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Abstract
Much work in optimal control and inverse control has assumed that the controller has perfect
knowledge of plant dynamics. However, if the controller is a human or animal subject, the
subject’s internal dynamics model may differ from the true plant dynamics. Here, we consider the
problem of learning the subject’s internal model from demonstrations of control and knowledge of
task goals. Due to sensory feedback delay, the subject uses an internal model to generate an
internal prediction of the current plant state, which may differ from the actual plant state. We
develop a probabilistic framework and exact EM algorithm to jointly estimate the internal model,
internal state trajectories, and feedback delay. We applied this framework to demonstrations by a
nonhuman primate of brain-machine interface (BMI) control. We discovered that the subject’s
internal model deviated from the true BMI plant dynamics and provided significantly better
explanation of the recorded neural control signals than did the true plant dynamics.

1. Introduction
Inverse optimal control (IOC) and inverse reinforcement learning (IRL) aim to identify a
cost function from demonstrations of successful control (Boyd et al., 1994; Schaal, 1999; Ng
& Russell, 2000; Abbeel & Ng, 2004; Ratliff et al., 2006; Coates et al., 2008; Ziebart et al.,
2008). These approaches typically require a model of the plant dynamics, which enables
prediction of future states given the current state and control input. In previous work, it has
been assumed that the controller’s internal belief about the plant dynamics matches the
actual plant dynamics. However, when the controller is a human or animal subject, this
internal belief may differ from the actual plant dynamics (Crapse & Sommer, 2008),
especially if the subject has limited experience driving the plant. This mismatch can exist
even when demonstrated control is proficient (e.g., the implemented control strategy may be
only locally optimal). Because the plant dynamics and cost function jointly determine the
optimal control policy, an incorrect assumption about the dynamics model can lead to
misestimation of the cost function via IOC or IRL.

Ideally, we would like to use demonstrated control to learn both the subject’s internal model
of the plant dynamics and the cost function together. This joint estimation is difficult, so
previous work has focused on learning the cost function while assuming known plant
dynamics. Here, we present and solve the complementary problem of learning the subject’s
internal model of the plant dynamics while assuming knowledge of the task goals. This
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problem is challenging because at each control decision, the subject must generate an
internal estimate of the current plant state based on delayed sensory feedback (Miall &
Wolpert, 1996), and we cannot directly observe these internal state estimates.

We introduce a probabilistic internal model estimation (IME) framework through which
inference and learning provide a solution to the current problem in the setting of linear-
Gaussian internal model dynamics and quadratic cost functions. In IME, the subject’s
internal model of the plant dynamics defines trajectories of latent variables representing the
subject’s moment-by-moment internal estimates of the plant state. We assume knowledge of
the control signals sent by the subject, the plant state feedback available to the subject, and
target states to which the subject intends to drive the plant during control. Importantly, we
make no assumption that the subject’s internal dynamics model should match the true plant
dynamics.

Beyond the algorithmic advance, the ability to extract a subject’s internal model has many
potential applications in neuroscience and human-in-the-loop control. Access to a subject’s
internal model could provide a means for tracking and encouraging skill acquisition in
complex tasks, including brain-machine interface (BMI) control, telerobotic surgery or
remote control of unmanned-aerial vehicles. In this work we apply the developed methods
toward demonstrations of BMI cursor control. BMIs have been developed to assist disabled
patients by translating neural activity into control signals for a prosthetic limb or computer
cursor (Green & Kalaska, 2011). BMI control is an acquired skill, akin to driving a car or
helicopter. Previous studies have shown that subjects improve BMI control performance
over time (Taylor et al., 2002; Ganguly et al., 2011). This improvement is likely a result of
the subject refining an internal model of the BMI plant dynamics through experience.
Access to the subject’s internal model of the BMI, through the methods we develop here,
may inform the design of future BMI systems and may provide neuroscientists with novel
tools for investigating the neural basis of feedback motor control and motor learning.

We begin Section 2 by formalizing the internal model estimation problem. In Section 3 we
propose a probabilistic framework for solving the internal model estimation problem.
Section 4 details the validation of the framework through application to real neural data
underlying BMI control of a computer cursor.

