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Background
Gene expression microarray analysis is now routinely per-
formed in biology labs to profile the transcriptional activity 
of target sample cells. This mature technique provides a cost-
effective way to conduct a preliminary study on a small cohort 
to identify the potential differentially-expressed genes (DEGs) 
that induce the observed phenotypes for further investigation. 
In the past 5 to 10 years, a new category of methods, com-
monly called “gene set enrichment analysis methods”, after a 
study by Subramanian et al,1 has gained popularity and been 
widely adopted in biological data analysis, especially for small-
scale pilot studies, where the method will identify potential 
true sets that contain the phenotype-inducing DEGs. In this 
paper, we will use “GSA methods” to denote these methods 
in general, while reserving GSEA for the original method 
proposed by Subramanian et  al.1 Instead of a gene-by-gene 

screening, GSA methods focus on sets of genes. In general, 
GSA methods have been introduced to achieve one or more of 
the following goals:

1.	 Increasing statistical power: Microarray chips usu-
ally contain 20,000+ genes. In small-sample studies, if 
examined individually, this can lead to severe problems 
of multiple testing. Thus, the inaccuracy of the resulting 
P-value from a single gene test may end with too many 
genes passing the designated significance level, or none 
after multiple testing correction. Since the number of 
gene sets are much less than genes, hopefully with GSA 
methods this problem can be alleviated.1–3

2.	 Revealing biological themes: The master genes, ie, the 
DEGs that induce the observed phenotype, propagate 
their signals through a cascade of genes in the downstream 
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of the same pathway/cellular process, resulting in a  
coordinated transcriptional regulation pattern. Uncovering  
such themes can help reveal the biological processes lead-
ing to the phenotype and identify master genes. Single-
gene-based tests result in only a ranked list of all genes, 
which heavily depends on the expertise of biologists to 
sort out any underlying biological themes. By using gene 
sets that already incorporate biological knowledge, the 
ranked list is more accessible in a biological sense. Under 
this claim, GSA methods perform the same feature 
ranking as traditional approaches, except that the rank-
ing term has been changed from a single gene to gene 
sets.1,3–11

3.	 Detecting weakly differentiated genes: Sometimes master 
genes have minimal transcriptional activity changes and a 
single-gene-based test will fail to detect any master genes. 
Since the downstream genes in the same pathway/cellular 
process can experience subtle yet similar transcriptional 
change, hopefully, by considering all genes in a pathway/
cellular process as a set, the change in the gene set level can 
be more readily detected.1,3,6,8–10,12,13

4.	 Ensuring reproducibility: It is widely acknowledged that 
the biomarker sets selected from different studies/data  
sets have little overlap, which is even worse for pre-
liminary studies with small sample size. Hopefully, 
the ranking of gene sets is less variable and the repro-
ducibility between experiments can be significantly 
improved.1–3,12–14

Based on the underlying statistical assumptions on the 
null hypothesis, the common GSA methods can be loosely 
grouped into three categories4,6: Q1 – the genes in the current 
gene set are no more differentially expressed than other genes; 
Q2 – the genes in the current gene set are not differentially 
expressed; and Q3 – the genes in the current gene set are no 
more differentially expressed than other gene sets.

Several studies have been done to compare different GSA 
methods.2,4–9,11,13 Although both synthetic data models and 
real data sets have been used to evaluate GSA methods, most 
studies focus on synthetic data simulation. Synthetic data 
models have the advantage of ground truth: the relationships 
between gene expressions and the phenotypes are defined by 
the model. Hence, one can conduct a comprehensive simula-
tion study by generating a large number of data samples and 
evaluating the results relative to various criteria.

Not all four goals listed above have been systematically 
evaluated, with most efforts focusing on the first goal, increas-
ing statistical power. For synthetic data simulation, artificial 
gene sets have been constructed to emulate true sets (gene sets 
consisting of, sometimes partially, master genes) and con-
founding sets (gene sets containing no DEGs). Essentially, 
such a study evaluates the accuracy of a P-value and/or related 
outcomes, eg, q-value, FDR-controlled results, generated by 
GSA methods under various conditions. Most studies assume 
that if the GSA method can assign the true sets with accurate 

(adjusted) P-values, then the other goals can also be achieved. 
It has been shown that if the assumption behind the synthetic 
model matches the statistical assumption of the particular 
GSA methods, then the obtained P-values are more accu-
rate.4 In the work of Nam and Kim,6 a model based on the Q1 
hypothesis, where independent genes form multiple statisti-
cally equivalent true sets, showed Q1 methods outperforming 
Q2 and Q3 methods. By comparison, in Dinu et al,7 a model 
based on the Q2 hypothesis, where the partially correlated 
genes form multiple confounding sets, showed Q2 methods 
outperforming other methods. These discoveries indicate that 
to have a more accurate P-value one should carefully choose 
the GSA method with an underlying statistical hypothesis 
that matches the biological problem. However, the biological 
questions encountered in the real world are much more com-
plicated than those addressed in these artificial models and 
often there is little knowledge on correlation pattern and the 
number of DEGs in a given data set. Hence it is often impos-
sible to translate a given biological question into an existing 
statistical hypothesis. Thus, there is no clear guideline to help 
researchers choose the proper GSA method.

Equally important, if not more so, for performance eval-
uation is ranking, which is closely associated with the second 
goal, revealing biological themes. Although a true set can be 
assigned as significant, it can also be inundated with a batch of 
false positives, and end up with a low ranking, which will make 
it much harder to be correctly identified. Moreover, should the 
computed P-value be affected by systematic bias, so long as 
the ranking of the gene sets is properly preserved for a given 
method, this method is more informative in revealing biologi-
cal themes. The situation becomes more severe when sample 
size is small and the number of gene sets is large. Although the 
number of gene sets is much smaller than the total number of 
genes, the popular gene set databases still contain hundreds, 
even thousands, of gene sets. And with new gene sets being 
collected from new studies, their numbers keep growing. For 
example, in the original GSEA paper [1], the curated gene sets 
contain 522 gene sets. By 2012, according to the Molecular 
Signatures Database built by the same authors, this number 
has grown to more than 3000. Moreover, GSA methods are 
commonly applied to small sample sizes, which can lead to 
high variance in the P-values. Thus we believe that the rank-
ing performance of GSA methods is the salient issue.

