holding constant
all remaining factors, and is similar to a partial correlation coefficient.
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The slopes of heterogeneous target present and target absent displays were 113 ms and 184
ms per item, respectively. The slopes of homogeneous displays were 0 ms and 22 ms,
respectively. Homogeneous search was more accurate than heterogeneous search, with
display sizes of 4, 8, and 12 yielding 83.8 and 97.3 and 83.8 percent correct, and 92.8, 89.7
and 89.2 percent correct, respectively. With the exception of the relatively high error rates
for the target-absent heterogeneous distractor conditions, the primary differences were
reflected in reaction times.

These results replicate in annular displays the previous reports for distractor heterogeneity
conditions (e.g., Wolfe, et. al, 1993). The high slopes in the heterogeneous distractor
condition would typically be interpreted as the consequence of attention demanding serial
processing. The small slopes of the homogeneous condition would typically be associated
with pre-attentive parallel processing. The results in this free-viewing condition may in part
reflect overt information acquisition through movement of the eyes.

Experiment 2 Results

Speed-accuracy tradeoff functions—Experiment 2 tested the full time course of visual
search using cued-response speed-accuracy tradeoff. The average time-accuracy functions (d
”'vs. total processing time) are shown in Figure 4. The data for 100 ms displays and for 50
ms displays are displayed separately. The average data are representative of the individual
observer data. In these SAT functions, accuracy is graphed as a function of total processing
time, which is the average time from display onset to response, or the lag to the cue to
respond plus the average response times. Total processing time includes stimulus
registration and motor response time, which is also true for standard reaction time. The
average response times to the response cues were unaffected by display size or search
difficulty, but varied slightly over the shortest few cue delays, as is typical in the SAT
paradigm (e.g., Dosher, 1976; Dosher, Han, & Lu, 2004).

The data for the 100 ms (performed first) and 50 ms (performed second) display conditions
are quite similar. These conditions may differ slightly as they reflect different display
durations, and hence visual availability, but also different stages of practice. The 50 ms
display duration allows earlier cues to respond. We treat the two sets of data as independent
replications. Exponential fits of time-accuracy data (d’ vs. total processing time) provide a
standard descriptive analysis, and allow comparisons with previously reported data. The
exponential fits minimized least-squared error. The best fitting exponential models (smooth
functions in Figure 4) are listed in Table 1. Exponential models describe each function with
an asymptote (), a rate (), and an intercept (8) (see Analysis section). A lattice of models
with different constraints was considered to account for the four conditions, homogeneous
set sizes 4 and 12 and heterogeneous set sizes 4 and 12. A (4X, 2, 18) model with
asymptotic accuracy estimated independently for each condition, two rates (one for
homogeneous and one for heterogeneous), and a single intercept fit the data very well,
yielding R? for the average data of 0.991 [range over observers 0.916-0.976] for 100 ms
displays and 0.977 (0.908-0.968) for 50 ms displays. Nested model F-tests evaluated
whether reduced models, which hold certain parameters constant across conditions, caused
significant losses in quality of fit. Eliminating the rate difference between homogeneous and
heterogeneous conditions significantly reduced the quality of fit for 4 of 5 observers in each
of the 100 ms and 50 ms display conditions (see Table 1). Homogeneous search conditions
yielded both higher asymptotic accuracies and slightly faster temporal dynamics in most
cases than heterogeneous search conditions.

Importantly, in no case did the quality of fit significantly improve by allowing the larger
display size to slow the search speed (exponential rate parameter) (p values for all relevant
model comparisons > .3). These results are qualitatively consistent with parallel search
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processing architectures and qualitatively inconsistent with serial search processing
architectures. These observations are directly evaluated next using the probabilistic serial
and parallel search models. These models describe the time course of visual search, but they
also provide constrained fits of the asymptotic accuracies.

Probabilistic Parallel Search Models—In the probabilistic parallel search model,
visual search involves identifying each element of the display as a target or distractor. The
items are processed in parallel — starting simultaneously and with a common time
dnistribution. At any given time, the observer will respond “yes” if at least one item has
been identified (correctly or in error) as a target or “no” if all items have been (correctly or
in error) identified as distractors, or may guess “yes” in the absence of information. The
predicted time course of the target-present decision is controlled by the distribution of times
for individual comparisons (drawn from an a-stage Gamma distribution with time parameter
T, probabilities of correctly classifying targets (Pt) and distractors (Pp), and the decision
rule, with guessing probability g. See Appendix A for a full description and derivation of the
model. The models fit d’ using least-squared methods, and nested models in the lattice of
models were compared with the nested F-test. Models were fit to average data because a
lattice of models with different numbers of free parameters was extremely time consuming
to process due to the computation of the combinatorics of comparison orders across items.

The probabilistic parallel search models were fit separately to average d’ data for the 100 ms
and 50 ms exposure durations, averaged over observers, for homogeneous and
heterogeneous search. The model provided an excellent account of the time course of both
homogeneous and heterogeneous search. While homogeneous visual search is generally
associated with parallel search processes, heterogeneous search is generally associated with
the operation of some form of serial search architecture.