2. Problem Formulation
A standard control model takes the following form:

(1)

(2)

where f1 represents the subject’s belief about the plant dynamics, xt ∈ ℝn is the subject’s
belief of the plant state at timestep t, ut ∈ ℝm is the control input issued at timestep t, and J
is the cost function that encodes task goals and control effort. We distinguish the subject’s
internal model of the plant dynamics, f1, from the actual plant dynamics, f2:

(3)

where yt ∈ ℝp is the actual plant state at timestep t.

Due to sensory feedback delay, the feedback available at timestep t represents the plant state
at timestep t − τ, where τ is the feedback delay. To predict the current plant state, the subject
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can use f1 as a forward model, propagating yt−τ (or a noise-corrupted function of it) forward
in time using knowledge of the plant dynamics and previously issued controls ut−τ, …, ut−1.
In general, the subject’s internal beliefs {xt} may be inconsistent with the actual plant states
{yt} due to differences between f1 and f2 and due to sensory noise.

The problem we seek to solve is:

That is, given trajectories of actual plant state and control input, and assuming a cost
function, we seek to estimate the subject’s internal model of the plant dynamics, the
subject’s internal estimates of plant state, and the sensory feedback delay.

In the remainder of this paper, we focus on the case where f1 is linear-Gaussian and J is
quadratic over the internal states, in analogy to the well-studied linear-quadratic regulator
(Anderson & Moore, 1990). These choices allow us to derive an approximation-free
algorithm to solve the internal model estimation problem.

3. Probabilistic framework for internal model estimation
The IME probabilistic model is as follows:

(4)

(5)

(6)

At timestep t ∈ {1,…, T}, yt ∈ ℝp is the actual plant state,  is the subject’s internal
estimate of the timestep k ∈ {t−τ, …, t+1} plant state (see below for detailed explanation),
ut ∈ ℝm is the subject’s control input, and Gt ∈ ℝq represents control goals. The parameters
are the feedback matrix H ∈ ℝn×p, the subject’s internal model parameters {A ∈ ℝn×n, B ∈
ℝn×m, b0 ∈ ℝn}, the cost matrices Ct ∈ ℝq×n, noise covariance matrices {W0 ∈ ℝn×n, W ∈
ℝn×n, V ∈ ℝq×q}, and the sensory feedback delay τ ∈ ℤ+. The IME graphical model for a
single timestep feedback delay (τ = 1) is shown in Fig. 1.

Due to sensory delays, the plant state feedback available at timestep t is outdated by τ
timesteps. Accordingly, (4) defines the subject’s noisy, partial observation of delayed plant
state feedback. Sitting at timestep t, the subject uses this feedback, yt−τ, to form an internal

estimate, , of the timestep t −τ plant state. The noise covariance W0 accounts for
sensory noise.

We define the subject’s internal dynamics model in (5) to be a Gaussian linear-dynamical
system that propagates the subject’s internal estimates of plant state given control input. At

timestep t, the subject makes internal estimates, , of the past (k = t−τ,…, t−1), current (k =
t), and future (k = t + 1) plant states. This timestep t internal state chain (Fig. 1A)
corresponds to a row of latent states in the IME graphical model (Fig. 1B). The state chain

begins with , the subject’s internal belief about the plant state feedback, yt−τ.
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Subsequent internal state estimates, , may be inconsistent with the true
plant states, {yt−τ+1,…, yt+1}, because i) sensory feedback is not yet available for these
timesteps, and ii) there may be mismatch between the subject’s internal model (5) and the
true plant dynamics (3). Internal state transitions not explained by the internal model are
accounted for by the noise covariance, W. At timestep t+1, the subject receives new plant

feedback, yt−τ+1, and generates revised internal estimates, ,

corresponding to a new row of latent states in the graphical model. The variables, , where
we fix k and vary t ∈ {k − 1,…, k + τ}, correspond to a column of latent states in the
graphical model and represent successive revisions of the subject’s beliefs about the
timestep k plant state, given the sensory feedback available at timestep t. Note that (5) is the
IME instantiation of (1).