Nevertheless, few existing studies have reported the rank-
ing performance of GSA methods. This may be due to the use of 
synthetic models. Ranking is more important when hundreds of 
gene sets are involved, and no synthetic model in the aforemen-
tioned studies can realistically emulate the complex interactions 
among so many gene sets and their associated genes. Thus, the 
handful of studies reporting ranking performance are all based 
on real data simulation. However, the real data approaches for 
evaluating ranking performance have been hampered by limita-
tions of the existing data sources; namely, there are only a hand-
ful of data sets that have known ground truth.
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The most widely used real data set with ground truth is 
the p53 data set based on the NCI-60 cell lines.15,16 It was 
first used in the original GSEA paper1 and has been used in 
many subsequent studies.2,5,7–9,13 In this data set, the pheno-
types are determined based on the p53 mutation status, and 
p53  serves as the master gene. Since p53 transcription level 
does not change with the mutation status, p53 itself is not a 
DEG, but the genes whose transcriptions are directly regu-
lated by p53 should be DEGs. The true sets are then the gene 
sets closely related to p53 function.

In Abetangelo et al,13 the authors used artificially deregu-
lated oncogenic data sets.17 To generate the case sample, breast 
cancer cell cultures are infected with adenovirus expressing a 
certain oncogene to enter a deregulated state. Five oncogenes, 
Myc, Ras, Src, E2F3, and β-catenin, are chosen to be master 
genes, resulting in five data sets. The authors create two true 
sets for each data set by aggregating the genes most positively 
or negatively correlated with the driving oncogene in that set.

Even for the data sets with known ground truth, our 
knowledge of true sets is partial. Some gene sets that con-
tain or directly interact with the master genes and should be 
considered as true sets may not be registered as true sets. Nev-
ertheless, such data sets provide invaluable information and 
serve as critical benchmarks for GSA methods.

Be that as it may, most real data sets lack ground truth. 
When using these real data sets in studies, new evaluation 
criteria are built based on some heuristic assumptions. One 
common approach is to define the true sets based on external 
knowledge regarding the phenotypes associated with the data 
set. In the ALL-AML data set introduced in Subramanian 
et al,1 the cytogenetic events frequently encountered in one of 
the two leukemias are used to define true sets. In Abatangelo 
et al,13 samples are treated with or without hypoxic conditions, 
and the gene sets known to be associated with hypoxia are 
defined as true sets. In Tarca et al,18 for each data set involving 
a particular disease, the KEGG pathway associated with that 
disease is defined as the true set. Absent knowledge of master 
genes specific to the data set, the accuracy of these true sets 
is unclear.

Another way to evaluate GSA methods is to compare 
the results of different GSA methods and/or data sets. In 
Subramanian et al,1 the top ranked gene sets from two sepa-
rate data sets of similar scenarios are checked for consistency. 
In Hung et al,11 more than 100 real data sets are studied in a 
similar manner. The relevance of such criteria to actual perfor-
mance is hard to determine.

Use of real data sets is further complicated if the research 
interest involves lesser-known cellular processes. The creation 
of these true sets, either based on ground truth or external 
knowledge, is mostly based on the cellular processes that have 
been extensively studied and are well characterized in the lit-
erature, whereas in actual research biologists may face a sce-
nario in which the key to their problem hides in lesser-known 
genes whose mechanisms are poorly understood.

To gain a better understanding of the ranking performance 
of various GSA methods via real data, it behooves us to over-
come the hurdle of limited samples and lack of ground truth. 
In this paper, we introduce a hybrid data model to bridge the 
gap between real-data and synthetic-data models. The design 
of our data model is directly inspired by the p53 data set. Using 
a data set with considerable sample size, the model will pick a 
gene as master gene based on all gene distributions and create 
artificial class labels. Multiple models can be created from a 
data set and multiple data sets of smaller size can be generated 
from each model. The proposed hybrid data model allows us 
to conduct extensive simulations of GSA methods with thou-
sands of data sets and, in the context of small-sample stud-
ies, check their abilities with respect to the claimed goal of 
revealing biological themes. In addition, by resampling from 
the same data model, this approach allows us to examine the 
goal of ensuring reproducibility.

Methods
This section provides a detailed description of the hybrid data 
model and a brief description of the GSA methods being 
compared.

Hybrid data model. A major goal of many biomedical 
studies using microarray technology is to discover the master 
genes behind the phenotype of interest. These are the genes 
whose change in transcriptional activity, through a cascade 
of transcriptional responses, leads to observable phenotypic 
change. For example, in cancer, the common phenotypes 
of interest include disease state, prognosis, metastasis rate, 
drug response, etc. Typically, feature-ranking algorithms like 
GSA methods are applied to such data to find the genes/gene 
sets most differentiated between the observed phenotypes.  
The genes or gene sets ranked at the top of the list will be con-
sidered as candidates for further investigation. A good GSA 
algorithm should rank gene sets containing the master gene(s) 
at the top. To evaluate GSA algorithms, one would like to 
have considerable real data sets with ground truth on the mas-
ter genes; however, as noted, very few of the available real data 
sets have such information.

The proposed hybrid data model overcomes this limitation 
by defining its own master gene and the corresponding pheno-
type labels for a given data set. Our model is directly inspired 
by the popular p53 data set described in the Background sec-
tion. Instead of using the mutation states of a certain gene to 
define the phenotype, as in the p53 data set, we exploit the 
transcriptional level: the gene with significantly differentiated 
transcriptional levels across the sample is defined as the master 
gene and the phenotypes are assigned accordingly. Our model 
building procedure automatically examines all genes for quali-
fied genes to serve as the master gene. Each designated master 
gene will assign its own phenotype labels to the sample. In 
the p53 data set, the p53 mutation status determines the phe-
notype in an exact manner. In our model, the transcription 
level of the master gene takes continuous values. To ensure 
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the consistency between master gene transcription activity 
status and phenotype, for the master gene, we fit its expression 
values to a two-class mixture-Gaussian distribution and label 
the sample units according to the distribution. To minimize 
the danger of selecting an undifferentiated gene as a master 
gene, our model will be based on large data sets with a sample 
size at least in the hundreds.