An 8-parameter (plus one pre-set parameter) model, (4 P, 2, 2 g, a = 25), provided an
excellent fit to the time course data for homogeneous and heterogeneous searches, as good a
fit as a fully saturated model. The values of the four Ps specify the probabilities of correct
target and distractor identification in the homogeneous and heterogeneous conditions. The
two parameters of the Gamma distribution, v and a, specify the completion time distribution
for each individual item; in this context, a could be set without loss to 25 (see Dosher, Han,
& Lu, 2004, for a discussion).

For the 100 ms data, the estimated parameters were: identification probabilities Pt and Pp
for targets and distractors of 0.967 and 0.999, respectively, time constant ¢ of 0.014 and
guessing parameter g of 0.100 in the homogeneous condition; identification probabilities of
0.970 and 0.815, v of 0.020 and guessing probability of 0.102 for the heterogeneous
condition. This model yields an R? of 0.986. The independently estimated parameters for the
50 ms data were closely similar: identification probabilities for target and distractors of 0.
961 and 0.999, t of 0.013, and guessing parameter of 0.202 in the homogeneous condition;
and identification probabilities of 0.983 and 0.817, © of 0.016 and guessing probability of
0.053 for the heterogeneous condition. This yields an R? of 0.966. This model was
compared with a lattice of both less constrained and more constrained models that set
various parameters to be equal in the homogeneous and heterogeneous search conditions.
Model variants equating the Pt and Pp or © in the homogeneous and heterogeneous
conditions provided a statistically inferior fit to the data. A model with separate time
constants ©’s for the homogeneous and heterogeneous provided a slightly better fit by a
nested F-test (p < .01), consistent with the exponential fits. The fit of the probabilistic
parallel model is shown in Figure 5. This parallel model makes the standard simplifying
assumption of all of the uncertainty models of unlimited capacity visual search, namely that
the criteria for false alarms are identical in the 4-item and 12-item displays, or that the two
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set sizes are fit with a common Pt and Pp. In a later section, we consider an elaborated
model for percent yes data, which can also be used to regenerate an excellent equivalent fit
of the parallel model to the d’ data.

The probabilistic parallel search model constrains the relationships of the asymptotic search
accuracies of the two display sizes because the asymptotic accuracies are derived from the
probabilities of correct identification of the single target and the numbers of distractors for
display sizes of 4 and 12. In the descriptive exponential model, the asymptotic accuracies for
the display sizes of 4 and 12 were simply estimated independently to maximize fit. The
asymptotic accuracy for display sizes 4 and 12 are well fit by the decision model in the
probabilistic model, which embodies the classic uncertainty calculations for these display
sizes in search accuracy experiments (Palmer et al., 2000; Eckstein, 1998).

Distractor identification in the heterogeneous displays was estimated to be notably poorer
than that of the homogeneous displays, although all the heterogeneous distractors were at
least as dissimilar from the target (see Hodsoll & Humphreys, 2005; Rosenholtz, 2001 for
related discussions). The probabilistic parallel search model applies directly to homogeneous
search, but could be an approximation to heterogeneous search. If the two types of
distractors in heterogeneous search were to differ substantially in identification accuracy or
temporal parameters, then a more complex model that distinguishes the two would be
required. Counting all of the combinatoric instances of such a model would be so complex
that it would likely be implemented by simulation rather than derivation. That the
probabilistic parallel search model fit the data from the heterogeneous condition quite well
suggests that the two types of distractor were similar in identification time and accuracy.

In sum, the probabilistic parallel search model provided a good account of the time course
and asymptotic accuracies of visual search not just for homogeneous search generally
associated with parallel processes — but also in the case of heterogeneous search — generally
cited as a classic example of serial search.

Probabilistic Serial Search Models—In this section, the complementary test evaluates
the probabilistic serial search model and its ability to fit the time-course data. The
probabilistic serial model is an exact analog to the probabilistic parallel model, except that
the identification of items occurs in series, one after the other, in random order. All of the
model parameters remain the same, except that the temporal properties of the search are
determined by the Gamma distribution with time parameter © characterizing the processing
of each individual item, and a variable number of stages determined by the (random) order
of processing each item, and the probabilities of doing so accurately. See Appendix A for
details and equations. The probabilistic serial model, which incorporates the consequence of
identification errors into the time course predictions, moderates the strongly slowed time
course predictions of previous versions of the serial model in visual search (e.g., McElree &
Carrasco, 1999).

We gave the probabilistic serial model every possible chance to work by fitting a fully
saturated serial model with all different parameters for homogeneous and heterogeneous
searches, allowing the greatest possible freedom to this model (4 independent probabilities
of element identification accuracy, independent estimates of guessing bias, independent time
constants, and independent time intercepts for the homogeneous and heterogeneous
conditions, 4 P, 2 1, 2 g, 2 t0 — or 10 model parameters free to vary), the model yielded
consistently poorer quality of fits compared to that of the probabilistic parallel search model,
with an R2 of 0.789 for the 100 ms data and of 0.721 for the 50 ms data (Unconstrained, the
serial model tried to overcome a poor fit by vastly overestimating the asymptotic accuracy
so that the display size difference occurred largely after the last measured data point.
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However, we know from the shape of the time-accuracy functions and from pilot data for
selection of the interruption times which tested times as long as 4 s, that the curves were
already at asymptote at 2.3 s. Therefore, the fit was constrained not to overshoot the
observed asymptotic levels by a substantial amount.) Any model that includes a saturating
monotonically increasing time-course fits the data about as well as this probabilistic serial
model; the systematic misfits of this model were clear. The best fitting fully saturated
probabilistic serial model is shown in Figure 6.

