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This paper presents a new white blood cell classification system for the recognition of five types of white blood cells. We propose
a new segmentation algorithm for the segmentation of white blood cells from smear images. The core idea of the proposed
segmentation algorithm is to find a discriminating region of white blood cells on the HSI color space. Pixels with color lying in
the discriminating region described by an ellipsoidal region will be regarded as the nucleus and granule of cytoplasm of a white
blood cell. Then, through a further morphological process, we can segment a white blood cell from a smear image. Three kinds
of features (i.e., geometrical features, color features, and LDP-based texture features) are extracted from the segmented cell. These
features are fed into three different kinds of neural networks to recognize the types of the white blood cells. To test the effectiveness
of the proposed white blood cell classification system, a total of 450 white blood cells images were used.The highest overall correct
recognition rate could reach 99.11% correct. Simulation results showed that the proposed white blood cell classification system was
very competitive to some existing systems.

1. Introduction

The microscopic inspection of blood smears provides diag-
nostic information concerning patients’ health status. The
inspection results of the differential blood count reveal a
wide range of important hematic pathologies. For example,
the presence of infections, leukemia, and some particular
kinds of cancers can be diagnosed based on the results
of the classification and the count of white blood cells.
The traditional method for the differential blood count is
performed by experienced operators. They use a microscope
and count the percentage of the occurrence of each type of
cell counted within an area of interest in smears. Obviously,
this manual counting process is very tedious and slow. In
addition, the cell classification and counting accuracy may
depend on the capabilities and experiences of the operators.
Therefore, the necessity of an automated differential counting
system becomes inevitable.

There are two kinds of techniques to implement an
automated differential counting system. While the first and

the dominant technique is based on the flow cytometry,
the other technique is based on image processing. There are
many commercially available systems which adopt the flow
cytometry technique for counting cells. The flow-cytometry-
based systems have an advantage (i.e., they can offer high
throughput), but they suffer from one drawback (i.e., they
cannot produce the images of the blood samples for further
chance of verification in case some abnormal conditions were
detected). Recently, several different approaches to imple-
ment an image-processing-basedwhite blood cell recognition
system have been proposed [1–11].

White blood cells can be categorized into several classes
according to the morphology of their contours and their
nuclei. The classification of white blood cells usually involves
the following three stages: (1) the segmentation of a white
blood cell from a smear image, (2) the extraction of effective
features, and (3) the design of a classifier. For example,
Young adopted four features and the minimum distance
classifier for classifying 5 types of cells [4]. Sheikh et al. used
wavelet transform coefficients and artificial neural networks

Hindawi Publishing Corporation
e Scientific World Journal
Volume 2014, Article ID 796371, 9 pages
http://dx.doi.org/10.1155/2014/796371

http://dx.doi.org/10.1155/2014/796371


2 The Scientific World Journal

for recognizing the white blood cell, the red blood cells, and
platelets [8]. Bikhet et al. selected 10 features and adopted
the minimum-distance classifier for constructing an auto-
matic classification system which achieved the rate of 91%
correct classification for a database consisting of 71 white
blood cells [6]. Piuri and Scotti proposed an automatic detec-
tion and classification system based on 23 morphological
features and a neural classifier [7]. A classification system
based on eigen-cell and parametric features was proposed in
[5]. A system which achieved a classification rate of 77% for
classifying bone marrow white blood cells was reported in
[9]. Nilufar et al. proposed a classification system based on
joint histogram-based features and a support vector machine
[10]. Osowski et al. presented the application of a genetic
algorithm and a support vector machine to the recognition
of bone marrow blood cells [11]. Rezatofighi et al. adopted
morphological features and textural features extracted by
local binary pattern (LBP) and then trained two types of
neural networks for classification [1]. Tabrizi et al. adopted
principal component analysis for features selection and used
a learning vector quantization neural network for classifying
5 types of white blood cells [2]. Ghosh et al. fed four statistical
significant features toNäıve Bayes classifier for classifying five
types of white blood cells with 83.2% overall accuracy [3].
Each approach has its own considerations for adopting what
kinds of features and classifier.