By defining the master gene as the gene whose expres-
sion levels are most consistent with the phenotypes, our model 
guarantees that there is at least one strong DEG among the 
genes. Hence, our model does not intend to examine the third 
goal for GSA methods, detecting weakly differentiated genes, 
but focuses on the goal of revealing biological themes under 
this specific modeling condition.a Like the p53 data set, the 
relationship between the master gene and the neighboring 
genes is preserved. Many of these genes should assume a 
differentially expressed pattern similar to the master gene, 
although they may not be as significant as the master gene. 
GSA methods, with properly defined gene sets that cover the 
relationship, should be able to pick up such a coordinated 
transcription pattern and identify the true sets.

Once built, the hybrid data model will generate data sets 
of designated sample size via sampling to emulate the small-
sample scenario commonly encountered in a preliminary 
study. Since the model is based on a large data set, multiple 
data sets can be generated by resampling. This allows us to also 
examine the goal of ensuring reproducibility and consider how 
the performance of GSA methods improves with sample size.

Figure 1 shows a typical work flow for building a hybrid 
model from a given data set S, which consists of two main 
parts:

1.	 Model building. In this part, all candidate genes in the 
data set S are screened and a master gene with its asso-
ciated distribution is selected and added to the original 
data to form the data model. This part can be further 
divided into three steps:

(a)	 Pre-processing: In a data set, theoretically any gene can 
be a master gene. But commonly some pre-processing 
has to be done before the screening. For example, most 
GSA algorithms allow only one expression value for each 
gene for any sample unit, hence multiple probes associ-
ated with the same gene must be consolidated to a single 
value. Genes with missing values also need to be removed 
as they cannot be handled by most GSA algorithms. 
We also remove probes not associated with any known 
genes, as these do not lend themselves to any immediate 
biological interpretation without further investigation 
and hence are commonly ignored. In the whole study, we 

work with pre-processed data. For simplification, we will 
still denote the the pre-processed data set as S. Once the 
pre-processing is done, the remaining genes are passed 
for screening.

(b)	 Screening: In the screening step, the expression data of a 
potential master gene are fit to a parametric distribution 
that emulates the multi-class distribution. It is commonly 
believed that by proper transformation and normaliza-
tion, the microarray expression levels of any given gene, 
if in a homogenous state, are more or less normally dis-
tributed.19,20 Hence it’s natural to assume the master gene 
that induces different phenotype states follows a mixture-
Gaussian distribution. The number of mixture compo-
nents represents the number of phenotypes in the data, 
with the number of dimensions representing the number 
of master genes involved. For simplicity, we limit the 
number of phenotypes to two classes, which is the most 
common scenario in biomedical problems. We also limit 
the number of master genes to one, which corresponds to 
the case of a single gene’s activity determining the phe-
notype. We acknowledge that in most biological settings, 
phenotypes are determined by more than one factor, yet 
we focus on single master gene scenarios for the following 
reasons. With multiple master genes, the regulatory rela-
tionship between the master genes and the phenotype is 
much more complicated. Most common examples include 
AND and OR. However, extremely nonlinear cases like 
XOR are also possible.21 The distribution models then 
need many more sample units to properly fit the data. 
Moreover, in many cases the multiple factors take affect 
through different cellular processes that correspond to 
different pathways/gene sets. Yet, as far as we know, there 
is no GSA method that deliberately considers the inter-
action between gene sets. Since the single master gene 
approach, like the p53 data set, has been widely used in 
previous studies and been shown as very informative, we 
examine GSA methods only in this simpler scenario.
In sum, we limit our model to a two-class one-dimensional 

Gaussian distribution F for a given gene X:

	 ( ) ( ) ( ) ( )0 0 0 0 1 11µ σ µ σ= + −| , | , ,f x p g x p g x 	 (1)

where p0 is the prior probability of class 0 and g(x|µi, σi), i = 0, 1, 
are the component Gaussian densities with mean µi and standard 
deviation σi. The Expectation-Maximization (E-M) algorithm 
implemented by R package MCLUST22 is used to estimate p0, 
µ0, µ1, σ0, and σ1. The E-M algorithm will be run with four 
different random seeds to avoid potential singularities and the 
fitted parameters with highest likelihood will be picked.b

aOne might think that this model can be modified to examine the ability of detecting 
weakly differentiated genes by simply removing the master gene from the data. How-
ever, since there might be other genes highly correlated with the master gene and having 
similar differentiating power, removing the master gene does not guarantee the removal 
of all significantly differentiated genes. Hence here we would rather keep the master 
gene in the data set and limit our study to a more specific scenario.

bThe two-class setting may not fit well with many genes. An alternative way is to use 
Bayesian-based variational inference to estimate both the number of components and 
model parameters.23 However, since our purpose is to find a small set of master genes 
that best fit with such model, rather than determine the proper number of components 
for each gene, we thus fit all genes with a two-class model and select the best-fit master 
genes in the next step.
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(c)	 Model selection: Once the distribution parameters for each 
candidate master gene are obtained, other properties related 
to the fitted distribution will also be collected. We use the 
following three properties to select the master genes:

•	 Bayes error: One direct way to measure how much the 
master gene determines the two phenotypes via differential 
expression is by considering it as a two-class classification 
problem predicting the clinical outcome from gene tran-
scriptional levels. Thus, quantifying the optimal classifica-
tion performance, ie, Bayes error, is a direct and natural 
way to select the strongest master genes. With the exact 
distribution available, the Bayes error can be accurately 
computed. We expect that the master gene should provide 
good phenotype determination and therefore have small 
Bayes error.

•	 Prior: Very often the samples collected in a biological 
problem are unbalanced in the two phenotypes. In our 
model, the degree of balance is indicated by π  =  min 
(p0, 1 – p0) ∈ [0, 0.5].

•	 Popularity: Popularity is the number of gene sets in which 
the master gene appears. Well-studied genes should 
appear in more gene sets than scarcely-studied genes and 
therefore have a higher likelihood of being re-discovered.
The master gene must have non-zero popularity, ie, appear 

in at least one gene set; otherwise, no GSA method can select 

it. Hence, we first filter out any gene that has zero-popularity. 
Next, since typically the only biological knowledge possessed 
in a study is the prior, we will select master genes to cover 
a wide variety of priors. We avoid the extremely unbalanced 
cases by removing genes with prior π , 0.1. Next, the prior 
range [0.1, 0.5] is evenly cut into 10 bins and in each bin the 
10  genes with smallest Bayes error are picked. Altogether, 
100 master genes are found. For each master gene, X, its fitted 
distribution model F and the pre-processed data S are com-
bined to form one hybrid data model, M(X, F, S).