Further relaxing the relationship in asymptotic levels, in which the modeled asymptotic
performance is constrained by the signal detection uncertainty relationship between the two
displays sizes, still failed to achieve the quality of fit of the parallel models. This8 P, 2 t, 2
g, 2 t0, 14-parameter model has full flexibility in fitting asymptotic levels (with 8 accuracy
parameters to account for different target and distractor identification probabilities in the
different set sizes and distractor conditions), yet only marginally improved the quality of fit,
with an R? of 0.849 for the 100 ms data and of 0.796 for the 50 ms data (compare with R?’s
of 0.986 and 0.966 for the 8-parameter parallel model).

Even assuming that homogeneous displays reflect parallel search while heterogeneous
displays reflect a standard serial search would not solve the poor fit of the serial model
because the fit to the heterogeneous data is independent of the fit of the homogeneous data.
The sum of squared errors for the mixed homogeneous-parallel, heterogeneous serial model
exceeded that of the parallel model by a factor of more than 2 for both 100 ms data and 50-
ms data. The parallel search model provides a good account of both homogeneous and
homogeneous search, while serial search gives a poor account of both. These results were
independently replicated in the data for the 100 ms displays and the data for the 50 ms
displays.

Compensatory-Rate Serial Model—Is there any condition under which a serial model
could account well for the time-course data? One such case, suggested by a reviewer, might
be a paradoxical compensatory-rate probabilistic serial model in which the rate of
processing each item is increased in larger displays to compensate for the effect of
increasing numbers of items in a serial process. This model is counter-intuitive — if it is
possible to process items three times as fast in a 12-element display as in a 4-element
display, then why not process the 4-element display at the faster rate? The compensatory
model violates the fulcrum of all standard tests of serial processing, which assume either
equivalent processing time for each item regardless of the number of elements, or that added
items slow the rate of processing each one.

It seems obvious, however, that such a paradoxical compensatory processing model should
overcome the incompatibility in time courses of display sizes 4 and 12. We implemented the
compensatory-rate probabilistic serial model by incorporating not just independent speeds of
processing for the two search types (homogeneous and heterogeneous), but also for each
display size within search type. All other aspects of the probabilistic serial model are
retained. Thus, the model includes 4 independent probabilities of element identification
accuracy, independent estimates of guessing bias, independent time constants for the
homogeneous and heterogeneous conditions and for display sizes 4 and 12, and independent
time intercepts for the homogeneous and heterogeneous conditions (4 P, 4 <, 2 g, 2 t0). The
ratio of the processing times per item should be about 3 to 1 because the faster times in
larger displays are accounting for a 12 to 4 (3 to 1) ratio of the number of elements to yield a
common time course. As expected, the compensatory rate serial model estimated the two
rate parameters, t, to be 20 ms and 7 ms (ratio 2.9) and 82 ms and 22 ms (ratio 3.7) for the
homogeneous and heterogeneous 100 ms displays (respectively), and to be 21 ms and 6 ms
(ratio 3.5) and 87 ms and 22 ms (ratio 3.9) in the homogeneous and heterogeneous 50 ms
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displays. As intuitively expected, the compensatory model fits to the speed-accuracy data
approached (though did not quite match) those of the parallel probabilistic model, with R? of
0.964 for the 100 ms data and of 0.930 for the 50 ms data for the 12-parameter model. This
compares to R? of .986 and .966 for the 8-parameter parallel search model. These residual
differences reflect differences in time course shape for the two set sizes in the serial and
parallel models.

Probabilistic Parallel Model and Percent Yes Data—The previous sections
documented that the probabilistic parallel model of processing provided a good account of
the time course of discrimination (d’) in both relatively easy homogeneous search conditions
and in relatively difficult heterogeneous search conditions. In this section, the data for
percent yes (hits and false alarms) are considered. The changes in hit and false alarm rates
over processing time are intrinsically more complex to model than the bias-free
discrimination measures, because hits and false alarms will be sensitive to time-dependent
changes in bias as well as discrimination. For this reason, the hit and false alarm rates have
not been modeled in any previous analyses of speed-accuracy tradeoff data. In this case,
however, it was possible to provide a good account of these data, which provide additional
constraints on the probabilistic parallel model. However, we do not necessarily expect this
simple model to account for the percent yes data in all experiments, because criteria and
guessing strategies may change over the time-course of decision.

The fact that the 8P version of the serial model for d’, where the asymptotes were fit freely,
did not provide a competitive fit to the data implies that the corresponding serial model
would not provide a competitive fit to the percent yes data, where the same model would
need to fit not just the d’s but the more constraining pattern of hits and false alarms. For this
reason, we focus on the ability of the probabilistic parallel model to fit percent yes (hit and
false alarm) data.

