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Adiposity is related to fertility in women14 and female ani-
mals.21 Both malnourishment and overnutrition5,25 impair female 
fertility. Obesity causes perturbations in the hypothalamic–pi-
tuitary–ovarian axis via feedback from leptin and insulin,29 
which may contribute to the decreased mean serum luteiniz-
ing hormone (LH) concentration and amplitude found in obese 
subjects.18 Furthermore, human epidemiologic studies have 
demonstrated a relationship between obesity and ovulatory 
dysfunction,8 miscarriage,6 and gestational complications.19 Al-
though obesity is known to affect fertility outcomes in women 
and female animals, the underlying mechanisms responsible 
for obesity-induced infertility remain unknown. For this rea-
son, a suitable animal model is needed in which to study the 
molecular basis of the relationship between obesity and female 
reproductive function.

Multiple animal models have been used to study obesity-
associated reproductive dysfunction.38 Many of these models 
involve genetically modified strains of rodents fed high-fat 

diets and, therefore, may not mimic the disease pathogenesis 
in humans. Although nonhuman primate models of obesity 
closely model the disease manifestation in humans,40 the cost 
of primates and their long lag time to reproductive maturity 
render them inaccessible to large-scale research. Pigs are a 
valuable tool for the study of human disease due to their ana-
tomic, physiologic, and biochemical similarities to humans.41 
There are considerable similarities between cycle length in hu-
mans and pigs,15 and pigs have the same lipoprotein profile as 
do humans.12

Our goal was to validate Ossabaw minipigs as an animal mod-
el for the effects of obesity on metabolic parameters and repro-
ductive function in women. Ossabaw minipigs have a mutation 
in PRKAG3 that causes increased intramuscular fat, resulting 
in a thrifty phenotype.11 When fed an excess-calorie, high-fat, 
high-cholesterol, high-fructose diet, Ossabaw minipigs naturally 
develop features that mimic metabolic syndrome (MetS) in hu-
mans, including visceral obesity, glucose intolerance, and dyslip-
idemia.11,28

Our study objectives were to characterize the effects of a 
hypercaloric, high-fat diet on metabolic parameters and re-
productive function in female Ossabaw minipigs and to 
perform ovarian stimulation in female Ossabaw minipigs to 
com pare their in vivo ovarian response to that reported for 
obese women.
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sectioned (5 µm). Slides were stained with Mayer and eosin Y 
solution (Sigma–Aldrich).

Ovarian stimulation protocol. The ovarian stimulation proto-
col mimicked a human long gonadotropin-releasing hormone 
agonist protocol.26 Starting in midluteal phase, pigs received a 
dose of the gonadotropin-releasing hormone agonist triptorelin 
acetate (100 μg SC; Trp, ProSpec-Tany TechnoGene, Rehovot, 
Israel) twice daily until no ovulatory size follicles were observed 
(15 to 19 d).26 At that time, 2 doses (10 to 20 mg SC each) of dino-
prost tromethamine (PGF2α; Lutalyse, Pharmacia and Upjohn, 
Pfizer, New York, NY) were administered 12 h apart to ensure 
luteolysis. Subsequently, sows received a total daily dose of 100 
mg follicle-stimulating hormone (FSH; Folltropin V, Bioniche 
Animal Health Canada, Belleville, Canada) and 1.67 mg LH (Lu-
tropin V, Bioniche Animal Health Canada) divided equally and 
given subcutaneously every 8 h for a period of 2 to 7 d, until 
follicles of ovulatory size (larger than 6.5 mm) were observed.26 
Then, a single dose of 2500 IU of human chorionic gonadotro-
pin (hCG; Chorulon, Intervet, Millsboro, DE) was administered 
intramuscularly.