Besides the Bayes error and prior, we will also collect 
three other properties that might affect the performance of 
GSA methods.

•	 Fold change: In microarray analysis, fold change is the 
most commonly adopted measure on the extent of dif-
ferential expression. The fold change is measured by the 
distance between the means: |µ0–µ1|.

•	 Shape balance: The two classes can also be unbal-
anced in variance. The degree of shape balance is indi-
cated by the ratio between the two standard deviations: 
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(|ρ| . 0.5). Connectivity provides a basic characterization 
of the correlation structure and dynamic relationship of the 
master gene with other genes. One would expect a gene 
highly correlated to the master gene to have similar prop-
erties to the master gene and a data model containing a 
highly connected master gene will have many differentially 
expressed non-truth genes other than the master gene.
The first two properties, fold change and shape balance, 

are associated with the distribution of the master gene and 
sometimes have been directly or indirectly taken into consid-
eration by GSA algorithms. Since GSA methods depend on 
the functional relationships between genes to work, the con-
nectivity property might shed light on how well GSA meth-
ods can take advantage of such relationships.

For example, by screening a breast cancer data set,24 which 
will be used in this study and discussed later, we can fit a mixture-
Gaussian distribution to the gene ERBB2 as: 0.84 × g(x|1.08, 
0.019) + 0.16 × g(x|1.65, 0.009), which is shown in the bottom 
left plot of Figure 1. By fitting such a distribution to ERRB2, 
which has a low Bayes error of 0.0067, ERBB2 will be selected as 
the master gene based on the procedure just described, in essence 
creating an artificial phenotype fully determined by the ERBB2 
transcription level. In this cohort, on average 16% of the sample 
units possess a phenotype due to the elevated ERBB2 expression 
level. In this case, ERBB2 happens to be a critical gene that is 
frequently found to be over-expressed in breast cancer patients, 
which usually leads to poorer prognosis. Monoclonal antibod-
ies like Trastuzumab and Pertuzumab have been developed to 
target ERBB2 positive patients. Property-wise, for our model 
based on ERBB2, it has a prior of 0.16, shape balance of 2.22, 
and fold change of 0.57. ERBB2 is a well-characterized gene 
that appears in many gene sets. ERBB2 is not well connected, 
possessing a connectivity of 7.
2.	 Simulation: Given the hybrid data model, one can pop-

ulate multiple data sets of designated sample sizes for 
simulation and evaluate performances with master gene 
information as ground truth. The simulation consists of 
three steps:

(a)	 Sampling: To generate a test data set Stest of designated 
sample size N is simply to draw N sample units from S 
without replacement. Class labels are assigned based on 
the master gene X and distribution F: for a sample point 
with expression value x, the posterior probabilities of that 
point being in class 0 or class 1 can be calculated via F as 
p(0|x) = p0g(x|µ0, σ0)/f (x) and p(1|x) = 1–p(0|x), respec-
tively. Then the label of that sample point can be ran-
domly assigned based on the posterior probabilities, with 
probability p(0|x) assigning it as class 0 and p(1|x) as class 
1. Multiple test data sets can be generated. It should be 
noted that even if two test data sets have the same sample 
units, owing to random labeling, the generated data sets 
might not be identical on account of different labeling. In 
practice, we would like to have Stest be much smaller than 
the original data set S, so the generated test data sets have 

minimal overlap between each other and hence represent 
the scenario of duplicated experiments encountered in 
real experiments.

(b)	 Ranking: The generated test data sets are passed to the 
GSA methods of interest for gene set ranking. The GSA 
methods used in this study will be introduced in the 
next subsection and described in detail in Additional 
File 1.

(c)	 Evaluation: The gene set ranking results are gathered for 
evaluation. Since every model is built based on a master 
gene, the data generated by the model naturally possess 
an embedded biological theme defined by the master 
gene. The true sets are defined as the gene sets containing 
the master gene X and the performance of GSA methods 
are evaluated based on how the true sets are ranked.
GSA methods. As reviewed in the Background sec-

tion, the common GSA methods can be roughly grouped 
into three categories. In this study, our proposed models have 
not been built to favor any specific method, but are driven 
by biology-relevant assumptions to emulate actual problems 
one might encounter in real studies. In the proposed model, 
the true sets always contain the master gene. From the per-
spective of ranking, the true sets should be more differen-
tially expressed with respect to the phenotype than other 
gene sets and have more significant P-value under any of the 
three statistical assumptions. Thus it seems possible that all 
three categories of GSA methods can do the job. Hence we 
will compare a total of seven GSA methods from all three 
categories. Significance Analysis of Function and Expres-
sion (SAFE) and Generally Applicable Gene-set Enrich-
ment for Pathway Analysis (GAGE) are commonly labeled 
as Q1 methods,25,26,3 global test, ANCOVA global testc and 
SAMGS as Q2 methods,27,28,5 and GSEA and GSA packaged 
as Q3 methods.2

For all methods, we use the default/recommended set-
tings suggested by the original authors or other experienced 
researchers. However, for GAGE and ANCOVA global test, 
there is no clear indication on which setting to use as default. 
Since our simulations indicate that different choices can sig-
nificantly impact the performance, we will use the results 
derived from one specific setting for most of the discussion 
in the Results section. For GAGE, we assume that the gene 
expression can move in both directions rather than the same 
direction, and for ANCOVA global test, we choose a permu-
tation-based P-value rather than asymptotic P-values. The 
more detailed description of all GSA methods and param-
eter settings are available in Additional File 1. We will also 
briefly discuss the impact of different settings at the end of the 
Results section and Additional File 6.

cTo avoid confusion between ANCOVA global test and the global test, we will always 
include ANCOVA in the name whenever ANCOVA global test is discussed.
dGSA package is an R package and should not be confused with GSA method in general. 
In this paper, to avoid confusion, whenever this specific method is mentioned, we will 
use the full name GSA package.

http://www.la-press.com


Evaluating gene set enrichment analysis

7Cancer Informatics 2014:13(S1)

Simulation
We have conducted comprehensive simulations to compare 
the seven GSA methods, following the outline provided in 
Figure  1. The procedure emulates the common practice in 
actual research: the researcher picks a batch of gene sets and 
a GSA method, and applies the method to the data with the 
gene sets.