The best fitting probabilistic parallel model for the average hit and false alarm data are
shown in Figure 7. The percent yes (hit and false alarm) data were fit with maximum
likelihood methods. Different identification probabilities for display sizes of 4 and 12 were
required to account for these data. The different identification probabilities for display size
are necessary because display size 12 provides additional opportunities to false alarms
compared to display size 4, yet the observed false alarm rates are only slightly worse in the
12-item conditions. The best-fitting probabilistic parallel model is a 12-parameter model
(with one fixed parameter) (8P, 2+, 29, a=25). Overall, the Pt and Pp values were about
0.99 for all homogeneous conditions, but ranged from 0.50 — 0.96 for the heterogeneous
condition, with the guessing parameter about 30%. For the 100 ms condition, the best fitting
parameter values are (8P = 0.99, 0.99, 0.99, 0.99, 0.77, 0.94, 0.50, 0.96, v = 0.013 for
homogeneous search, and v = 0.017 for heterogeneous, g = .311 for homogeneous, g = .348
for heterogeneous, and a = 25, R? = .982). (The 8P are given, respectively, in the order: Pt
and Pp for display size 4, then Pt and Pp for display size 12 for the homogeneous searches,
and then the same order for the heterogeneous searches). For the 50 ms condition, the best
fitting parameter values are (8P = 0.98, 0.99, 0.99, 0.99, 0.93, 0.94,0.55, 0.96, v = 0.013 and
0.016, g = .429 and 0.409, a = 25, R2 = .986). These fits to the percent yes data can, in turn,
be used to generate predictions for d’ that are comparable to the earlier fits of the
probabilistic parallel model to the d’ data. As in those fits, the 100 ms and 50 ms provide
quite consistent independent estimation of parameter values.

The identification probabilities for the homogeneous condition are essentially identical (and
very high) for the two display sizes, so the differences focus on the heterogeneous condition.
The four independent identification probabilities for the heterogeneous conditions (targets
and distractors in display sizes 4 and 12) can be equivalently remapped in terms of a signal
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detection situation with four free parameters. The mean and standard deviation of the
evidence distribution for distractors are set to 0 and 1, respectively, corresponding with
standard scaling assumptions of the signal detection theory. The mean of the evidence
distribution for targets is D, and the standard deviation is o. There are different criteria for
classification of an item as a target for display sizes 4 and 12: ¢4 and cq. For the 100 ms
displays, the best fitting Ps can be remapped as D = 1.76, 0 = 0.31, ¢4 = 1.52, ¢1,=1.76. For
the 50 ms displays, the best fitting Ps can be remapped as D = 1.84, 0 = 0.34, ¢4 = 1.52,
c12=1.81. The different identification probabilities for 4-element and 12-element
heterogeneous displays reflect a change in criterion for identification that reduces the false
alarm rates for the 12-element displays. The variation in evidence is estimated to be smaller
for target elements than for distractor elements, which may reflect a special coding status for
the target item, or intrinsically larger variance in the distractor distribution in this
heterogeneous case.

In summary, the probabilistic parallel search model provided an excellent account of the hit
and false alarm data over the full time course of visual search as well as an excellent account
of the d’ time-course data.

Experiment 3 Results

Time-Limited Display RT Data—The response time and errors for the 50 ms time-
limited displays under a response time protocol are shown in Figure 3B for the practiced
observers who had previously participated in Experiment 2. Response times were relatively
fast for these time-limited displays. Reaction time slopes were all =1 ms to 1 ms, however
the response time levels were sensitive to both distractor type and target presence. Error
rates in the time-limited displays also depend on distractor type and target presence, and
there is a modest increase in errors of about 0.4% per display element in homogeneous
condition and of about 0.8% in heterogeneous conditions. The level of performance is
consistent with the performance in the 50-ms time-limited time course data. Indeed, the
relevant response time/accuracy points from these data are very close to points generated in
the time-controlled testing protocol. These relatively flat functions of display size seem to
differ for similar brief displays of Santhi & Reeves (2004) for isoluminant color stimuli. The
reasons for this difference are not clear.

The details of the analysis of variance for response times are: distractor condition F(1,3) =
5.13, p < .11, n? = 0.936, 7,=0.631; target presence F(1,3) = 4.87, p < .11, n2 = 0.033,
12=0.619; display size F(2,6) = 0.24, p > .5, 12 = 0.000, 7?=0.072; distractor condition x
target presence F(1,3) = 24.14, p < .02, 12 = 0.017, 771?,:0.889; distractor condition x display
size F(2,6) = 19.47, p < .002, 2 = 0.005, 77§=0.886; target presence x display size F(2,6) =
15.78, p < .01, n2 = 0.005, 777=0.840; and the three way interaction F(2,6) = 17.03, p < .01,
n2 = 0.004, 7772,:0.850. The details of the analysis of variance for errors are: distractor
condition F(1,3) = 146.06, p < .001, 12 = 0.737, n>=0.979; target presence F(1,3) = 0.39, p
> 5,12 =0.017, n;=0.115; display size F(2,6) = 11.20, p < .01, 12 = 0.056, 7,=0.789;
distractor condition x target presence F(1,3) = 11.84, p < .05, 12 = 0.164, 775:0.798;
distractor condition x display size F(2,6) = 12.25, p < .01, 12 = 0.012, n§:0.800; target
presence x display size F(2,6) = 1.57, p > .2, n2 = 0.005, n§=0.342; and the three way
interaction F(2,6) = 0.15, p > .5, 12 = 0.000, 7,=0.042,
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Free Viewing RT Data—Figure 3C shows the response times and error rates for standard
response time conditions, in which the stimulus was available until response, for the
practiced observers of Experiment 2. The performance of the practiced observers is faster
and more accurate than that of the unpracticed observers in Experiment 1, yet the general
pattern of the data was equivalent. With only four observers, all main effects and
interactions, including those assessing the effects of display size, were significant in the
response time data (p < .05). In the accuracy data, the differences were smaller, and fewer
main effects and interactions were significant. The details of the analysis of variance for