To a certain extent, the performance of an automatic
white blood cell classification system depends on a good
segmentation algorithm for segmenting white blood cells
from their background. There are many different approaches
(e.g., clustering [8], thresholding [5, 6, 10], morphological
operator [11, 12], Gram-Schmidt orthogonalization method
[1], edge detection [13], region growing [14], watershed [15],
colors [16–18], and support vector machine (SVM) [19])
to segment white blood cells from the background. Each
approach has its advantages and disadvantages. For example,
the conventional color-based methods and the thresholding
method are simple but are not able to accurately segment
the white blood cells from the background. Some approaches
(e.g., the SVM method and the region growing method)
can provide reasonably accurate segmentation results, but
they are either costly to be implemented or require high
computational resources. A review on some of the general
segmentation methods can be found in [20]. While some
color-based segmentation methods (e.g., [17]) were directly
conducted on the RGB color space, some approaches (e.g.,
[16, 18]) adopted the 𝐻𝑆𝐼 color space (especially on the 𝑆

component). In general, the 𝑆-component-based methods
outperformed the RGB-based methods. In [16], the accuracy
performance varied from 98.0% to 99.54% for the acute
myeloid leukemia type and from 94.24% to 99.13 for the acute
lymphocytic leukemia type.

In this paper, we propose a new approach to imple-
menting an automatic white blood cell classification system.
First of all, we try to identify the color characteristics of
the pixels of the nucleus and granule of cytoplasm of white
blood cells in the 𝐻𝑆𝐼 color space. Based on the found
discriminating region and a morphological process, we can
segment a white blood cell from a smear image. In the

following, we extract three kinds of features (i.e., geometrical
features, color features, and LDP-based texture features) from
the segmented cell region. These features are fed into three
different neural networks for classifying five types of the
white blood cells. The proposed system will be introduced
in Section 2. The experimental results are given in Section 3.
Finally, Section 4 concludes the paper.

2. The Proposed Automatic White Blood Cell
Classification System

Theproposed automatic white blood cell classification system
involves the following three stages: (1) the segmentation of a
white blood cell, (2) the extraction of effective features, and
(3) the design of a classifier.

2.1. Stage 1.The Segmentation. In this paper, we propose a new
color-based approach to segment five types of white blood
cells from their background. This new color-based method
is based on the idea of constructing a discriminating region
for the scatter plot of pixels belonging towhite blood cells. Via
checkingwhether a pixel lies inside the discriminating region,
white blood cells can be effectively segmented from the
background.The database of the white blood cells used in this
paper was downloaded from the CellaVision Competency
Software Databases which contain slides stained with either a
May Grünwald Giemsa (MGG) or aWright staining protocol
[21]. Figure 1(a) shows a sample of the images. First of all, an
expert was asked to manually segment the white blood cells
from the background to provide ground truth information.
We then collected a set of pixels belonging to white blood
cells. Figure 1(b) shows the scatter plot of these collected
pixels on the 𝐻𝑆𝐼 color space. Obviously, most of these
pixels are clustered inside a rotated ellipsoid. We can use
the principal component analysis (PCA) method to find the
principal axes of these pixels on the original 𝐻𝑆𝐼 space and
then use the principal axes information to rotate the ellipsoid
to be parallel to the new coordinate system as shown in
Figure 1(c). Finally, the discriminating region for white blood
cell pixels can be described by the following equations:
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where the matrix 𝑅 is a 3 × 3 rotation matrix, the vector
(𝐻󸀠, 𝑆󸀠, 𝐼󸀠) is the rotated version of the original color vector
(𝐻, 𝑆, 𝐼), the parameter (𝐶

𝐻
, 𝐶
𝑆
, 𝐶
𝐼
) is the rotated ellipsoid

center, and the parameters 𝑟
𝐻
, 𝑟
𝑆
, and 𝑟

𝐼
are the three

semiprincipal axes of length. The appropriate values of the
rotation matrix, the three semiprincipal axes, and the center
may varywith the stain used to generate the blood cell images.

Wemay then use the ellipsoidal equations defined in (1) to
verify whether a pixel belongs to a white blood cell. If the𝐻𝑆𝐼

information of a pixel satisfies (1), then it will be claimed to be
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Figure 1: Blood cell images. (a)The original image. (b)The scatter plot of the collected pixels of the white blood cells in the𝐻𝑆𝐼 color space.
(c) The scatter plot rotated to a new coordinate system.

a white blood cell pixel. Some detected cells images are shown
in Figure 2(a). Obviously, the segmented white blood cells
are broken and noisy; therefore, we still need to adopt some
morphological operators (e.g., dilation, closing, and a 7 × 7

median filter) to remove unwanted small noisy regions and
fill holes in the detected cell region as shown in Figure 2(b).