In (6), we encode the subject’s cost function. At timestep t, the subject determines the next
control signal to send, ut, which the subject’s internal model predicts will drive the plant to

state . The cost matrix, Ct, relates this internal state estimate to the given control goals,
Gt. Depending on the application, Ct may be fully specified in advance, or may contain
parameters to be learned. For example, in a trajectory tracking task, the Gt might encode the
(known) desired trajectory, and Ct might simply extract appropriate components of the

subject’s internal estimate of the upcoming plant state, . Alternatively, Ct might
compute linear functions of feature counts (Ng & Russell, 2000; Abbeel & Ng, 2004) from
the subject’s internal state estimates. In Section 4 we describe an application in which the Gt
are constant across timesteps and represent a control goal to be attained by some arbitrary
time in the future. In this application, we use Ct to extract the extent to which the subject is
on track to achieve the goal state. Note that (6) relates to (2), but does not incorporate
control effort. We focus the scope of this work to problems where either i) the cost function
is dominated by the state cost, or ii) we can structure the Ct in (6) to account for an unknown
control cost (see Section 4 for an example).

3.1. Model Fitting
In model fitting, we treat actual plant states, {yt}, control inputs, {ut}, and task goals, {Gt},

as observed variables. We treat the internal state estimates, , as unobserved
latent variables. We seek the model parameters, H, W0, A, B, b0, W, {Ct}1, V, and τ, that
maximize P({Gt}|{yt}, {ut}), the likelihood of the control goals under the distribution
induced by (4)–(6).

We derived an exact expectation-maximization (EM) algorithm (Dempster et al., 1977) for a
specified feed-back delay, τ (see APPENDIX). In the E-step, we infer posterior distributions

over the latent variables, , using the current parameter
estimates. In the M-step, we update model parameters given the posterior latent variable
distributions. Since the relationships in (4)–(6) are linear-Gaussian, all latent and observed
variables are jointly Gaussian. Additionally, given all control inputs, an internal state chain
for one timestep is conditionally independent of the internal state chains for all other
timesteps

(7)

where t1 ≠ t2. These properties of IME enable an exact and efficient E-step update to the
posterior latent variable distributions, and closed-form M-step parameter updates.

1In some applications Ct may be known a priori rather than learned.
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To identify the feedback delay, τ, we fit IME across a sequence of τ values. As τ increases,
the number of parameters remains fixed, and thus increasing τ does not lead to overfitting.
For this reason we can simply choose τML to be the τ whose corresponding IME fit gives the
highest training data likelihood, P({Gt}|{yt}, {ut}).

4. Internal model estimation from brain-machine interface control
We demonstrate an application of the IME framework to closed-loop BMI cursor control. A
BMI system can be viewed as a feedback control system, whereby a human or animal
subject (controller) generates neural activity (control signal) to drive a computer cursor
(plant). The experimenter defines the mapping from recorded neural activity to cursor
movements (i.e., the actual plant dynamics). The experimenter also defines the task goals in
each trial by displaying a visual target to which the subject is instructed to drive the BMI
cursor. At any moment in time, the subject does not know the current cursor position due to
visual feedback delays in the nervous system, and therefore must choose a control signal to
issue based on visual feedback of an outdated cursor position. We assume that the subject
always intends to drive the cursor straight to the target from an internal estimate of the
current cursor position. We seek to use IME to estimate the subject’s internal model of the
BMI cursor dynamics along with the subject’s timestep-by-timestep internal estimates of the
current BMI cursor position.

Previous studies have provided behavioral and neurophysiological evidence that subjects use
internal models during motor control (Crapse & Sommer, 2008). In the context of BMI,
subjects need to learn to control the cursor, which likely involves refining the internal model
with practice controlling the BMI.

4.1. BMI experiments
A 96-channel Utah electrode array was implanted in motor cortex of a Rhesus monkey. In
each of 36 experimental sessions, we simultaneously recorded from tens (26 ± 3.44) of
neurons, and spike counts were taken in Δt = 33 ms non-overlapping bins. Two-dimensional
cursor velocity was linearly decoded from recorded spike counts, and cursor positions were
updated according to

(8)

(9)

where yt ∈ ℝ2 is the cursor position displayed at timestep t, ut ∈ ℝm is the raw spike count
vector across m simultaneously recorded neuronal units at timestep t, and ũt ∈ ℝm is the
vector mean spike count over the past 5 timesteps. The decoding parameters β ∈ ℝ2×m and
β0 ∈ ℝ2 were determined via the population vector algorithm (Georgopoulos et al., 1983).
Note that (8) describes the actual dynamics of the BMI cursor, corresponding to (3).