response times are: distractor condition F(1,3) = 14.48, p < .05, 112 = 0.676, 7712,:0.828; target
presence F(1,3) = 11.55, p < .05, 1?2 = 0.026, 17,=0.794; display size F(2,6) = 10.20, p < .02,
n?2 = 0.124, 17=0.727; distractor condition x target presence F(1,3) = 10.10, p < .05, )2 =
0.026, nf,:o.??l; distractor condition x display size F(2,6) = 9.34, p < .01, 12 = 0.113,
n2=0.757; target presence x display size F(2,6) = 12.05, p < .01, % = 0.016, n>=0.800; and

the three way interaction F(2,6) = 13.03, p < .01, 12 = 0.0186, 77220.813. The details of the
analysis of variance for errors are: distractor condition F(1,3) = 8.00, p < .07, 12 = 0.441,

n>=0.727; target presence F(1,3) = 10.10, p < .05, 12 = 0.281, 1,=0.770; display size F(2,6)
=1.35,p>.3,12=0.022, n§=0.310; distractor condition x target presence F(1,3) =5.71, p
< .10, 12 = 0.060, 771%:0.657; distractor condition x display size F(2,6) = 4.44, p < .07, 2 =
0.084, 17,=0.596; target presence x display size F(2,6) = 0.68, p > .5, 12 = 0.008, 7.=0.188;
and the three way interaction F(2,6) = 1.89, p > .2,n2 = 0.039, n§=0.387.

The response time slopes were 2 ms and 1.5 ms for homogeneous conditions, respectively,
for target present and target absent displays; and were 57 ms and 120 ms for heterogeneous

conditions, respectively, for target present and target absent conditions. Practice improves,
but does not fundamentally alter, the processes for visual search.

General Discussion

Empirical Summary

Experiment 1 documented the classic heterogeneity effect in a standard, free-viewing
reaction time paradigm in annular displays controlling for target and distractor eccentricity.
Response times increased substantially with the number of distractors in heterogeneous
distractor conditions, but only slightly in homogeneous conditions. Attention-demanding
serial search processes is widely associated with the pattern of performance in
heterogeneous displays.

In Experiment 2, the time course of visual search was measured using speed-accuracy
tradeoff methods in time-limited displays (100 ms or 50 ms). A probabilistic parallel model
provided an excellent account of both the constrained relation of the asymptotic
performance and the common time course of visual search with display sizes of 4 and 12.
The probabilistic parallel model also provided an excellent fit to the hit and false alarm
pattern underlying the d’ time-course data. The model for the hits and false alarms required
distinct probabilities for the two display sizes, but these probabilities were well fit by a
consistent signal detection model with a higher criterion in the 12 item displays in order to
compensate for the high levels of false alarms otherwise engendered by location uncertainty.

In contrast, a fully elaborated 10-parameter probabilistic serial search model provided a
relatively poor account of the data. The parallel model is consistent with closely equivalent
temporal dynamics over the various conditions, with a small slowing regardless of display
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size due to heterogeneity. The serial model predicts slowing in dynamics for larger displays,
a phenomenon that was not observed in the data. Even adding to the freedom of this model
to allow unconstrained fits to the asymptotic levels for display sizes 12 and 4, with 14-
parameters, failed to substantially improve the quality of the fits and isolated the failures
firmly in dynamic aspects of the time-course functions.

Relatively high asymptotic levels in homogeneous search and much lower accuracy in
heterogeneous search were related to differences in item identification probabilities. The
relative accuracies of the display sizes of 4 and 12, however, were then fully constrained by
these estimates in both models.

A compensatory-rate serial model in which each item is processed approximately 3 times
more quickly in 12-element displays than in 4-element displays provided nearly but not
quite as good a fit as the parallel model. This paradoxical model violates the assumptions of
all common tests of serial models of equal efficiency in all display sizes, or lower efficiency
in larger display sizes if capacity limits are evoked. Even if this model achieved an equal fit,
the parallel model would be preferred on the grounds of simplicity. The simpler parallel
model accounts for the data with 8 free parameters rather than the 12-parameter
compensatory serial model. However, certain unusual serial models such as the
compensatory rate model cannot be completely ruled out.

Experiment 3 documented that highly practiced SAT observers showed the same pattern of
performance as that of unpracticed observers in a standard response time paradigm. There
was no evidence that the extended practiced altered the form or mechanisms of search,
although those mechanisms became somewhat more efficient with faster response times and
fewer errors. The data from the time-limited response time paradigm were consistent with
the SAT data.