2.2. Stage 2. Feature Extraction. The feature extraction plays
an important role in the performance of an automatic
white blood cell classification system. Most of the existing
methods adopt the following features such as geometrical
features (e.g., area, radius, perimeter, convex area, major
axis length, compactness, and orientation), textural features
(e.g., momentum, contrast, entropy, and kewness), and color
features (e.g., color distribution and histogram). For example,
Piuri and Scotti greatly depended on the geometrical features
[7]. Tabrizi et al. adopted both geometrical features and
textural features [2]. Osowski et al. integrated all those three
kinds of features to form 164 features for their classifiers [11].

In this paper, three kinds of features are extracted for
classification. The first kind of features is the geometrical
features consisting of the area feature, Area, the length
feature, Lengthvar, and the compactness feature, Comp. The
area feature, Area, is the amount of pixels which belong to the
segmented cell region. As for the last two features, Lengthvar
and the compactness, Comp, are computed as follows:

(1) Lengthvar:

Lengthvar =
1

𝑁
𝑏

𝑁𝑏

∑
𝑖=1

(length
𝑖
− length)

2

, (2)

where length
𝑖
represents the length between the 𝑖th pixel on

the cell boundary and the cell center. The parameter length
represents the mean of those lengths. And

(2) Comp:

Comp =
the perimeter of the cell2

the area of the cell
. (3)
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Figure 2:The detected white blood cell. (a)The detected cell based on the result of (1). (b)The detected cell after themorphological operators.

The color features, Huevar, Saturationvar, and Intensityvar,
are the three variances of the hue, saturation, and intensity
components of the pixels belonging to the white cell.

As for the textural features, there are different ways
to compute textural features. For example, Osowski et al.
computed the angular second momentum, contrast, entropy,
and so forth [11]. Rezatofighi et al. introduced the textural
features extracted by local binary pattern (LBP) and cooc-
currence matrix [1]. They found that the performance of the
cooccurrence matrix-based features had better performance
in comparison with the LBP-based features; however, the
computational time for computing the cooccurrence matrix-
based features was significantly higher than the time required
by the computations of the LBP-based features.

Based on the aforementioned discussions, we proposed
the use of the local-directional-pattern- (LDP-) based fea-
tures to make a tradeoff between the computational time and
the performance. The LBP operator, a gray-scale invariant
texture primitive, was originally proposed by Ojala et al. [22].
Later on, the local-directional-pattern- (LDP) was proposed
to overcome the disadvantages of LBP (e.g., nonmonotonic
illumination variation and random noise). The LDP is an
eight bit binary code and is obtained by computing the
relative edge response value of a pixel in all eight directions at
each pixel position [23].

In our system, we were interested at the three most
prominent directions in order to generate the LDP. Figures
3(a)-3(b) illustrate an example of transforming a 3 × 3

windowed image into a LDP code. We then use the LDP
operator to transform a gray image to a LDP labeled image
where the value of each pixel is the computed LDP code
corresponding to the pixel at the same position at the original
gray image as shown in Figure 3(b). In the following, we
can use a so-called “LDP histogram” with 218 bins (i.e.,
from 00000111(= 7) to 11100000(=224)) to represent this LDP
labeled image as shown in Figure 3(c). The LDP histogram
represents the relative frequency of occurrence of the various
LDP codes in the LDP labeled image. Figure 3(d) shows
the average LDP histogram computed from 60 cell images
consisting of 5 types of white blood cell images. We found
that bins, 19, 25, 35, 38, 49, 50, 70, 76, 98, 100, 137, 140, 145,
and 196, are the 14 bins with the 14 largest values which are
larger than a threshold, 400. These 14 bins accounted for a
very large proportion of the relative frequency of occurrences.
Therefore, we decided to use a reduced histogram with those
14 especially important bins to represent a LDP labeled image
as shown in Figure 3(e).

In total, we have extracted 20 features for the classifica-
tion purpose, Area, Lengthvar, Comp, Huevar, Saturationvar,
Intensityvar, LDP19, LDP25, LDP35, LDP38, LDP49, LDP50,
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Figure 3: LDP-based features. (a)The Kirsch edge masks used for detecting the 8 directions. (b)The LDP code. (c)The LDP histograms with
218 bins. (d) The average LDP histogram. (e) The reduced LDP histogram with 14 bins for representing the cell image.
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(a)

(b)

Figure 4: Samples of white cell images from the CellaVision Competency Software Databases. From left to right, lymphocyte, monocyte,
eosinophil, basophil, and neutrophil. (a) Data set 1. (b) Data set 2.
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2.3. Stage 3. Classification. After the set of features have been
extracted, we proceed to the design of classifiers.Three differ-
ent kinds of neural-network-based classifiers were employed
in the design of classifiers.