In each experimental trial, the subject modulated neural activity to drive the BMI cursor
(radius, 8 mm) to a target (radius, 8 mm) that appeared on the perimeter of a circular
workspace (radius, 85 mm). A trial was deemed successful and terminated as soon as the
cursor visibly overlapped with the target for 50 ms. A trial was deemed a failure if the
subject did not acquire the target within 2 s. The subject typically failed less than 5% of
trials. Experimental details were previously described in Chase et al. (2012).
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4.2. IME formulation for BMI control
The specific IME formulation we applied to the BMI control data is as follows:

(10)

(11)

(12)

where (10)–(12) are specific instances of (4)–(6). A single-timestep slice of this IME
graphical model is shown in Fig. 2.

Since the BMI experiments used a position-only state, we define the subject’s internal state
estimates to reside in the same 2-dimensional position space to allow for interpretable A, B,

b0, and . For simplicity, we assume the BMI subject has noiseless access to delayed

visual feedback of cursor position. These choices are formalized in (10), where  is
the internal estimate made by the subject at timestep t of the BMI cursor position at timestep
t−τ, and yt−τ∈ ℝ2 is the actual BMI cursor position at timestep t − τ.

In (11),  is the subject’s internal estimate made at timestep t of the timestep k ∈ {t−τ,
…, t+1} cursor position, and the control input ut ∈ ℝm is neural activity recorded at timestep
t, as defined in Section 4.1. Note that the form of the subject’s internal dynamics model in
(11) matches the form of the actual cursor dynamics from (8), allowing for direct
comparison between the two.

The cost function in (12) encodes the subject’s intention to drive the cursor straight toward
the current visual target position, Gt ∈ ℝ2, from the subject’s up-to-date estimate of cursor

position, , as illustrated in Fig. 3. Within a particular BMI trial, all {Gt} take the same
value. The straight-to-target aiming intention is implemented by the neural control input, ut,

which the subject’s internal model predicts will bring the cursor to position . The mean

of the distribution in (12) lies on the line defined by the two points,  and . The length

of the line segment between  and Gt is controlled by ct, which is determined by the data.

The noise variance, , accounts for motor commands that deviate from straight-to-target
aiming.

In model fitting for this IME formulation, we seek the subject’s internal model parameters A

∈ ℝ2×2, B ∈ ℝ2×m, and b0 ∈ ℝ2, the noise variances  and , the length scale
factors ct ∈ ℝ+, and the visual feedback delay τ ∈ ℤ+ that maximize P({Gt}|{yt}, {ut}), the
likelihood of the actual target positions under the distribution induced by (10)–(12). To
identify these maximum likelihood parameters, we derived an exact EM algorithm (see
APPENDIX). We initialized the EM algorithm with randomly drawn parameters and applied
multiple random restarts to avoid local optima.

Note that the number of ct parameters varies with the amount of data. Although they might
be more naturally treated as latent variables, the ct were treated as parameters to preserve the
joint Gaussian relationship between latent and observed variables. As a result, we optimize
the ct rather than integrate over them during model fitting. When cross-validating IME
predictions, we will not have access to ct for the held-out data, but this does not pose a
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problem because, as discussed in Section 4.3, we can readily evaluate goodness-of-fit on
held out data without requiring these ct.

4.3. Results
We fit and evaluated IME models using 10-fold cross validation. For each trial that was held
out during training, we asked to what extent IME predictions of the subject’s internal
estimates of cursor position were indicative of straight-to-target aiming. We define aiming
error at timestep t to be the absolute angle by which the cursor would miss the target had the

cursor continued straight along the line connecting  and . For this evaluation, we
inferred the subject’s internal estimates of cursor position to be

(13)

for k ∈ {t − τ, …, t}, where A, B, b0 and τ were fit to the training data, and the recursive
expectations were initialized by (10). Note that the expectation in (13) depends only on the
visual feedback available at timestep t, neural commands, and the subject’s internal model
parameters. Critically, (13) does not depend on the target position, Gt, which will be used to
evaluate the output of the internal model estimated by IME. Additionally, (13) does not
require us to compute {ct} for held-out trials.

To determine the feedback delay, τ, we fit IME models for τ ∈ {0, …, 9} and assessed
model fit by examining the data likelihood, P({Gt}|{yt}, {ut}). Recall that τ controls the
number of latent variables, x, in each row of the graphical model in Fig. 1, and that the
number of model parameters does not depend on the setting of τ. Fig. 4A shows the training
data log-likelihood for a single BMI session across all evaluated choices of τ, and Fig. 4B
gives the values of τ that maximized each training fold’s data log-likelihood. A feedback
delay of 3 timesteps (100 ms) most often gave the best model fit. This result agrees with
reaction times we measured from BMI cursor trajectories and previously reported motor-
cortical latencies to visual stimuli (Schwartz et al., 1988).