Relation to Other Findings

The probabilistic parallel search model provided a good quantitative fit of the time course
data, consistent with the suggestive analysis based on descriptive exponential models. The
explicit model is important because it assesses the constraints on performance for different
display sizes, incorporating asymptotic constraints and the effects of classification errors on
the time-course of visual search. The model accounts well for the asymptotic accuracies for
display size of 4 and 12 using the same parameters Pt and Pp.

The current asymptotic accuracy effects are consistent with a series of findings focused on
search accuracy in time-limited displays (Palmer, 1994, 1995; Palmer et. al, 1993, 2000). In
that literature, effects of display size were consistent with statistical uncertainty within the
framework of a signal detection framework, and not consistent with models that proposed
capacity limitations, for a wide range of searches with targets defined by primary features
such as line length, brightness, or orientation. This is also true for the portion of the search
accuracy literature (e.g., Palmer 1994) measuring the effects of display size as feature or
contrast thresholds — the difference needed to achieve a given accuracy. These are two
different ways of expressing the same accuracy effects, which can be directly related via
observer models such as the perceptual template model (see Lu & Dosher, 2008, for a
review).

Overall, then, the uncertainty constraints of the search accuracy experiments of Palmer and
others are consistent with the asymptotic accuracies of the current and other time-accuracy
studies. The current results go beyond the search accuracy literature in providing a
consistent account of the temporal properties of visual search, not just the ultimate,
asymptotic accuracy levels.
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The current results join our earlier results on the time-course of visual search asymmetries
(Oin C’s) (Dosher, et al., 2001). This difficult search asymmetry also generated large
display size effects in standard response time, yet the probabilistic parallel model of visual
search gave an excellent account of the time-course of search for brief displays. The current
results extend the parallel model from a simple case of feature search to the more complex
heterogeneous search conditions.

Thus, parallel processing has been documented in two cases that have classically been
associated with serial deployment of covert attention. However, the previous study of
McElree and Carrasco (1999), the first to apply cued-response speed-accuracy tradeoff
methods to visual search, argued that a pure unlimited capacity parallel model cannot
account for the temporal dynamics of conjunction search, and suggested instead that
conjunction search invoked a limited-capacity parallel search.

Combining the results of the current study, the results of Dosher et al. (2004), and the results
of McElree & Carrasco (1999) could suggest a qualitative difference between difficult
search conditions of heterogeneous search and difficult asymmetric search that exhibit
parallel search processes on the one hand, and conjunction searches that exhibit some form
of capacity limitations on the other hand. The definition of this boundary between purely
parallel processes and other forms as involving conjunction search would be complicated
under Wolfe’s (Wolfe et. al., 1994) suggestion that some cases of heterogeneous search are
implicitly conjunction searches in which the target is the conjunction of being tilted right
and having steep (or shallow) tilt. However, the conclusions of McElree and Carrasco
(1999) were based on the presence of small but significant slowing in dynamics of
conjunction search as assessed in exponential fits rather than a direct fit of an explicit
parallel model. We fit the data of McElree & Carrasco (provided by the authors) with the
probabilistic parallel and serial search models, and found that, counter to the initial
interpretation, the probabilistic parallel search model provided quite a good account of these
time course data and asymptotic accuracy data for conjunction search. The fit of the
probabilistic parallel search model to the McElree and Carrasco conjunction data is shown in
Figure 8.

This new finding, based on direct fitting of explicit models, considerably simplifies the
meta-pattern of results. All cases in which the full time-course of visual search has been
measured, for brief visual displays that eliminate eye movements, are consistent with
parallel processing architectures, although the difficult conditions may yield low accuracies.
We are not claiming that all difficult visual searches will exhibit unlimited-capacity parallel
processing, although we have yet to find a documented case of clear serial processing using
time-course analysis. There may however be some cases in future investigations that do
show covert serial processes.

These time-course results and the probabilistic parallel and serial models (Dosher, et al.,
2004) are closely related to the modeling development and observations of Thornton and
Gilden’s (2007) in a multi-target search paradigm. Their analysis used four-location search,
varied the number of targets, and examined the response time and error patterns of search
within the context of an unlimited capacity parallel processing model. This model simulated
the various outcomes based on independent parallel accumulation of evidence to a criterion
for each display element, and is essentially equivalent to the probabilistic parallel model
with the distribution of element comparison times (Dosher, Han & Lu, 2004). The analysis
of the multi-target paradigm also led Thornton and Gilden to conclude that a wide range of
difficult search tasks were consistent with parallel search. The multi-target data, together
with the time-course investigations, provide converging evidence for the widespread
explanatory adequacy of parallel processes in visual analysis. This is also generally
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consistent with recent analyses of increasing d’ per unit second of response time estimated
for near-isoluminant color visual searches (Santhi & Reeves, 2004).