2.3.1. The Multilayer Perceptron. Multilayer perceptrons
(MLPs), one of the most popular neural networks, have
been applied successfully to solve many difficult and diverse
problems by using the well-known backpropagation algo-
rithm to train them [24]. The performance of a trained MLP
depends on its architecture, initial weights, and the number
of training epochs. Frommany simulations, anMLP with the
architecture 20 × 12 × 10 × 5 was constructed.

2.3.2. The Support Vector Machine. The support vector
machine (SVM) is another widely adopted neural network
[24]. It is a linear machine with powerful learning ability
and good generalization capability.The design of a successful
SVM classifier involves the choice of the so-called kernel
functions. In our system, we employed the use of the radial-
basis functions (RBFs).The number of RBFs and their centers
are automatically set by the number of support vectors and
their values.

2.3.3. Hyperrectangular Composite Neural Networks. The
class of hyperrectangular composite neural networks (HRC-
NNs), a kind of hybrid networks developed by our previous
work [25–28], integrates the paradigms of neural networks
with the rule-based approach. The values of the synaptic
weights of a trained HRCNN can be interpreted as a set of
crisp If-Then rules. In addition, a specially designed training
algorithm can achieve 100% correct recognition rate for the

training set [25–28]. The mathematical description of a two-
layer HRCNN with 𝐽 hidden nodes is given as follows:

Out (𝑥) = 𝑓(

𝐽

∑
𝑗=1

Out
𝑗
(𝑥) − 𝜂) ,

Out
𝑗
(𝑥) = 𝑓 (net

𝑗
(𝑥)) ,

net
𝑗
(𝑥) =

𝑛
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𝑓 ((𝑀
𝑗𝑖
− 𝑥
𝑖
) (𝑥
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𝑗𝑖
)) − 𝑛,

𝑓 (𝑦) = {
1 if𝑦 ≥ 0

0 if𝑦 < 0,

(4)

where 𝑀
𝑗𝑖
and 𝑚

𝑗𝑖
∈ R are adjustable synaptic weights of

the 𝑗th hidden node, 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇is an input pattern, 𝑛 is

the dimensionality of input variables, 𝜂 is a small positive real
number, and Out(𝑥) : R𝑛 → {0, 1} is the output function of
a two-layer HRCNN with 𝐽 hidden nodes.

3. Experimental Results

The database of the white blood cells used in the experiments
was downloaded from the CellaVision Competency Software
Databases which contain slides stained with either a May
Grünwald Giemsa or a Wright staining protocol [21]. The
databases contain 9-10 slides each having approximately 100
white blood cell images and a large RBC overview image for
RBC characterization. There are five types of white blood
cells (e.g., lymphocyte, monocyte, eosinophil, basophil, and
neutrophil). There were 450 white blood cell images used in
our experiments. These 450 images came from two different
data sets. The difference between these two data sets was the
colorant used to stain cells. Figure 4 shows some examples
from the two data sets. The color of the white blood cells
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Table 1: The number of cell images for each kind of white cells.

Lymphocyte Monocyte Basophil Eosinophil Neutrophil Total
Set 1 12 12 12 12 12 60
Set 2 83 31 2 5 269 390
Total 95 43 14 17 281 450

Table 2: The segmentation results.

Data set 1 2
Cell type Sensitivity Specificity Sensitivity Specificity
Lymphocyte 0.995 0.994 1.000 0.986
Monocyte 0.997 0.988 0.999 0.983
Basophil 0.970 0.992 0.999 0.970
Eosinophil 0.794 0.994 0.867 0.993
Neutrophil 0.990 0.990 1.000 0.978
Average 0.949 0.992 0.973 0.982

which came from data set 2 looks more near purple than
the cells from data set 1. Table 1 tabulates the number of cell
images for each type of white cells.

3.1. Experiment One: The Cell Segmentation. In this experi-
ment, we would like to test the performance of the proposed
segmentation algorithm introduced in the first stage of the
proposed automatic white blood cell classification system.
Since the preparation of staining procedure and blood con-
centration of individual may result in the inconsistency of
color in cell images, we constructed one discriminate region
of white blood cell tones particularly suitable for each data
set. The two discriminating regions were constructed based
on 500 and 800 pixels which were randomly selected from
the images from the two data sets, respectively. The found
discriminating region for each data set was given as follows:
for data set 1,
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for data set 2,
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Table 3:The classification results of the three neural-network-based
classifiers.