We have built our hybrid data models based on three 
large cancer data sets, a breast cancer set (BC),24 a lung cancer 
set (LC),29 and a multiple myeloma set (MM),30,31 which were 
profiled by three different microarray chips. Detailed infor-
mation on these data sets is available in Additional File 1.

For the gene sets used in the study, we chose the gene sets 
provided at Molecular Signatures Database (v3.0). We have 
considered two collections of gene sets, the curated gene sets 
(C2), which are based on pathway information, publications 
and expert knowledge; and the computational gene sets (C4), 
which are defined by mining the cancer-related microarray 
data. Since the gene-set collections are not based on a specific 
tissue/disease type, using these gene-set collections emulates 
the situation in which one has little knowledge of the problem 
and would like to test a wide range of potential gene sets.

We have removed genes not profiled in the microarray 
from the gene sets. Because the three data sets used in this 
study have been profiled by different chips, the gene sets avail-
able for each data set are also different. Since the underlying 
goal of ranking is to reveal potential master genes for further 
investigation, and too large a gene set can make such exami-
nation impractical, we limit the size of each gene set to be no 
larger than 150. Moreover, to make sure we are taking advan-
tage of aggregated boosting effects of a gene set, we require the 
minimal gene set size to be no smaller than 10. For example, 
the ERBB2 gene of BC set shown in the hybrid data model 
subsection appears in 33 gene sets of the C2 category and 8 of 
the C4 category, which confirms the popularity of ERBB2.

For each data set and each gene-set collection, we build 
100 hybrid data models based on 100 different master genes 
following the approach defined in the Hybrid data model sub-
section. Because a master gene must be present in at least one 
gene set, due to the difference between the C2 and C4 col-
lections, even for the same data set the hybrid data models 
built for the two collections are different. Moreover, in the 
C2 collection there are gene sets derived based on the same 
data sets used in this study. In our general simulation, we do 

not remove these gene sets from the study, but in the analysis, 
we evaluate the cases where all gene sets are included and the 
cases where these self-derived gene sets are removed. Table 1 
provides a brief overview on the data sets and the associated 
gene sets.

For each hybrid model, we tested the GSA methods at 
three sample sizes: 20, 40, and 60. We specifically focused 
on the small sample cases since this is the area in which GSA 
methods are believed to be advantageous. For a given model 
and sample size, 100 data sets were sampled from the full data 
set to test reproducibility. Thus, altogether there would be 3 
data sets, 2 gene-set collections, 100 data models, 3  sample 
sizes, 100 repeats, and 7 GSA methods, resulting in 1.26 mil-
lion individual runs. All simulations have been implemented 
in R and conducted on a high-performance cluster computer 
system, with the full simulation taking more than 500,000 
CPU hours.

Results and Discussion
As described in the simulation subsection, we used two gene-
sets collections, C2 and C4, and analyzed the data by using 
all gene sets or by removing the self-derived gene sets. Due 
to limited space, in this section we focus on the results gener-
ated based on C2, with all gene sets used, and refer to other 
results only when necessary. Full results are available in the 
additional files.

Comparing the properties of selected hybrid data 
models. The 100 hybrid data models selected for each data set 
and gene-set collection evenly cover all possible prior distribu-
tions with minimum Bayes errors. This selection criterion does 
not provide information on other properties associated with 
the model. Hence, before examining the simulation results on 
various GSA methods, it is necessary to check the properties 
of the hybrid data models.

Figure 2 shows the property distributions of the selected 
models against the distribution of all models. Each plot is 
drawn in its own scale and should not be compared directly to 
other plots. It can be seen that the three data sets show consid-
erable differences in most of these properties.

For shape balance, the selected models all have somewhat 
different distributions than all models. BC and LC sets show 
that the selected models have evenly distributed shape balance 
in log scale, indicating there are considerable models possess-
ing dramatically different variances in two classes, hence the 
extreme nonlinearity in the expression level distributions. As 
for MM set, although most models have rather unbalanced 
shape, most selected models have rather balanced shape.

For fold change, all three data sets show the selected 
models to be end-loaded at the large fold change region, 
which is not surprising since the models are selected par-
tially based on the Bayes error, which is commonly believed 
to be negatively correlated with fold change. It is also rea-
sonable to believe that master genes responsible for the 
phenotype variance should have significant fold change 

Table 1. The basic information on the data sets and gene sets used 
in the study. For the C2 size, inside the parentheses is the number of 
the gene sets that are identified from the same data.

Data set name sample size gene size C2 size C4 size

breast cancer 295 12049 2406 (7) 722

multiple myeloma 559 21049 2518 (18) 701

lung cancer 361 11078 2475(4) 705
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in expression levels to initiate qualitative change in the 
signaling pathways.

For connectivity, the selected models of all three data sets 
follow closely with other models. Only in the MM set are there 
no selected models with very high connectivity. In the BC set, 
a considerable number of models have very high connectivity. 

Since each model is associated with one gene, it shows that 
almost half of the genes have higher than 0.5 correlation to 
overall a thousand other genes, and some have connectivity as 
high as 5000. For the MM and LC sets, their general con-
nectivities are quite low, smaller than 50 for the MM set and 
500 for the LC set. The connectivity is quite evenly distributed 
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Figure 2. The general information on several important properties, including the shape balance, fold change, connectivity, and popularity, of the hybrid 
data models generated for gene set collection C2, for all three data sets. The histograms are the distributions of the 100 selected hybrid data models, and 
the red lines are the Gaussian density curves of all hybrid data models. Except fold change, all other properties are shown in log10 scale at x-axis. For 
connectivity, extra 1 had been added before the logarithm was taken. Note that each plot has its own scale.
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in log scale. The high connectivity in the BC set indicates that 
there might be many genes and gene sets possessing similar 
expression pattern and association with the phenotype. Indeed, 
as shown in Venet D, Dumont JE, Detours V,32 by using the 
prognosis as phenotype labeling, 90% of random gene sets with 
more 100  genes will show a significant association with the 
prognosis. It has been shown in Nam D and Kim SY6 that 
if there are many gene sets containing differentially expressed 
genes that correlate with the phenotype, which is probably the 
case encountered in the BC set, then the Q1 based methods can 
provide more accurate P-values. And if there is only a handful 
of such gene sets, which might be the case in the LC and MM 
sets, then the Q2 based methods are more accurate in P-value 
prediction, as shown in Dinu I, et al.7 However, since in this 
study we are not concerned with the accuracy of P-values as in 
Nam D and Kim SY, Dinu I, et al,6,7 the best ranking perfor-
mance can come from any method, regardless of its accuracy in 
P-value estimation.

