

NIH Public Access

Author Manuscript

Bioorg Med Chem Lett. Author manuscript; available in PMC 2014 February 19.

Published in final edited form as:

Bioorg Med Chem Lett. 2011 July 1; 21(13): 4036–4040. doi:10.1016/j.bmcl.2011.04.129.

Discovery and optimization of potent and selective benzonaphthyridinone analogs as small molecule mTOR inhibitors with improved mouse microsome stability

Qingsong Liua,b, **Jinhua Wang**a,b, **Seong A. Kang**c,e, **Carson C. Thoreen**a,b, **Wooyoung Hur**a,b, **Hwan Geun Choi**a,b, **David L. Waller**a,b, **Taebo Sim**a,b, **David M. Sabatini**c,d,e, and **Nathanael S. Gray**a,b,*

aDepartment of Cancer Biology, Dana Farber Cancer Institute, 44 Binney Street, Boston, MA 02115

^bDepartment of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 250 Longwood Avenue, Boston, MA 02115

^cWhitehead Institute for Biomedical Research, 9 Cambridge Center, Cambridge, MA 02142

^dHoward Hughes Medical Institute, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139

^eKoch Center for Integrative Cancer Research at MIT, 77 Massachusetts Avenue, Cambridge, MA 02139

Abstract

Starting from small molecule mTOR inhibitor Torin1, replacement of the piperazine ring with a phenyl ring resulted in a new series of mTOR inhibitors (as exemplified by **10**) that showed superior potency and selectivity for mTOR, along with significantly improved mouse liver microsome stability and a longer *in vivo* half-life.

Keywords

mTOR; PI3K; Torin1

Mammalian target of rapamycin (mTOR) is a key node of the PI3K/Akt/mTOR signal transduction pathway. mTOR pathway has been found to be deregulated in a variety of cancers and has been extensively studied as an oncology drug discovery target.^{1,2,3,4} Upon activation by external or internal stimuli such as growth factors, nutrients, stress, and energy, mTOR regulates cell growth, proliferation, metabolism, and autophagy through the mTORC1 and mTORC2 complexes by phosphorylation of downstream targets S6K, 4EBP1, and Akt.⁵ The successful clinical application of rapamycin in renal cell carcinoma has validated mTOR as an anti-cancer drug discovery target. However, a lack of activity against mTORC2, incomplete inhibition of mTORC1 function and negative reactivation of Akt through the S6K/IRS1 pathway may explain the limited clinical efficacy observed with rapamycin related compounds (rapalogs) 6,7,8 Currently, there is significant interest in the development and characterization of ATP-competitive mTOR inhibitors which would result in complete inhibition of both mTORC1 and mTORC2.

^{*}Corresponding author: Nathanael S. Gray. Nathanael_gray@dfci.harvard.edu, Tel: 1-617-582-8590, FAX: 1-617-582-8615.

mTOR is a member of the PI3K kinase family, which consists of the PI3Ks, DNA-PK, ATR, ATM, and SMG-1.⁹ PI3Ks, especially PI3Ka, have been found to be hyperactivated in a wide spectrum of cancers, and are currently being evaluated as an anti-cancer drug target in the clinic.¹ The structural similarity between PI3Ks and mTOR endowed many early PI3K or mTOR inhibitors, like PI-103 and BEZ-235, with dual activity against both targets.^{10,11} Because PI3Ks are upstream regulators of Akt, a central hub of many critical cellular processes, it is believed that mTOR-selective inhibitors may demonstrate improved toxicology relative to dual PI3K/mTOR inhibitors. Many of the recently disclosed mTOR inhibitors, including Torin1, have demonstrated that it is possible to selectively inhibit mTOR versus PI3Ks.^{12–22}

We recently prepared a series of tricyclic benzonaphthyridinones, exemplified by Torin1, as highly potent and selective mTOR inhibitors. Torin1 has more than 800-fold selectivity for mTOR relative to PI3Ks in cellular assays and has no other significant protein kinase offtargets among the 450 kinases profiled by KINOMEscanTM.¹² Torin1 exhibited anti-tumor activity in a U87-MG mouse xenograft that correlated with target inhibition. However, Torin1 exhibits poor mouse microsome stability and a short *in vivo* half-life which limit its utility as a pharmacological agent *in vivo*. In this letter, we describe our efforts to improve the pharmacokinetic properties of Torin1 by replacing the metabolically labile phenylpiperazine moiety with a biphenyl system to yield compounds such as **10** (Figure 1).