Classifier Training set Testing set Overall
MLP 99.67% 98.01% 99.11%
SVM 100.0% 92.72% 97.55%
HRCNN 100.0% 66.90% 88.89%

The evaluation of the proposed segmentation algorithm
was based on the computations of the sensitivity and speci-
ficity rates:

sensitivity = number of true positives

× (number of true positives

+ number of false negatives)−1,

specificity = number of true negatives

× (number of true negatives

+ number of false positives)−1.

(7)

While the sensitivity rate relates to the test’s ability to
identify positive results (i.e., white blood cell pixels), the
specificity rate relates to the test’s ability to identify negative
results (i.e., background pixels). Table 2 tabulates the seg-
mentation results. For the four types, lymphocyte, monocyte,
eosinophil, andneutrophil, the sensitivity and specificity rates
were all above 0.97. It indicated that the segmentation results
were good. As for the basophil type, the specificity rate was
still high (i.e., 0.993), but the sensitivity rate was only 0.794
(for data set 1) and 0.867 (for data set 2). It indicated that the
basophil type was a little undersegmented. We found that the
low sensitivitymay be due to the large amount of red granules
in a basophil. The segmentation performance was not 100%
correct; however, the classification performance could be
high if the most important regions of the cells were correctly
segmented. The classification performance was validated at
the second experiment.

3.2. Experiment Two: The Classification Comparisons. The
450 images were split into a training set consisting of 299
images and a testing set consisting of 151 images. The classifi-
cation results for these three types of classifiers were tabulated
in Table 3 based on the average of the classification rates of
all classes. While the SVM and the HRCNN could achieve
100% correct rate for the training set, theMLP could reach the
highest rate for the testing data set. The MLP outperformed
the other two classifiers based on the comparisons of the
overall correct rate.
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Table 4: The comparisons of the classification rates among different classification systems.

Method Number
of types Segmentation Classifier Overall

rate
Number
of images

Ours 5 Discriminating region MLP 99.11% 450
Ours 5 Discriminating region SVM 97.55% 450
Ours 5 Discriminating region HRCNN 88.89% 450
Rezatofighi et al. [1] 5 Gram-Schmidt orthogonalization and snake SVM 86.10% 400
Tabrizi et al. [2] 5 Gram-Schmidt orthogonalization and snake LVQ 94.10% 400
Ghosh et al. [3] 5 Watershed Bayes classifier 83.2% 150
Young [4] 5 Histogram threshold Distance classifier 92.46% 199
Yampri et al. [5] 5 Automatic thresholding and adaptive contour Minimized error 96.0% 100
Bikhet et al. [6] 5 Entropy threshold and iterative threshold Distance classifier 90.14% 71
Piuri and Scotti [7] 5 Opening and Canny edge detector KNN, FF-NN, and RBF 92%∼82% 113

The comparisons of our proposed white cell recognition
system with other white cell classification systems were
shown in Table 4. Those existing systems constructed their
own databases instead of using a public database as we
did. The rightest column shows the number of images used
in their experiments. Among these systems, we used the
largest amount of images to evaluate the proposed system. In
addition, based on the comparisons of the overall rate, our
proposed system incorporated with a trained MLP achieved
the highest correct rate.

Most of the systems shown in Table 4 did notmention the
information about the computational time.While Rezatofighi
et al. [1] reported that it took 16 minutes for the differential
counting of 100 white cells with the image size 720 × 576 on
a Pentium-4 PC at 3.2 GHz with 1 GB RAM, our system took
0.88 seconds (from segmentation to classification) to classify
a cell image with the size 360 × 360 on a Pentium-4 PC at
2.6GHz with 2GB RAM.

4. Conclusions

In this paper, we proposed a new segmentation algorithm for
segmenting a white cell from a smear image. This segmen-
tation algorithm is based on finding a discriminating region
of white blood cell tones in the 𝐻𝑆𝐼 color space. The found
discriminating region can be described by a 3D ellipsoid.
Then we proposed the use of 20 features consisting of 3
geometrical features, 3 color features, and 14 LDP features.
Finally, three different neural-network-based classifiers were
adopted for classifying white blood cells into one of the
five types. Compared to other systems tabulated in Table 4,
our proposed system incorporated with a trained MLP
could reach the highest performance. The performance was
evaluated on a public database.
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