For popularity, again the selected models of all three 
data sets follow closely with other models. The distributions 
between the three sets are also quite similar. This is probably 
because the same gene set collection C2 is used, although the 
number of genes in the MM set is much larger than in the 
other data sets (see Table 1).

From the data set aspect, besides the tissue/disease dif-
ference, the two data sets using Affymetrix chips, MM and 
LC, show overall similar properties, compared to the BC set, 
which uses Agilent chips. It is hard to say how much of such 
difference is contributed by the microarray profiling technol-
ogy. In any event, this difference indicates that the sample 
one might face in the real world can have quite different gene 
expression patterns and any observation collected from this 
study should only be applied to data of similar pattern, regard-
less of the technology or tissue type.

To further define the differences between the data sets, 
we examined the distribution of the Bayes error associated 
with each model for each data set. As described in the Method 
section, the models were selected to evenly cover the whole 
prior range [0.1, 0.5]. Since the Bayes error is not independent 
of the prior, but bounded by it, it is appropriate to compare 
the Bayes errors of a given model to the models with similar 
prior. In Figure 3, we show the scatter plot of Bayes error and 
prior of all three data sets. For more convenient comparison, 
the Bayes error is normalized with the prior. It can be seen 
that the BC data set has relatively high Bayes errors at all pri-
ors except in the range 0.15–0.2, indicating harder problems, 
while the MM and LC sets have lower errors. The example 
of ERBB2, which is based on the BC set and is shown in the 
Methods section, has a very low normalized error of 0.042.

Figures 2 and 3 show that the selected models cover not 
only different priors, but also a wide range of other model 
properties. The models selected based on the gene-set collec-
tion C4 show overall a very similar pattern (see Additional 
File 2). For the details on exactly which genes are selected 

and the associated model properties, refer to Additional  
File 3.

Ability to reveal biological themes. We first evaluate the 
ability claimed by GSA methods to reveal potential biological 
themes. As described in the GSA methods subsection, we use 
the ranking of the true sets to compare GSA methods. A good 
GSA method should be able to rank the true sets at the top 
of the ranking list. Thus, for any ranking output a direct mea-
sure is whether any true sets are among the top k sets. Such a 
0/1 score is not perfect, since only partial knowledge on true 
sets is available. For example, if both algorithms A and B can-
not rank any true set at top k sets, our measure will give A and 
B an equal score. Yet if algorithm A ranks the gene sets closely 
related to true sets in the top k sets, while algorithm B ranks 
no closely related true sets in the top k, one would deem algo-
rithm A to be relatively better than B; however, due to the lack 
of such information, such an advanced measure is not available 
in our study. Be that as it may, it is reasonable to believe that 
a good GSA method should be able to rank true sets higher 
than closely related sets and the just-described scenario only 
happens occasionally. Thus by conducting the experiments on 
more than 100 data models with 100 repetitions, the average 
performance, which is the percentage of cases that have true 
sets in the top k sets, should be able to deliver a meaningful 
performance evaluation.

Figure  4 compares the performance of different GSA 
methods at different sample sizes for each data set. The x-axis 
is the number of top sets selected and the y-axis is the corre-
sponding percentage of cases containing the true sets.

Two Q2 methods, global test and SAMGS, split the best 
performance in all cases. The global test has the overall best 
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Figure 3. The scatter plot of normalized Bayes error with respect to prior. 
Gene sets: C2.
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performance. It has the best performance in the BC set. In the 
LC and MM sets, it ranks second best at sample sizes 20 and 
40, while outperforming SAMGS for sample size 60, where 
the number of top sets picked is small, and almost indistin-
guishable when more sets are picked. Although SAMGS 
has excellent performance with the LC and MM sets, it has 
mediocre performance for the BC set at sample sizes 40 and 
60. ANCOVA global test has similar yet poorer performance 
than global test in all data sets. For other methods, only 
GAGE has competitive performance in the LC set at sample 
size 20.

Clearly for the proposed data model, the Q2 methods, 
which determine the significance of the current gene set purely 
based on the gene set itself, provide much better ranking. In 
comparison, both the Q1 and Q3 methods compare the current 
gene set with the remaining genes, sometimes through extra 
permutation along genes. With the total number of genes over 
10,000, such a computation might bring extra uncertainty, 
and probably contribute to the inferior performance. However, 
there could certainly be other factors, including the properties 
of the data sets used in this study, that affect the observed 
performance.

While the Q1 and Q3  methods demonstrate generally 
poor performance on all three data sets, the performance of 
the Q2 methods on different data sets is quite different. The 
BC set shows the greatest difficulty for all methods. Even the 
best performance can only be described as poor: at sample size 
60, global test delivers true sets in slightly more than 40% of 
the cases for the top 5 sets and about 60% for the top 20 sets. 
In comparison, for both the LC and MM sets, and sample size 
60, global test ranks the true sets in the top 5 sets more than 
85% of the time and at or more than 90% in the top 20 sets.

We then evaluate the correlation between various model 
properties and the ranking performance to see if any prop-
erties can significantly affect the outcome. In summary, 
we found little significant or consistent correlation pattern 
between model property and ranking performance. However, 
the connectivity and median best rank show clear correlation 
for Q2 methods in the BC set. Thus, the connectivity could be 
a critical factor in the performance of GSA methods. The full 
results for all data sets and all properties, along with a more 
detailed discussion, are available in the Additional File 4.

Next, Figure 5 compares the performance of a given GSA 
method at different sample sizes. Among all methods, only global 
test and ANCOVA global test show consistent improvement 

with increase of sample size in all data sets. SAMGS has some 
improvement only from sample size 20 to 40, and from 40 to 
60 the performance even decreases in the BC set. The two 
Q3 methods, GSA package and GSEA, show moderate improve-
ment with sample size. The worst case is GAGE, which essen-
tially shows no improvement at all, while the other Q1 method, 
SAFE, shows only slight improvement over sample size.