Models that routinely incorporate attention-demanding serial processing architectures face
challenges in accounting for the visual search data in time-limited displays. This includes
the feature integration model (Treisman, 1993; Treisman & Gelade, 1980; Treisman &
Gormican, 1988), selective search models (Dosher, 1999; Egeth, Virzi, & Garbart, 1984)
and guided search models (Cave & Wolfe, 1990; Wolfe, 1994, 1996). Each of these models
ascribes effects of display size on reaction time to the serial deployment of covert attention
over the display in free viewing conditions. The feature integration model (Treisman &
Gelade, 1980) assumes serial search over the display elements, or groups of elements, and is
directly tested with the probabilistic serial search model here. Selective search models
(Dosher, 1999; Egeth, Virzi, & Garbart, 1984) restrict serial searches to particular subsets of
stimuli (e.g., the red items). The guided search models (Wolfe, 1994, 1996) also serially
search selected subsets of stimuli, in this case defined by a more complex salience ordering.
Finally, recursive rejection models (Humphreys and Muller, 1993) would require
elaboration or modification to account for full time course data. In short, a number of
models of covert attention, especially those involving serial search operations, appear to be
simply inconsistent with the time course results, and others would require elaboration and
further evaluation.

Visual search models are often applied to the response times and accuracies of free-viewing
search paradigms, yet make claims about covert attention processes. A comparison of the
search reaction times in freely viewed displays and those in time-limited displays leads us to
believe that eye movements must play a considerable role in the former (e.g., Geisler &
Chou, 1995; Motter & Belky, 1998). The current analysis of the temporal properties of
search in time-limited displays suggests that processing within a single episode of
information acquisition is parallel, at least for the clear (unmasked) displays used in these
studies.

This conclusion is consistent with all the data on time-course of visual search, with the data
in a multiple-target paradigm, and it is also consistent with recent proposed models of eye
movements during search for small targets in cluttered fields (Najeminik & Geisler, 2005).
These models are based on an assumption of parallel uptake of information across the visual
field, modulated by eccentricity, and compute a region that is expected to yield the most new
information as the location of the next eye fixation. The eye movement system works
together with visual processing of the information available over the visual field.

Conclusions

Covert attention is deployed in parallel over the items in the visual field in heterogeneous
searches studied here, in asymmetry searches (Dosher, et al., 2004), and in conjunction
search (McElree & Carrasco, 1999). A probabilistic parallel search model (Dosher, et al.,
2004) provided an excellent account of the time course and asymptotic accuracy of search in
all these cases. The time-course of search for different displays sizes is consistent with the
combination of classifications, some of them errors, of all the display items embodied in the
probabilistic parallel model. Visual search is information limited, not limited with
temporally serial processing within an eye movement. These results converge with an
analysis of multiple-target searches (Thornton & Gilden, 2007) and with recent analyses of
eye movements in visual search (Najeminik & Geisler, 2005). Some extremely difficult
versions of search, or of search within masked or noisy displays (e.g., Dosher & Lu, 2000)
may require close scrutiny of the targets and hence serial processes, but whether even such
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examples would engender serial processes within a single eye fixation or information
acquisition episode is an open question.
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Appendix A: Models of Visual Search

This appendix presents the equations for probabilistic serial and parallel search models
developed by Dosher, Lu, & Han (2001). These model predictions include a single
identification accuracy for non-targets. As such, these models are directly applicable to
homogeneous search conditions, and are a first-order approximation for heterogeneous
search conditions. See Dosher, Han, & Lu (2001) for a more detailed model development.

Figure 1A illustrates a probabilistic serial search model in which each item in a display is
searched successively in a random order. The serial model implements a probabilistic
weighting rule that incorporates errors — both misses of the target and false alarms to
distractor items — and determines both the completion time and accuracy of the search.
Observers begin in a neutral information state. A positive information state is entered when
an item, correctly or incorrectly, is identified as a target. The negative information state is
entered when all items, correctly or incorrectly, are identified as distractors.

Let Pt and Pp be the probability of correctly identifying a target and a distractor,
respectively, and N be the display size. Finally, G(t| z,a), the Gamma distribution with time
constant © and number of stages a (defined later), characterizes the finishing time
distributions as a function of time from the onset of the display, t.

For target present displays, the probability of entering the positive information-state
(correctly or in error) by time t following display onset is:

N
PH(1)= [% > P e Gl m>]

+

1 N m—2 &
¥ 2 > Py (1=p,)G(t|T, k+1)
m=2k=0

N—1IN—m—1
+ [% 21 kzo pgl_l(l—pT)p’;(l—pD)G(t\T, m-+k+1)
m=1 k=

Here, m is an index for the order or position in which the location containing the target is
searched, and k is an index for calculating the combinatorics of errors at various positions.

For target present displays, the probability of entering the negative information-state is:
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P~ (t)=PY " (1—py)G(t|,N).

For target absent displays, the probability of entering the positive information-state is:
N
PHt)=>_ Pl (1-p,)G(tr,m).

m=1

where m is the first process where a distractor is incorrectly identified as a target.

For target absent displays, the probability of entering the negative information state is:

P~ (t)=p) G(t|r,N).

Figure 1C illustrates a probabilistic parallel search model in which each item in a display is
searched in parallel, beginning at the same time but with independent finishing times drawn
from a distribution G(t| z;a). Pt and Pp are the probabilities of correct target and distractor
identification. This is a parallel model with unlimited-capacity dynamics, in that the speed of
processing individual items does not depend upon the number of elements in the display.

For the target present displays, the probability of entering a positive information state is:

N-1
Pro=2, [ PP (1-pp) " (1= (1=t 0) ™)
N—-1
+ L [t (ppy " (1p) " (1= (1-G el )™

where m is the number of distractors that are misidentified as targets and the weighting
factors reflect the combinatorics on the completion order of those processes.