The preparation of compound **10** and analogs is illustrated in Scheme 1. Ethyl-4,6 dichloroquinoline-3-carboxylate (**1**) was subjected to nucleophilic substitution with 4 bromo-3-trifluoromethaneaniline (**2**) to afford compound **3**. Reduction of ethyl ester **3** with NaBH₄ generated benzyl alcohol 4, which was subjected to benzylic oxidation with $MnO₂$ and olefination/cyclization *in situ* to furnish general intermediate **5**. Pinacol boronic ester **6** was obtained from 4-bromo-benzonic acid **(8)** via Suzuki coupling and amide formation. A bromine-selective Suzuki coupling was used to install the benzoate side chain (or other substituent in the analogs) to afford the intermediate **7**. Finally, the quinoline side chain (or other substituent in the analogs) was attached at the chlorine position using more vigorous Suzuki coupling conditions to afford the final product illustrated by compound **10**.

Following this general synthetic strategy, a focused library of compounds was generated by varying the benzoate side chain, quinoline side chain and CF_3/CH_3 moiety. The selected compounds were evaluated in parallel in biochemical assays with mTORC1 complex in cellular assays using a mouse embryonic fibroblast (MEF) cell line by examining the phosphorylation status of mTOR downstream targets such as S6K (T389), and for PI3K activity with the Akt S473D PC-3 cell line by examining the phosphorylation status of AktT308. The results are summarized in Table 1.

Based on the Torin1 series, we first retained the quinoline side at the \mathbb{R}^1 position, which was presumably responsible for the selectivity and potency against mTOR. Replacing the phenylpiperazine ring with a biphenyl system provided compounds that demonstrated excellent potency against mTOR and selectivity relative to PI3K. Methyl amide **11**, THPprotected benzyl alcohol **12**, benzyl alcohol **13,** carboxylic acid **14**, and primary amide **16** all demonstrated the same level of potency against mTOR (EC_{50} values between 15–30 nM) and the same selectivity over PI3K (EC_{50} over 300 nM). The methyl ester 15 lost a significant amount of activity against mTOR, suggesting that the active members of this series of compounds possess hydrogen bond donors through either an –OH, –COOH. or – CONH2 functionality. *N*-methyl-piperidin-4-amine amide **10** exhibited the best potency against mTOR ($EC_{50} = 5$ nM, the same as Torin1) and more than 200-fold selectivity over PI3K. The compounds derived from replacing the quinoline moiety with aminopyrimidine (**17**) or pyrazole (**18**) systems were slightly less potent against mTOR, indicating that the

inner hydrophobic pocket required a larger substituent. In order to reduce the molecular weight and obtain better solubility, while the **R²** fragment was kept as methyl-piperidin-4 amine, the CF₃ group was replaced with a CH₃ group and the \mathbb{R}^1 side chain was varied to include a pyrazole (**20**), methylpyrazole (**21**), 7-azaindole (**22**), hydrogen (**23**) and aminopyridine (**24**). However, all of these analogs failed to produce the same level of potency against mTOR, although the selectivity over PI3Ks was retained. Compound **19**, which bears quinoline side chain at the \mathbb{R}^1 position, retained the same potency and selectivity against mTOR as Torin1 and compound **10**. This reaffirmed that quinoline was the best side chain to occupy the inner hydrophobic pocket, and that the hydrogen bond provided by the –OH or –NH2 was critical to maintain potency.

With the best activity and selectivity, compounds **10** and **19** were chosen for mouse stability study, single point CYP450 inhibition test (Table 2), and *in vivo* mouse pharmacokinetic analysis (Table 3). In comparison to Torin1, compounds **10** and **19** demonstrated significant improvements in stability in the mouse microsome assay (46 and 42 min, respectively), where both were subjected to NADPH-dependent metabolism. In the single point CYP450 metabolic enzyme inhibitory assay, compound **10** showed more than 60% and 50% inhibition at 10 µM against the major metabolic enzymes CYP3A4 and CYP2D6, respectively, while compound **19** weaker inhibition (34% and 24%, respectively). Further investigation of the ability of these compounds to inhibit metabolism are warranted prior to performing combination studies.