Table 2 shows a specific example based on ERBB2 with 
the BC set using the C2 collection. The performance on this 
model is generally very good for all methods. ANCOVA global 
test, global test, GSA package, and SAMGS have perfect or 
close to perfect performance from the smallest sample size. 
GSEA and SAFE improve their performance with larger 
sample size, while GAGE’s performance drops slightly with 
increased sample size. The results are quite consistent with 
those in Figures 4 and 5, apart from GSA package’s good per-
formance. The full results for all models with the C2 collec-
tion with all gene sets and the C4 collection are available in 
Additional File 2.

The results shown in Figures  4 and 5 are based on all 
gene sets in the C2 category. If one removes the self-derived 
gene sets from all gene sets, then the general performance will 
decrease only slightly, as expected. The performances based 
on the C4 category share the general trends exemplified in the 
C2 category results, but can vary at some points. For instance, 
for C4 category, GAGE now has the best performance with 
the BC set at sample size 20, when more than 20 top sets are 
picked. The performance of GSA package decreases consider-
ably in the MM and LC sets, but improves a bit for the BC set. 
The full results are available in Additional File 4.

Ability to ensure reproducibility. A common argument 
regarding GSA methods is that by using the gene sets instead 
of individual genes, the outcome is less susceptible to noise 
and therefore can lead to better reproducibility. Since the pro-
posed model is built based on a relatively large data set, with 
the minimal sample size of 295, this allows us to generate 
multiple sample sets for each model from the same distribu-
tion and apply the GSA algorithm repeatedly to examine the 
reproducibility.

We first evaluate the reproducibility of the true set rank-
ing performance. For each hybrid data model, the best ranks 
of the true sets for all 100 repeats are collected to obtain the 
standard deviation, and the histogram of all 100 data mod-
els are drawn. In Figure 6, the histograms of all seven GSA 
methods for the BC and LC sets at different sample sizes are 

Table 2. Ranking performance of GSA methods on ERBB2 master gene of BC set, C2 collection. The median ranking of 100 repeats is shown 
here.

sample size ANCOVA gage global test GSA package GSEA SAFE SAMGS

20 3 10 1 2 10.5 15.5 1

40 1 11 1 1 1 14 1

60 1 13 1 1 1 6 1
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shown, with the x-axis in log scale. (The results of the MM set, 
the models of which are based on a larger data set, are similar 
to the LC set. To save space, they are not shown here but are 
available in Additional File 5). For the model where the stan-
dard deviation is 0, we set the standard deviation to 10−2, which 
is smaller than any possible case. This situation almost always 
indicates that all repeats rank a true set at the top position.

The histograms indicate that in general, the GSA methods 
with better performance, ie, the Q2 methods, have relatively 
smaller variance in model repeats, and the variance decreases 
signif icantly with the increase of sample size. For other  
methods, not only the variance is large, but the improvement 
with sample size is limited. The global test has the smallest 
variance, and shows considerable improvement with sample 
size. For the LC set at sample size 60, 40% of the model’s 
global test has zero variance. Although SAMGS’s average 
performance is very good, many models have standard devia-
tion around 10 and very few have zero variance. The variance 
of ANCOVA global test is very similar to global test in the BC  
set and slightly worse in the LC set.

The methods GSA package, GSEA and SAFE have 
highest variance, with GSA package the poorest. For most 
cases GSA package has standard deviation much larger than 
100. Although the performance improves with sample size 
significantly, the standard deviation improves little with sam-
ple size, except for a handful of cases.

In general, there is a strong correlation between per-
formance, measured by the median best rank, and standard 
deviation (results available in Additional File 5). For the cases 
where the percentage of true sets is low in the top ranked 
sets, the ranking of the true sets can often have a standard 
deviation, as high as 100. This indicates that for most GSA 
methods, the reproducibility is low, which further worsens the 
already poor performance.

The only exception is GAGE, which shows smaller 
variances despite its moderate performance among all GSA 
methods. To appreciate this phenomenon, we further exam-
ined the reproducibility of the ranking list among all repeats. 
For any two repeats of the same model, we compared the rank-
ing lists of gene sets generated by two repeats and counted the 
number of gene sets that appear in the top 10 of both ranked 
lists. We conducted such pair-wise comparison in all repeats 
and took the average of the number of overlapped gene sets as 
the measure of reproducibility in the ranked list. For the 100 
repeats used in our simulation, this means an average of more 
than 4450 pairs of repeats. We then constructed the histo-
gram of this measure over all 100 data models. Figure 7 shows 
the histograms of all seven GSA methods for the BC and LC 
sets at different sample sizes (The results of the MM set are 
similar to the LC set. To save space, they are not shown here 
but are available in Additional File 5). In each histogram there 
is a red dot indicating the average of the number of overlapped 
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Figure 7. Histogram of the average number of overlapping gene sets between repeats. Gene sets: C2. All gene sets used.

gene sets for all repeats regardless of the data model. We have 
averaged all possible gene list pairs for 100  models × 100 
repeats =  10,000 repeats. This dot reflects the global repro-
ducibility of gene lists across the data models.

The reproducibility of GAGE is the highest among all 
GSA methods: on average there are 6 to 8 overlapped gene 
sets in any two repeats. The high reproducibility exists across 
the data models. In fact, there are gene sets appearing in more 
than 8,000 out of the 100,000 total repeats, no matter which 
data model is used. This phenomenon indicates that GAGE 
picks not the gene sets that most differentiate the response 
labels, but the gene sets showing most significant difference 
from other gene sets. The fact that GAGE’s performance may 
have little relationship to the purpose of gene set ranking may 
explain its lack of improvement with increasing of sample size, 
as shown in Figure 5.

For other GSA methods, in general, the average num-
ber of overlaps is quite low when sample size is small, and 
the number increases when sample size increases. For three 
Q2  methods, at larger sample sizes, the distribution of 
average is widely spread and many models have more than 
5 overlapped gene sets between repeats. For global test and 

ANCOVA global test, in some models for the LC set with 
sample size 60, almost all 10 top gene sets picked up in one 
repeat will appear in another repeat, indicating very good 
reproducibility. For GSA package, GSEA and SAFE, the 
number of duplicates increases at a much slower pace with 
sample size.