For the target present displays, the probability of entering a negative information state is:

P=(t)=(1-p, )pY 'G(t|r, a)".

For target absent displays, the probability of entering a positive information state is:

N N!
PrH)=) mpg_m(l—PD)m(l—(l—G(ﬂﬂ a))™).
= m! !

For target absent displays, the probability of entering a negative information state is:
P=(t)=pNG(t|r,a)".
For both parallel and serial models, the probabilities of yes and no responses is used to

calculate a composite (overall) d’ performance accuracy. The probability of “yes” and “no
responses is calculated by assuming that the observers say “yes” when in the positive
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information state, say “no” when in the negative information state, and otherwise guess with
probability g:

Pyes(t)=P* (t)+g(1-P* ()= P (1)),
and
Pro(t)=P~ (t)+(1-g)(1-P~ (t)—P (1))

A predicted measure of bias-fee accuracy, d’ for the model is derived from the predicted hit
and false alarm rates as a function of processing time, d’ = Z(Pyes) = Z(1 = Ppo).

The cumulative density function of the gamma distribution, G(t| ,a), in the time-course
equations is:

(a3

T 1 " a—1
[e~™ ¢ dt,,t>0; else 0.

P(T<t)= =

(This may be generalized to include a shift by a base time 3.)
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Figure 1.

Temporal processing architectures for serial (A) and parallel (C) visual search,
corresponding time-course functions for display sizes of 4 and 12 for serial (B) and parallel
(D) visual search, and standard single-point response time (E) and accuracy (F). The
identical results in a response time paradigm (E and F) are compatible with serial (A, B) or
parallel (C, D) architectures of visual analysis.
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Figure 2.

Stimulus layouts and sample trial sequences. (2) Homogeneous distractor display of size 4.
(b) Homogeneous distractor display of size 12; (c) Heterogeneous distractor display of size
12. Display elements appear on an annulus at 4.12 deg of visual angle, grouped with spaces
to equate the local interactions of display elements. (d) Trial sequence for response time
paradigm. The stimulus appeared for 100 ms or 50 ms (time-limited condition) or until
response (unlimited display conditions). (e) Trial sequence for the speed-accuracy tradeoff
paradigm.
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Average correct RT and error rates as a function of display size for search with free viewing
of unlimited-time displays in Experiment 1. (A) RT (left) and proportion errors (right) in
target present and target absent conditions of homogeneous and heterogeneous displays for
unpracticed observers with free viewing. (B) RT (left) and proportion errors (right) in target
present and target absent conditions of homogeneous and heterogeneous displays for
practiced (SAT) observers for 50 ms brief displays. (C) RT (left) and errors (right) in target
present and target absent conditions of homogeneous and heterogeneous displays for

practiced (SAT) observers with free viewing.
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Figure 4.

Discrimination performance (d’) as a function of total processing time (test onset to
response) for display sizes of 4 and 12 from Experiment 2 for (upper left) 100 ms display
homogeneous searches; (lower right) 100 ms display heterogeneous searches; (upper right)
50 ms display homogeneous searches, and (lower right) 50 ms display heterogeneous
searches. The symbols are observed data points and the smooth curves are best fitting
descriptive exponential functions.
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Figure5.

Fit of the probabilistic parallel search model to the discrimination data in Figure 4 for 100
ms and 50 ms displays for homogeneous and heterogeneous searches. The symbols are
observed data points and the smooth curves are best fitting model functions.
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Fit of the probabilistic serial search model to the discrimination data in Figure 4 for 100 ms
and 50 ms displays for homogeneous and heterogeneous searches. The symbols are observed
data points and the smooth curves are best fitting model functions.

J Exp Psychol Hum Percept Perform. Author manuscript; available in PMC 2014 February 19.



1duosnuey JoyIny vd-HIN 1duosnuey JoyIny vd-HIN

1duosnuey JoyIny vd-HIN

Dosher et al.

Page 29
1» ___6___-@__-— m_Q____e\y____@__
0.8} Homogeneous 100 ms Homogeneous 50 ms
3
> L O Hits 4
= 0.6 x Hits 12
@ < False Alarm 4
% 0.4 O False Alarm 12
o
0.2
ol el ar i € i g
1l | Heterbgeneods 100 ms i Heterogeneous 50 ms
0.8} X 1 , £ L
w | g x¥x 4 - — — | - — - - - — 4
@ - — - T - - _x _ ]
> 0.6 * 1t %
5
[&]
= 04r - - — - -
: Sl datete dut et S R
; 1
0.2¢ il T 7 il
O L
0 0.5 1 1.5 2 2.5 0.5 1 1.5 2 2.5
Total Processing Time (s) Total Processing Time (s)
Figure7.

Fit of the probabilistic parallel search model to the percent yes data for 100 ms and 50 ms
displays for homogeneous and heterogeneous searches. The symbols are observed data
points and the smooth curves are best fitting model functions.
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Fit of the probabilistic parallel model to the time-course data of McElree and Carrasco
(1999), including a feature and conjunction searches. The symbols are observed data points
and the smooth curves are best fitting model functions.
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