Serum hormone radioimmunoassay. Coat-A-Count progester-
one, androstenedione, estradiol, and total testosterone kits (Sie-
mens Medical Solutions Diagnostics, Los Angeles, CA) were 
validated for use with pig serum. Standards were made in char-
coal-stripped pig serum for progesterone and androstenedione 
and in 1% PBS-gel for estradiol and total testosterone by adding 
a known amount of progesterone (32 to 1000 pg), androstenedi-
one (20 to 640 pg), estradiol (2.5 to 150 pg), or total testosterone 
(10 to 1600 pg; Steraloids, Newport, RI) and diluting further. To 
validate each radioimmunoassay described, parallelism and re-
covery of unlabeled ligand were conducted. Serum samples for 
estradiol and total testosterone were extracted first with diethyl 
ether followed by hexane–methanol1 before radioimmunoassay. 
The progesterone assay sensitivity was 250 pg per tube, with an 
interassay coefficient of variation (CV) of 4.0% (n = 7) and an in-
traassay CV of 2.4% (n = 7). The androstenedione assay sensitivity 
was 60 pg per tube, with an interassay CV of 3.0% (n = 5) and an 
intraassay CV of 6.9% (n = 5). The estradiol assay sensitivity was 
2.5 pg per tube, with an interassay CV of 4.9% (n = 6) and an in-
traassay CV of 1.2% (n = 6). The total testosterone assay sensitiv-
ity was 400 pg per tube, with an interassay CV of 3.2% (n = 3) and 
an intraassay CV of 1.9% (n = 3).

Serum LH and FSH were analyzed according to previously de-
scribed double-antibody radioimmunoassays validated for por-
cine LH24 and FSH,33 with modifications. Standards were made 
with purified porcine LH (0.4 to 6.25 ng) and FSH ((0.08 to 5.0 ng; 
National Hormone and Peptide Program, Harbor-UCLA Medical 
Center, Torrance, CA). Aliquots of 5 µg LH or FSH in 5 µL distilled 
water were iodinated with 2.5 µg of chloramine-T (Chloramine-T 
hydrate 98%, Sigma–Aldrich) and 0.25 mCi of 125I (Perkin Elmer, 
Waltham, MA). The contents of the reaction vial were layered on 
a resin-packed column to separate free 125I from iodinated LH 
(125I-pLH) and FSH (125I-pFSH). The primary LH antibody was 
used at a final dilution of 1:4,800,000. The primary FSH antibody 
was used at a final dilution of 1:400,000. The LH assay was run 
at an average percentage binding of 29% (n = 4), with an assay 
sensitivity of 450 pg per tube, an interassay CV of 4.9% (n = 4), 
and an intraassay CV of 3.6% (n = 4). The FSH assay was run at an 
average binding of 34% (n = 3), with an assay sensitivity of 627 pg 
per tube, an interassay CV of 1.9% (n = 4), and an intraassay CV 

Materials and Methods
All experimental animal procedures were performed in com-

pliance with University of Illinois Urbana-Champaign IACUC 
regulation, and followed the guidelines outlined in the Guide for 
the Care and Use of Laboratory Animals.17

Ossabaw husbandry and diet treatment. Nine multiparous 
Ossabaw female pigs (Sus scrofa; age, 6 to 8 y) were acquired 
from Indiana University Purdue University Indianapolis. On 
the basis of physical exams, animals were deemed healthy and 
allocated to diet treatment groups. Pigs received their respective 
diet treatments for 9 mo prior to the initiation of this 4-mo study 
and throughout the study period. Five pigs were fed 2200 Kcal 
daily of the control diet (Rund diet, UIUC, Urbana, IL), which 
was composed of corn (57.5%) and soy (40%) and supplemented 
with vitamins and minerals, and the remaining 4 pigs were fed 
6770 Kcal daily of a high-fat, high-cholesterol, high-fructose diet 
formulated to induce MetS (obese diet).28 The obese diet was 
composed of a base pelleted pig feed (LabDiet Swine Diet 20% 
Fructose 5KA6, Purina Mills, St Louis, MO) supplemented (per-
centage by weight) with soybean oil (17.1%), cholesterol (2%), 
cholate (0.7%), corn oil (2.3%), and granular fructose (8.9%).27 
During the study, pigs were housed in isolated 100 ft2 group 
pens, with 2 to 4 sows per pen. Pigs were on a 12:12-h light:dark 
cycle and had ad libitum access to water. One of the obese pigs 
died of an unexpected cardiac incident during the night before 
the ovarian stimulation test. Due to the timing of her death, her 
tissues could not be preserved for histology. Therefore, 3 obese 
pigs comprise the cohort from which the obese pig data was 
generated in the ovarian stimulation test and the histologic as-
sessment of the liver.