The average number of overlaps across the data models 
remains very low, close to zero in most cases, especially in the 
LC set. This is understandable because different data mod-
els represent different biological themes and should therefore 
lead to different gene sets in ranking. In the BC set, the global 
average in duplicates increases slightly with sample size. This 
is especially significant in SAMGS, where at sample size 60 
there are on average 2 overlapped gene sets between any two 
repeats, regardless of the data model. A detailed examination 
shows that 16 gene sets appear in the top 10 gene set list of more 
than 1,000 repeats, with the most frequent 2 appearing in over 
5,000 repeats. Further examination shows that these 16 gene 
sets happen to be among the first 17 gene sets provided in the 
gene set list file, indicating a strong bias associated with gene set 
list order. Since the P-value is computed through permutation, 
and we use 10,000 permutations for SAMGS in our simulation 
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(see description in Additional File 1), this observation indicates 
the possibility that the resolution of the permutation test is not 
fine enough and there are many gene sets with the same low 
P-value (mostly zero), so that the gene sets positioned at the 
beginning of the list are more frequently selected.

To examine the possibility of such cases, we plot 
cumulative-distribution style plots in Figure  8 to check all 
GSA methods and data sets for all three sample sizes. In each 
plot, the x-axis denotes the gene sets ordered as in the gene 
list. The y-axis shows the total number of times that the gene 
sets up to that position have been selected in the top 10 of the 
ranked lists. SAMGS shows a strong bias associated with the 
order of gene sets, which is especially true in the BC set. In 
the LC and MM sets, the bias is not significant when sample 
size is 20 but becomes obvious at larger sample sizes. Such 
strong bias may explain why the performance of SAMGS 
decreases when sample size grows from 40 to 60 in BC set, as 
shown in Figure 5, and also why the variance of SAMGS does 
not decrease with sample size, as shown in Figure 6. It looks 
like the statistical test adopted by SAMGS is very sensitive, 
and many gene sets weakly associated with the response can 
exhibit strong P-values inseparable from true sets, which is a 
concern raised in the Background section.

All other methods except GAGE show a relatively 
diagonal line, which is almost unchanged for all sample 
sizes. This is as expected since for each model there are cer-
tain gene sets that should be more frequently selected into 
the top of the list, and by averaging over all data models the 
number being selected should be quite evenly spread over all 
gene sets. For GAGE, the plots show zig-zag curves. This 
is also unsurprising since GAGE’s ranking list reflects the 
difference between gene sets, which varies little from model 
to model, as shown in Figure 7. Although the simulations 
have been conducted over 100 models, in all cases the same 
batch of gene sets is used. Thus, essentially GAGE has per-
formed the ranking over the same gene-set population and 

the curve, although averaged over all models, is virtually a 
curve of one instance.

The results shown in Figures 6, 7, and 8 are based on all 
gene sets of the C2 category. However, there is little difference 
if one removes the self-derived gene sets from all gene sets.  
If the gene sets in the C4 category are used, again the general 
trends remain. In the C4 category, the bias associated with 
the gene set order for SAMGS is much weaker in the LC and 
MM sets, which is probably due to the much smaller gene set 
size. The full results are available in Additional File 5.

Impact of GSA method settings. One last issue to be pointed 
out is the impact of GSA method settings. As indicated in the 
GSA methods description, we noticed that GAGE provides 
two settings. We chose both directions to generate the main 
results for comparison. However, we found that by changing 
the gene-level statistics to same direction, the ranking perfor-
mance of GAGE is significantly decreased, to the point of 
being among the poorest of in all methods. Furthermore, the 
high reproducibility between repeats as shown in both directions 
results in Figures 6, 7, and 8 also disappears. It is clear that 
the GSA method setting matters substantially in the ranking 
performance and the same settings can be either an advantage 
or disadvantage in different scenarios. However, since this is 
not the main focus of this study, interested readers are referred 
to Additional File 6 for a short discussion with full results for 
GAGE and ANCOVA global test.

Conclusion
We have conducted a comprehensive simulation study to 
compare seven popular GSA methods. From a practitioner’s 
viewpoint, we examine the two widely accepted goals claimed 
by GSA methods: revealing biological themes and ensuring 
reproducibility for small-sample studies. We have focused on 
the ranking performance of the GSA methods, believing that 
a good GSA method should be able to consistently rank the 
true gene set at the top of the output. To be able to evaluate 
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B
C

 set
LC

 set
M

M
 set

20

40

60

Figure 8. The effects of gene set list order. X axis denotes the gene sets ordered as given gene set file. Y axis shows the total number of times that the 
gene sets up to that position have been selected into the top 10 of the ranking lists. Gene sets: C2. All gene sets used.
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the performance in a more realistic scenario and to overcome 
the limitation on available real data sets, we have used a hybrid 
data model framework. Our data model assumes that there is 
a master gene whose expression profile directly determines 
the observed phenotype. The GSA methods are then applied 
to the data set generated by the hybrid data model to see if 
they can reveal the gene sets that contain a master gene. We 
also examine the ranking of such gene sets in repeats.

Our simulation shows that one must use GSA meth-
ods with caution since most GSA methods perform poorly 
on the proposed data model. They can hardly reveal true 
biological themes, nor can they ensure reproducibility 
between repeats. Based on our simulation, we would have 
the following recommendations for anyone who would 
like to use GSA methods to reveal biological themes with 
acceptable reproducibility:

•	 Check your data. Data sets with high gene-gene con-
nectivity can significantly compromise the performance 
of GSA methods.

•	 Use Q2 methods. The global test provides the best aver-
age performance.

•	 Examine the P-values. Methods with sensitive tests like 
SAMGS lose ranking ability quickly with the increase 
of sample size, which can be detected in the pattern of 
P-values. Switch to other methods if necessary.

•	 Proceed with caution. Our simulation study assumes 
that the phenotype is determined by a single master 
gene’s activity. Most biomedical interactions are much 
more complicated and the performance of GSA methods 
could be further compromised.

Owing to the design of the proposed model, we did 
not check the ability of current GSA methods to detect 
weakly differentiated genes and cases where the pheno-
types are determined by the interaction of multiple master 
genes. However, we expect that such analyses will be even 
more challenging. For these, it may be wise to resort to more 
exact synthetic data models to understand the characteristics 
of GSA methods. Our future research will proceed in this 
direction.

Finally, some GSA methods extend the GSA analy-
sis by reducing the significant gene sets to a few core genes 
that contribute most to the statistical significance, eg, leading 
edge analysis in GSEA package and significance analysis of 
microarray for gene-set reduction (SAM-GSR) for SAMGS. 
The accuracy of these gene set reduction approaches remains 
to be deeply examined.
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