On many BMI trials, the subject drove the cursor roughly straight to the target, whereas
cursor trajectories were more circuitous on other trials. It is an open question as to why the
subject does not always drive the cursor straight to the target. In Figs. 5A and 5B, we show a
BMI trial with a circuitous cursor trajectory, along with cross-validated IME-inferred
internal estimates of cursor position from (13). In Fig. 5A, the subject’s aiming intention at

timestep t, as defined by IME predictions of the subject’s internal state estimates  and

, points straight toward the target. We would evaluate this aiming command as having a
0° angular error because the cursor would have hit the target had it continued along that
intended aiming direction. For comparison, we computed velocity motor commands, vt,
through the actual cursor dynamics:

(14)

which correspond to the single-timestep (Δt = 33ms) contribution to the current cursor
velocity, implicit in (8). In Fig. 5A, if the subject was aiming from a perfect prediction of the
current cursor position, yt, (e.g., by using an internal model that exactly matched the cursor
dynamics), the motor command decoded from the actual cursor dynamics would miss the
target by 10°.

Despite the cursor’s circuitous trajectory in this example trial, IME predictions suggest that
the subject was indeed aiming straight toward the target throughout the trial (Fig. 5B). IME-
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extracted internal state estimates diverge from the true cursor trajectory because the
extracted internal model differs from the true cursor dynamics (8). The key insights here are
that i) the subject appears to be aiming from where it believes the cursor is at each point in
time, as determined by the internal model, and ii) the subject’s neural commands, when
evaluated through the internal model, are consistent with straight-to-target movements.

In Fig. 5C, we show a representative trial where the subject drove the BMI cursor along a
more direct path to the target. On this trial and many similar to it, IME predictions of the
subject’s internal state estimates tend to agree quite closely with the actual cursor
movement. This agreement contrasts with the disagreement between IME predictions and
cursor movements in Figs. 5A and 5B, highlighting the redundancy in the mapping from
high-dimensional neural activity to low-dimensional cursor kinematics. Certain patterns of
neural activity may produce straight-to-target movements through both the subject’s internal
model and the cursor dynamics, whereas other patterns may produce straight-to-target
movements through the internal model, but not through the cursor dynamics. On both trials
in Fig. 5, IME-extracted internal models reveal the subject’s internal state estimates tending
toward the target, regardless of where the actual cursor moves.

Across 5,760 trials from 36 BMI experiments, we computed cross-validated angular aiming
errors from IME-inferred internal state estimates (as in the red angular error from Fig. 5A)
and from actual cursor positions (as in the black angular error from Fig. 5A). IME-based
aiming errors were about 5 times smaller than the analogous errors in demonstrated cursor
trajectories (Fig. 6). Recall that the straight-to-target aiming assumption is only applied to
the training data during model fitting and not when evaluating test data. That being said,
neural commands in the test data were more consistent with straight-to-target aiming under
IME-extracted internal models than under the actual cursor dynamics. Internal models
extracted by IME therefore explain the subject’s neural commands better than the actual
cursor dynamics.

5. Discussion
The developed IME framework describes the internal state estimation process, whereby the
subject integrates feedback with previously issued control signals to generate an up-to-date
estimate of the plant state. IME specifically addresses complicating realities inherent in
learning from demonstration, including i) sensory feedback delays and ii) mismatch between
the true plant model and the subject’s internal model. This mismatch, often referred as
model bias, is typically treated as an obstacle to be overcome, for example by incorporating
model uncertainty in policy search (Deisenroth & Rasmussen, 2011) or through policy
improvement in the presence of model inaccuracies (Abbeel et al., 2006). In this work, we
seek to explicitly identify the subject’s internal model, rather than attempt to factor it out.