Sample collection. Jugular blood collection and ovarian ultra-
sonography were performed twice weekly. Transrectal ovarian 
ultrasonography with a 7.5-mHz linear transducer (model UST 
5541-7.5, 38-mm Linear Reproductive Transducer and Prosound 
SSD-3500SV, Aloka, Wallingford, CT) was conducted in a Pan-
epinto low-stress sling.31 Pigs were weighed weekly. Crown-to-
rump length (between the eyes to the tail head), heart girth (in 
the axilla), height (at the point of the shoulder), and abdominal 
girth (the widest point of the abdomen) were measured weekly.

Assessment of glucose homeostasis. The Precision Xtra glucom-
eter (Abbott Laboratories, Bedford, MA) was validated for use in 
Ossabaw pigs by the University of Illinois-Urbana-Champaign 
Veterinary Diagnostic Lab. Fasting plasma blood glucose (mg/
dL) was monitored twice weekly. Serum fructosamine was as-
sessed every 4 wk (University of Illinois-Urbana-Champaign 
Veterinary Diagnostic Lab). Serum leptin and insulin concentra-
tions were measured biweekly by using a radioimmunoassay 
(Linco–Millipore, Billerica, MA). Insulin resistance according to 
the modified homeostatic model assessment for insulin resistance 
was calculated.11

Plasma lipids. Plasma lipid analysis was conducted as previ-
ously described.11 Monthly total plasma cholesterol (mg/dL) and 
triglyceride (mg/dL) concentrations were assayed by using en-
zymatic kits (Cholesterol EZ, Triglyceride EZ, Sigma–Aldrich, St 
Louis, MO). HDL (mg/dL) was assayed (Cholesterol EZ), and 
LDL (mg/dL) was determined by subtracting the HDL concentra-
tion and 20% of the triglycerides content from the total cholesterol 
level.9

Histologic preparation of liver. Liver tissue was fixed in 10% 
buffered formalin, embedded in paraffin wax blocks, and serially 
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with control pigs (control, 6.6 ±1.1 ng/mL; obese, 19.8 ± 1.1 ng/mL; 
Table 1).

Obese pigs had elevated total serum cholesterol compared with 
control pigs (control, 102.7 ± 16.7 mg/dL; obese, 215.4 ± 19.5 mg/
dL; Table 1). Although HDL (control, 32.6 ± 2.3 mg/dL; obese, 55.7 
± 6.1 mg/dL) and triglycerides (control, 41.6 ± 6.1 mg/dL; obese, 
87.6 ± 14.2 mg/dL; Table 1) were higher in obese compared with 
control pigs, there was no difference in LDL concentrations (con-
trol, 61.7 ± 7.8 mg/dL; obese, 87.3 ± 34.2 mg/dL) or the LDL:HDL 
ratio (control, 3.6 ± 0.4; obese, 4.8 ± 1.2; Table 1) between treatment 
groups.

Fixed, stained liver sections from 3 obese and 5 control pigs 
were examined for steatosis. Multiple areas of steatosis were ob-
served in sections from one obese pig, whereas steatosis was not 
noted in sections from any of the control pigs.

Reproductive parameters. Obese pigs had longer estrous cycles 
than did control pigs (obese, 32.2 ± 1.3 d; control, 25.2 ± 1.0 d; P 
= 0.002). Obese serum androstenedione was higher than control 
serum androstenedione in both the follicular and luteal phases, 
but serum total testosterone was not different between the 2 treat-
ment groups (Table 2).

Whereas there were no significant differences in the number 
of ovarian follicles between the 2 treatment groups during the 
follicular phase, obese pigs had more medium antral, ovulatory, 
and cystic follicles than did control pigs during the luteal phase 
(Figure 1). In contrast, control pigs had more small antral folli-
cles than did obese pigs during the luteal phase (Figure 1). Dur-
ing the luteal phase, obese pigs had lower serum progesterone 
concentrations but marginally higher serum LH concentrations 
than did control pigs (Table 2). All other hormone levels were 
similar between the treatment groups during basal sampling 
(Table 2). Aromatase gene expression in visceral adipose tissue 
was greater (P = 0.005) in obese pigs compared with control pigs 
(Figure 2).