The improved microsome stability profile of compounds **10** and **19** encouraged us to evaluate their *in vivo* pharmacokinetic properties. Upon intravenous (7.5% NMP and 40% PEG400 in water) and oral (0.1% v/v Tween-80, 0.5% w/v NaCMC in water) administration, compound **10** demonstrated superior pharmacokinetic properties relative to compound **19**, although both were significantly better than $Torin1¹²$ The half-life was improved to 3.6 h (**10**) and 1.8 h (**19**) from that of Torin1 (0.5 h). The bioavailability of compound **10** (10.1%) was double that of Torin1 (5.5%), while the bioavailability of compound **19** was 5.4%. Compound **10** also demonstrated much better exposure using both IV and PO delivery routes compared to Torin1(1388/1411 versus 720/396 hr*ng/mL). Other pharmacokinetic properties such as clearance rate (11.9 versus 23.0 mL/min/Kg) and volume of distribution (1.95 versus 0.59 L/Kg) were also superior to those of Torin1. The slower T_{max} of compound 10 (4 h) compared to compound 19 (1 h) and Torin1 (0.5 h) was indicative of poor solubility and/or slow absorption.

To evaluate the kinase selectivity of compound **10**, it was subjected to the Ambit kinomewide screen using KINOMEscan™ technology. The assay showed that compound **10** was very selective and did not strongly hit any other protein kinases among the 353 kianses tested, except for several PI3K family lipid kinases (Figure 2, Table 4).

Compound **10** was evaluated in an *in vivo* pharmacodynamic study, where it exhibited significant inhibitory activity against the downstream targets of mTOR, S6K, and Akt, and blocked 80–90% phosphorylation of S6K (T389) and pAkt (S473) in liver and lung tissues even after 6h at a dosage of 20 mg/kg

In summary, starting from Torin1, replacement of the metabolically labile 4-aminophenylpiperazine moiety with a biphenyl system provided a new series of inhibitors that were exemplified by compound **10**, which demonstrated significant improvements in mouse microsome stability and *in vivo* pharmacokinetic properties. Compound **10** is a potent and selective mTOR inhibitor suitable for use in cell culture and *in vivo*. Further elaboration of this scaffold class to improve the drug-like properties will be reported in due-course.

Acknowledgments

The authors thank Dr. Michael Cameron (Scripps Florida) for the mouse microsome stability studies. The authors also thank the Life Technologies Corporation (Invitrogen) SelectScreen® Kinase profiling service for performing enzymatic biochemical kinase profiling and Ambit Biosciences for performing KINOMEscan™ profiling.