The internal model estimation problem that we address is fundamentally different from the
problem of learning the actual plant dynamics (i.e., system identification). The internal
model estimation problem cannot be solved by simply relating control signals to state
transitions. Actual plant state trajectories only enter IME as delayed feedback, and as such,
the actual plant dynamics play only an indirect role when extracting the subject’s internal
model. Additionally, the objective in this work is not to design better plant dynamics, but
rather to estimate the subject’s knowledge of the current plant dynamics, whatever they may
be. The ability to extract the subject’s internal model depends critically on the consistency of
control relative to the task goals and internal model, and not on the extent to which the
subject’s demonstrations achieve those goals through the actual plant dynamics.
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Ground truth cannot be known in the BMI application. For comparison against our IME-
based results, we present aiming errors resulting from evaluating recorded neural commands
through the true cursor dynamics. We chose this comparison because, for optimal control,
the subject should learn an internal model that matches the actual plant dynamics. Although
the subject is proficient in BMI tasks, our results suggest a mismatch between the subject’s
internal model and the actual cursor dynamics. IME provides the opportunity to study the
brain’s deviations from optimality, which may ultimately enable researchers to design
specific training paradigms to improve a subject’s learning.

While IME requires specification of a cost function, we have demonstrated notable
flexibility in this requirement. Unlike optimal control in the linear-quadratic Gaussian
setting (Anderson & Moore, 1990), IME does not require pre-specification of a control time
horizon. Additionally, by learning the ct in (12), internal model estimation becomes agnostic
to control effort. This feature is advantageous because the form of control costs is often
unknown, especially in the BMI setting (although see (Körding & Wolpert, 2004)). In some
cases, these control costs may be known a priori, and we are interested in extending IME to
handle these scenarios (e.g., when a full quadratic cost function of state and control is
specified).

One potential limitation of IME is the prescription of a static linear-Gaussian form to the
internal model. Some applications may require more expressive internal model dynamics,
which could be accommodated by a nonparametric representation of the internal model
(Deisenroth et al., 2012). Additionally, the ability to extract a time-varying internal model
may be needed in settings where the subject updates an internal model as control experience
accrues.
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APPENDIX
EM algorithm for the IME probabilistic framework described in Section 3:

Expectation Step
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Maximization Step

For the IME variant from Section 4, update the above Estep with the following:
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and in the M-step, take:
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Figure 1.
IME graphical model with a single timestep feedback delay (τ = 1). Observed variables are
indicated as shaded nodes, and unshaded nodes are latent variables. (A) Timestep t slice of
IME. Delayed sensory feedback of plant state, yt−1, and previously issued control input,
ut−1, propagate through the subject’s internal dynamics model to generate internal estimates

of plant state,  and . With belief  of the current plant state, the subject generates a

new control signal, ut. The internal model predicts the resulting future state, , which
should agree with the current task goal, Gt. (B) The full IME graphical model. The timestep
t slice from (A) is embedded in the upper left corner.
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Figure 2.
Single-timestep slice of a two-timestep feedback delay (τ = 2) IME graphical model, as used
in the BMI application.
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Figure 3.
Task goals encoded by the IME probabilistic model. For illustration, we consider a two-
timestep visual feedback delay. At timestep t, the subject’s internal estimate of the cursor
position two timesteps ago matches the actual cursor position (black point). The subject’s
internal state estimates (red points) evolve according to (11). If the subject intends to drive

the cursor straight to the target position, Gt (green point), from the subject’s estimate, , of
the current cursor position, then according to (12), the target should lie near the line defined

by the two points,  and  (dashed red line).
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Figure 4.
Model selection for determining the feedback delay, τ. (A) Log-likelihood as a function of τ
over training data from a single BMI experiment. For this representative experiment, the
feedback delay that maximized the data likelihood was τML = 3 timesteps (100 ms). (B)
Histogram of τML values across 36 experiments (10 folds each).
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Figure 5.
Evaluation of IME predictions. (A) Cursor trajectory (black line) from a BMI trial that was
not used in model fitting. Red points are IME-inferred internal estimates of cursor position
as determined by (13). Black arrow is the single-timestep velocity command, vt, as
computed through the actual cursor dynamics (14). Task success occurs when the cursor
visibly overlaps with the target, which happens when the center of the cursor enters the
cursor-target overlap zone (dashed green circle). (B) IME-inferred internal state chains
across the entire BMI cursor trajectory from (A). (C) BMI cursor trajectory and IME-
inferred internal state chains from a different trial.
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Figure 6.
Angular aiming errors based on internal models estimated by IME (red bar) compared to
errors based on internal models which exactly match the cursor dynamics (black bar).
Angular errors were first averaged within each trial, then averaged across all 160 trials from
each of 36 BMI experiments. Error bars indicate +/− SEM (n=5,760).
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