Overall, obese and control pigs responded similarly to ovar-
ian stimulation (Table 3). During the stimulation period, 2 of 3 
obese pigs and 1 of 5 control pigs developed symptoms of ovarian 
hyperstimulation syndrome. In response to ovarian stimulation, 
there were no differences between the 2 treatment groups in se-
rum hormone concentrations or numbers of large follicles. At 2 

of 2.3% (n = 4). Nondetectable samples were assigned the lower 
limit of detection.

Follicular description. Follicles were measured and counted 
according to a previously established method.23 Follicle size cat-
egories were: small antral, less than 3.5 mm; medium antral, 3.5 
to 6.5 mm; ovulatory size, 6.5 to 12.5 mm; and cystic, larger than 
12.5 mm.23

Real-time quantitative PCR (qPCR). Transcript abundance of 
aromatase was analyzed by real-time qPCR. Total RNA was iso-
lated by using the RNeasy Mini kit (Qiagen, Valencia, CA) fol-
lowed by on-column DNase treatment (RNase-Free DNase Kit, 
Qiagen). RNA was quantified (Quant-iT RiboGreen, Invitrogen, 
Carlsbad, CA). Single-strand cDNA was synthesized (MMLV re-
verse transcriptase, Invitrogen). Primers were designed by using 
Primer3.36 Melting curve analysis and gel electrophoresis were 
used to confirm primer specificity. PCR products were cloned 
into pCR 2.1 TOPO vectors and transformed into E. coli (One 
Shot TOP10, Invitrogen). Plasmids were digested with EcoR1, 
sequenced to confirm amplicon identity, quantified (Quant-iT Pi-
coGreen dsDNA Assay, Invitrogen), and serial dilutions prepared 
for the standard curve. qPCR was run on a 10-fold diluted sample 
of cDNA in duplicate.

Statistical analysis. Reproductive data were divided into basal 
and ovarian stimulation datasets. The first complete estrous cycle 
for each sow was divided into follicular (approximately days 1 
through 7) and luteal (approximately days 8 through 21) phases. 
Follicular phase was determined by a decrease in serum proges-
terone to below 2 ng/mL and lack of corpora lutea on ultrasonog-
raphy. To standardize across pigs, the ovarian stimulation period 
was subdivided into thirds (first, second, and last third) by per-
centage of stimulation completion for each pig (initial, first day of 
stimulation; last third includes the day of hCG administration), 
and number of days posthCG. Data normality was assessed by 
using a Levene test of homogeneity and the Shapiro–Wilke test, 
and nonnormal data were log10-transformed for continuous vari-
ables and square-root–transformed for noncontinuous variables. 
Analysis was done by using the Proc Mixed protocol for repeated 
measures (version 9.2, SAS Institute, Cary, NC). Proc Mixed results 
were back-transformed and are presented as least-square mean ± 
SEM. qPCR data were analyzed by nonparametric ANOVA and 
the Wilcoxon rank-sum test. In all statistical tests, a P value of less 
than 0.05 was the criterion for statistical significance.

Results
Metabolic parameters. Weight (control, 108.5 ± 3.8 kg; obese, 

162.8 ± 4.9 kg), thoracic girth (control, 123.7 ± 2.0 cm; obese, 151.2 
± 2.3 cm), and abdominal girth (control, 127.5 ± 2.5 cm; obese, 
154.9 ± 2.8 cm) were all significantly (P < 0.05) greater in obese 
compared with control pigs (Table 1). Height did not differ be-
tween treatment groups (control, 70.1 ± 1.8 cm; obese, 73.9 ± 2.3 
cm; P > 0.05).

Obese pigs were hyperglycemic compared with control pigs 
(control, 59.1 ± 2.8 mg/dL; obese, 78.7 ± 5.1 mg/dL; Table 1). 
Obese pigs were hyperinsulinemic (control, 12.0 ± 2.3 µU/mL; 
obese, 23.5 ± 2.6 µU/mL; Table 1) and had greater insulin resis-
tance scores than did control pigs (control, 942.5 ± 322.9; obese, 
1821.4 ± 365.6; Table 1). Obese pigs were not diabetic, as dem-
onstrated by fructosamine levels, which were similar to those 
of control pigs (control, 282.73 ± 6.01 µmol/L; obese, 288.0 ± 6.8 
µmol/L; Table 1). Obese pigs were hyperleptinemic compared 