References

- 1. Liu P, Cheng H, Roberts TM, Zhao JJ. Nat. Rev. Drug. Discov. 2009; 8:627. [PubMed: 19644473]
- 2. Shor B, Gibbons JJ, Abraham RT, Yu K. Cell Cycle. 2009; 8:3831. [PubMed: 19901542]
- 3. Meric-Bernstam F, Gonzalez-Angulo AM. J. Clin. Oncol. 2009; 27:2278. [PubMed: 19332717]
- 4. Liu Q, Thoreen CC, Wang J, Sabatini DM, Gray NS. Drug Discovery Today: Therapeutic Strategies. 2009; 6:47. [PubMed: 20622997]
- 5. Guertin DA, Sabatini DM. Cancer Cell. 2007; 12:9. [PubMed: 17613433]
- 6. Sarbassov DD, Ali SM, Sengupta S, Sheen JH, Hsu PP, Bagley AF, Markhard AL, Sabatini DM. Mol. Cell. 2006; 22:159. [PubMed: 16603397]
- 7. Thoreen CC, Kang SA, Chang JW, Liu Q, Zhang J, Gao Y, Reichling LJ, Sim T, Sabatini DM, Gray NS. J. Biol. Chem. 2009; 284:8023. [PubMed: 19150980]
- 8. Carracedo A, Pandolfi PP. Oncogene. 2008; 27:5527. [PubMed: 18794886]
- 9. Abraham RT. DNA Repair. 2004; 3:883. [PubMed: 15279773]
- 10. Park S, Chapuis N, Bardet V, Tamburini J, Gallay N, Willems L, Knight ZA, Shokat KM, Azar N, Viguie F, Ifrah N, Dreyfus F, Mayeux P, Lacombe C, Bouscary D. Leukemia. 2008; 22:1698. [PubMed: 18548104]
- 11. Maira SM, Stauffer F, Brueggen J, Furet P, Schnell C, Fritsch C, Brachmann S, Chene P, De Pover A, Schoemaker K, Fabbro D, Gabriel D, Simonen M, Murphy L, Finan P, Sellers W, Garcia-Echeverria C. Mol. Cancer. Ther. 2008; 7:1851. [PubMed: 18606717]
- 12. Liu Q, Chang JW, Wang J, Kang SA, Thoreen CC, Markhard A, Hur W, Zhang J, Sim T, Sabatini DM, Gray NS. J. Med. Chem. 2010; 53:7146. [PubMed: 20860370]
- 13. Feldman ME, Apsel B, Uotila A, Loewith R, Knight ZA, Ruggero D, Shokat KM. PLoS Biol. 2009; 7:e38. [PubMed: 19209957]
- 14. Garcia-Martinez JM, Moran J, Clarke RG, Gray A, Cosulich SC, Chresta CM, Alessi DR. Biochem. J. 2009; 421:29. [PubMed: 19402821]
- 15. Yu K, Toral-Barza L, Shi C, Zhang WG, Lucas J, Shor B, Kim J, Verheijen J, Curran K, Malwitz DJ, Cole DC, Ellingboe J, Ayral-Kaloustian S, Mansour TS, Gibbons JJ, Abraham RT, Nowak P, Zask A. Cancer. Res. 2009; 69:6232. [PubMed: 19584280]
- 16. Barr, S.; Russo, S.; Buck, E.; Epstein, D.; Miglarese, M. AACR 101st Annual meeting; April, 2010; Washington DC. p. 1632
- 17. Chresta CM, Davies BR, Hickson I, Harding T, Cosulich S, Critchlow SE, Vincent JP, Ellston R, Jones D, Sini P, James D, Howard Z, Dudley P, Hughes G, Smith L, Maguire S, Hummersone M, Malagu K, Menear K, Jenkins R, Jacobsen M, Smith GC, Guichard S, Pass M. Cancer Res. 2010; 70:288. [PubMed: 20028854]
- 18. Menear KA, Gomez S, Malagu K, Bailey C, Blackburn K, Cockcroft XL, Ewen S, Fundo A, Le Gall A, Hermann G, Sebastian L, Sunose M, Presnot T, Torode E, Hickson I, Martin NM, Smith GC, Pike KG. Bioorg. Med. Chem. Lett. 2009; 19:5898. [PubMed: 19733066]
- 19. Richard DJ, Verheijen JC, Curran K, Kaplan J, Toral-Barza L, Hollander I, Lucas J, Yu K, Zask A. Bioorg. Med. Chem. Lett. 2009; 19:6830. [PubMed: 19896845]
- 20. Yu K, Shi C, Toral-Barza L, Lucas J, Shor B, Kim JE, Zhang WG, Mahoney R, Gaydos C, Tardio L, Kim SK, Conant R, Curran K, Kaplan J, Verheijen J, Ayral-Kaloustian S, Mansour TS, Abraham RT, Zask A, Gibbons JJ. Cancer Res. 2010; 70:621. [PubMed: 20068177]
- 21. Verheijen JC, Yu K, Toral-Barza L, Hollander I, Zask A. Bioorg. Med. Chem. Lett. 2010; 20:375. [PubMed: 19897362]
- 22. Malagu K, Duggan H, Menear K, Hummersone M, Gomez S, Bailey C, Edwards P, Drzewiecki J, Leroux F, Quesada MJ, Hermann G, Maine S, Molyneaux CA, Le Gall A, Pullen J, Hickson I,

Smith L, Maguire S, Martin N, Smith G, Pass M. Bioorg. Med. Chem. Lett. 2009; 19:5950. [PubMed: 19762236]

Liu et al. Page 6

Figure 1. Structures of Torin1 and **10** .

Liu et al. Page 7

Scheme 1.

Reagents and conditions: (a) 1,4-dioxane, 85 °C, 4 h, 80% yield; (b) NaBH₄, EtOH, rt, 4 h, 50% yield; (c) MnO_2 , CH₂Cl₂, rt, 2 h; then triethylphosphonoacetate, K₂CO₃, EtOH, 100°C, 12 h, 60% yield; (d) 6, PdCl₂(Ph₃P)₂, Na₂CO₃, 1,4-dioxane, 80°C, 2 h, 60% yield; (e) quinoline-3-boronic acid, $PdCl_2(Ph_3P)_2$, t-Bu-Xphos, Na_2CO_3 , 1,4-dioxane, 100°C, 4 h, 50% yield; (f) PdCl₂(dppf), bis(pinacolato)diboron, KOAc, 1,4-dioxane, 80°C, 12 h; crude material was used without purification; (g) HATU, THF, 1-methyl-piperidin-4-amine, diisopropylethylamine, rt, 50% over 2 steps.

Data from biochemical and cellular assays. *a*

Τ

Τ

Τ

Τ

Mouse microsome stability and CYP450 inhibition results.

In vivo mouse pharmacokinetic data. *In vivo* mouse pharmacokinetic data.

l

Ambit and Invitrogen profiles of compound **10** against PIKKs