Table 1. Metabolic parameters in control (n = 5) and obese (n = 4) female 
Ossabaw pigs

Control pigs Obese pigs P

Weight (kg) 108.5 ± 3.8 162.8 ± 4.9 0.0001

Thoracic girth (cm) 123.7 ± 2.0 151.2 ± 2.3 <0.0001
Abdominal girth (cm) 127.5 ± 2.5 154.9 ± 2.8 0.002

Height (cm) 70.1 ± 1.8 73.9 ± 2.3 0.8

Glucose (mg/dL) 59.1 ± 2.8 78.7 ± 5.1 0.001

Insulin (µU/mL) 12.0 ± 2.3 23.5 ± 2.6 0.003

Insulin resistance score 942.5 ± 322.9 1821.4 ± 365.6 0.024

Fructosamine (µmol/L) 282.7 ± 6.0 288.0 ± 6.8 0.570

Leptin (ng/mL) 6.6 ± 1.1 19.8 ± 1.1 <0.0001
Total cholesterol (mg/dL) 102.7 ± 16.7 215.4 ± 19.5 <0.0001
HDL (mg/dL) 32.6 ± 2.3 55.7 ± 6.1 0.021

Triglycerides (mg/dL) 41.6 ± 6.1 87.6 ± 14.2 0.048

LDL (mg/dL) 61.7 ± 7.8 87.3 ± 34.2 0.389

LDL:HDL ratio 3.6 ± 0.4 4.8 ± 1.2 0.429
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23% of American women have MetS13 and that 64% are either 
overweight or obese,30 the obese Ossabaw minipig model may 
be useful to characterize the mechanisms underlying reproduc-
tive dysfunction due to MetS and obesity and may help develop 
potential treatments for obesity, MetS, and the effects of these 
diseases on fertility and endocrine function in women.

Obese female Ossabaw minipigs had MetS characterized by 
abdominal obesity, fasting hyperglycemia, and elevated triglyc-
erides. Obese pigs weighed more and had larger circumferences 
in both the thoracic and abdominal regions than did control sows. 
Given that the heights of obese and control pigs were similar, the 
increased weight of obese pigs can be attributed to android fat 
deposition. Previous studies have demonstrated that increased 
abdominal girth in Ossabaw minipigs correlates (R = 0.91) sig-
nificantly with visceral or android fat distribution.11 In humans, 
android fat distribution is highly associated with type 2 diabe-
tes, an increased risk for cardiovascular disease,20 and increased 
androstenedione production,32 which we observed in our obese 
pigs. Obese pigs had leptin concentrations that were 3-fold higher 
than those of control pigs. In humans, studies have demonstrated 
that increased serum insulin concentrations result in increased se-
rum leptin.28 Perhaps the hyperinsulinemia in the obese pigs also 
contributes to their severe hyperleptinemia. Although obese pigs 
did not manifest dyslipidemia, they did have elevated triglyc-
eride and total cholesterol concentrations. Furthermore, athero-
genic lipid profiles in obese patients are directly correlated with 
hyperandrogenemia due to accompanying hyperinsulinemia.7 
Hyperinsulinemia causes increased VLDL production from the 
liver, resulting in increased triglyceride secretion3 as well as stim-
ulation of androstenedione production by ovarian theca interna.2 

d post-hCG, obese pigs had significantly (P < 0.05) more cystic 
follicles than did control pigs (Table 3).

Discussion
The major findings of this study are: 1) mature female Os-

sabaw minipigs fed a hypercaloric, high-fat, high-cholesterol, 
high-fructose diet developed MetS (hyperinsulinemia, elevated 
fasting glucose, dyslipidemia) and hepatic steatosis; were hy-
perandrogenemic; had longer estrous cycles, and formed more 
persistent ovarian follicles than did age-matched lean control 
pigs; and 2) obese female Ossabaw minipigs developed ovarian 
hyperstimulation syndrome in response to ovarian stimulation 
but had a relatively similar hormonal and follicular response to 
that of control pigs. The responses of obese and lean in vitro fer-
tilization patients to ovarian stimulation are similar to our find-
ings in Ossabaw minipigs.37 To our knowledge, this report is the 
first to describe the effects of obesity with concomitant MetS on  
female reproductive function in a large animal model. Given that 

Table 2. Basal reproductive hormone concentrations in control (n = 5) and obese (n = 4) Ossabaw pigs

Control pigs Obese pigs

Follicular Luteal Follicular Luteal

Androstenedione (ng/mL) 0.6 ± 0.1a 0.5 ± 0.1b 1.2 ± 0.1a 0.9 ± 0.1b

Total Testosterone (ng/mL) 0.3 ± 0.1 0.3 ± 0.1 0.3 ± 0.1 0.2 ± 0.1
Estradiol (pg/mL) 51.8 ± 3.6 30.2 ± 1.9 50.8 ± 5.2 25.5 ± 2.3
Progesterone (ng/mL) 1.2 ± 6.1 30.8 ± 3.9b 1.7 ± 9.0 16.8 ± 4.5b

FSH (ng/mL) 2.6 ± 0.2 3.4 ± 0.1 3.1 ± 0.3 3.5 ± 0.1
LH (ng/mL) 1.0 ± 0.1 0.9 ± 0.03b 1.0 ± 0.1 1.0 ± 0.03b

aFor a given hormone, significant (P < 0.05) difference between the values for control and obese pigs during the follicular phase of the estrous cycle.
bFor a given hormone, significant (P < 0.05) difference between the values for control and obese pigs during the luteal phase of the estrous cycle.

Figure 1. Number of follicles during the follicular and luteal phases in 
obese and control pigs. (A) Numbers of follicular-phase follicles. (B) 
Numbers of luteal-phase follicles. Results are expressed as least-square 
mean ± SEM (control, n = 5; obese, n = 4). Within a given follicle cat-
egory, * indicates significant (P ≤ 0.02) difference from control value.

Figure 2. Aromatase gene expression in visceral and subcutaneous adi-
pose tissue. Results are expressed as least-square mean ± SEM (control, 
n = 5; obese, n = 4). *, P = 0.005.
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Obese female Ossabaw minipigs demonstrated a protracted 
average estrous cycle length similar to the oligomenorrhea 
seen in obese women. Obese pigs had lower progesterone con-
centrations during the luteal phase, indicating possible luteal 
insufficiency similar to that found in obese women.18 In future 
studies, numerical determination of corpora lutea would indi-
cate whether obese pigs are oligoovulatory and thus corrobo-
rate potential luteal insufficiency. Obese pigs had a marginally 
significant increase in serum LH during the luteal phase com-
pared with that in control pigs, which does not mimic LH 
pathology in obese women. However, given that LH was mea-
sured only twice weekly and that LH tonic secretion is episod-
ic, this result should be interpreted judiciously. Moreover, the 
increased numbers of cystic follicles in obese pigs may indicate 
the lack of an effective LH surge or an inappropriate response 
of the follicle to the LH surge in obese animals. The presence 
of large numbers of medium antral, ovulatory, and cystic fol-
licles during the luteal phase in obese pigs is suggestive of a 
hyper-responsiveness of growing follicles to FSH during this 
phase, coupled with a lack of appropriate responsiveness to 
LH during the follicular phase. Assessment of anti-Müllerian 
hormone in control and obese pigs would be prudent, given 
that anti-Müllerian hormone controls the responsiveness of 
antral follicles to FSH.10

In conclusion, when fed an excess-calorie, high-fat, high-cho-
lesterol, high-fructose diet, female Ossabaw minipigs develop 
obesity, MetS, and ovarian and endocrine abnormalities. The 
inherent thrifty genotype of this animal model results in the 
development of diet-induced obesity and associated reproduc-
tive pathologies without a reliance on genetic manipulations 
that do not mimic the pathogenesis of obesity in humans. This 
pig model provides the opportunity to characterize the molecu-
lar mechanisms underlying obesity-induced metabolic and re-
productive pathologies, which affect reproductive function and 
fertility in women.

Furthermore, given that 1 of the 3 obese pigs had hepatic steato-
sis, there is an indication that obese pigs are at risk for increased 
transport of fatty acids from adipose tissue to the liver.34 Our find-
ings of abdominal obesity, fasting hyperglycemia, and elevated 
triglycerides in obese female Ossabaw minipigs corroborate our 
conclusion that these animals manifest MetS with evidence of 
hyperleptinemia and insulin resistance.

Obesity in women is associated with variable oligomenorrhea 
with a lengthened follicular phase, decreased mean serum LH, 
decreased LH pulse amplitude,39 decreased luteal progesterone,18 
and variable elevations in androgens.35 Our obese female Os-
sabaw minipigs had elevated serum androstenedione but not 
total testosterone. In obese women, although the ovary, adrenal 
gland and adipose tissue may all contribute to androstenedione 
production, the ovary is the primary source of testosterone via 
17β-hydroxysteroid dehydrogenase type 5 steroidogenic activ-
ity. There is very little information known about the existence 
of 17β-hydroxysteroid dehydrogenase type 5 in the pig ovary. A 
single study has demonstrated its presence in some sows during 
early estrus.22 In our study, testosterone did increase marginally 
during the ovarian stimulation protocol, indicating the poten-
tial presence of 17β-hydroxysteroid dehydrogenase type 5 in the 
ovary of Ossabaw pigs. Serum androstenedione was elevated 
nonsignificantly in obese pigs during ovarian stimulation. This 
functional increase in ovarian androstenedione production sug-
gests an active role of the ovary in the production of androstene-
dione in obese pigs. However, because adrenal androgens like 
dehydroepiandrosterone sulfate and androstenedione are known 
to increase in parallel with obesity,16 it is possible that the basal 
elevation of androstenedione in obese Ossabaw minipigs is due 
to both adrenal and ovarian dysfunction. Furthermore, adipose 
tissue can convert androstenedione to testosterone and vice versa 
via 17β-hydroxysteroid dehydrogenase type 5,4 with omental 
adipose favoring androstenedione production and subcutaneous 
adipose favoring testosterone production.32

Table 3. Response of follicular hormones and ovarian follicle growth to ovarian stimulation in control (n = 5) and obese (n = 4) Ossabaw pigs

Stage of superovulation protocol

Initial 1st third 2nd third Last third 1 d after hCG 2 d after hCG

Testosterone (ng/mL) Control 0.6 ± 0.3 0.6 ± 0.3 1.0 ± 0.3 1.3 ± 0.3 1.2 ± 0.3 1.5 ± 0.3
Obese 0.6 ± 0.4 0.7 ± 0.4 1.6 ± 0.4 1.7 ± 0.4 1.5 ± 0.4 1.5 ± 0.3

Androstenedione (ng/mL) Control 0.8 ± 1.8 1.1 ± 1.5 2.4 ± 1.5 3.2 ± 1.5 2.7 ± 1.5 2.5 ± 1.5
Obese 0.8 ± 2.0 1.3 ± 2.0 4.8 ± 2.0 8.5 ± 2.0 6.0 ± 2.0 3.9 ± 2.0

Estradiol (pg/mL) Control 10.6 ± 68.1 24.1 ± 56.3 68.6 ± 56.3 69.3 ± 56.3 67.0 ± 56.3 59.3 ± 60.0
Obese 13.3 ± 112.2 29.6 ± 72.7 151.4 ± 72.7 241.2 ± 72.7 66.6 ± 72.7 47.3 ± 72.7

Progesterone (ng/mL) Control 1.6 ± 0.5 1.4 ± 0.4 2.0 ± 0.6 4.1 ± 2.3 4.5 ± 3.0 10.8 ± 7.9
Obese 1.7 ± 0.5 1.3 ± 0.5 2.1 ± 0.7 4.1 ± 3.0 5.2 ± 3.8 21.6 ± 10.2

Ovulatory size follicles Control 1.5 ± 0.7 0.7 ± 1.0 7.1 ± 3.0 17.7 ± 11.6 21.1 ± 10.2 17.0 ± 7.4
Obese 0.5 ± 0.8 1.4 ± 1.2 15.4 ± 3.4 34.6 ± 13.4 39.8 ± 11.8 12.2 ± 8.5

Postovulatory size follicles Control 0.0 ± 1.5 0.0 ± 1.5 0.0 ± 1.5 1.6 ± 1.5 2.5 ± 1.5 3.4 ± 1.5a

Obese 0.0 ± 1.7 0.0 ± 1.7 0.0 ± 1.7 0.0 ± 1.7 5.1 ± 1.7 8.8 ± 1.7b

a,bValues are significantly (P = 0.04) different.
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