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Abstract
We develop asymptotic theory for weighted likelihood estimators (WLE) under two-phase
stratified sampling without replacement. We also consider several variants of WLEs involving
estimated weights and calibration. A set of empirical process tools are developed including a
Glivenko–Cantelli theorem, a theorem for rates of convergence of M-estimators, and a Donsker
theorem for the inverse probability weighted empirical processes under two-phase sampling and
sampling without replacement at the second phase. Using these general results, we derive
asymptotic distributions of the WLE of a finite-dimensional parameter in a general semiparametric
model where an estimator of a nuisance parameter is estimable either at regular or nonregular
rates. We illustrate these results and methods in the Cox model with right censoring and interval
censoring. We compare the methods via their asymptotic variances under both sampling without
replacement and the more usual (and easier to analyze) assumption of Bernoulli sampling at the
second phase.
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1. Introduction
Two-phase sampling is a sampling technique that aims at cost reduction and improved
efficiency of estimation. At phase I, a large sample is drawn from a population, and
information on variables that are easier to measure is collected. These phase I variables may
be important variables such as exposure in a regression model, or simply may be auxiliary
variables that are correlated with unavailable variables at phase I. The sample space is then
stratified based on these phase I variables. At phase II, a subsample is drawn without
replacement from each stratum to obtain phase II variables that are costly or difficult to
measure. Strata formation seeks either to oversample subjects with important phase I
variables, or to effectively sample subjects with targeted phase II variables, or both. This
way, two-phase sampling achieves effective access to important variables with less cost.
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While two-phase sampling was originally introduced in survey sampling by Neyman [20]
for estimation of the “finite population mean” of some variable, it has become increasingly
important in a variety of areas of statistics, biostatistics and epidemiology, especially since
[22, 33] and [27].

The setting treated here is as follows:

• We begin with a semiparametric model for a vector of variables X with values in
 [The prime examples which we treat in detail in Section 4 are the Cox

proportional hazards regression model with (a) right censoring, and (b) interval
censoring.]

• Let W = (X, U) ∈ × ≡ where U is a vector of “auxiliary variables,” not
involved in the model  Suppose that W ~ P ̃0 and X ~ P0. Now suppose that V ≡
(X̃, U) ∈ where X̃ ≡ X̃(X) is a coarsening of X.

• At phase I we observe V1, …, VN i.i.d. as V, and then use the phase I data to form

strata, that is, disjoint subsets 1, …, J of with . We let Nj = #{i ≤
N : Vi ∈ j}.

• Next, a phase II sample is drawn by sampling without replacement nj ≤ Nj items
from stratum j. For the items selected we observe Xi. Thus for the selection
indicators ξi we have P̃0 (ξi = 1|Vi) = (nj/Nj)1 j (Vi) ≡ π0 (Vi).

• Finally weighted likelihood (or inverse probability weighted) estimation methods
based on all the observed data are used to estimate the parameters of the model 
and to make further inferences about the model.

It is now well known that the classical Horvitz–Thompson estimators [9] use only the phase
II data and are inefficient, sometimes quite severely so; see, for example, [2, 3, 14, 23] and
[34]. Improvements in efficiency of estimation can be achieved by “adjusting” the weights
by use of the phase I data (even though the sampling probabilities are known). Two basic
methods of adjustment are:

1. Estimated weights, a method originating in the missing data literature [23], and
with significant further developments since in connection with many models in
which the missing-ness mechanism is not known, in contrast to our current setting
in which the missing-ness is by design.

2. Calibration, a method originating in the sample survey literature [8]; see also [13,
14].

One of our goals here is to study existing methods for adjustment of the weights of weighted
likelihood methods and to introduce several new methods: modified calibration as suggested
by Chan [6] and centered calibration as proposed here in Section 2.

A second goal is to give a systematic treatment of estimators based on sampling without
replacement at phase II in the setting of general semiparametric models and to make
comparisons with the behavior of estimators based on Bernoulli (or independent) sampling
at phase II, thus continuing and strengthening the comparisons made in [4, 5], and [2, 3] for
a particular sub-class of semiparametric models and adjustments via estimated weights and
ordinary calibration. Many studies of the theoretical properties of procedures based on two-
phase design data have been made for the case of Bernoulli sampling; see, for example, [11]
and the review of case-cohort sampling given there. On the other hand, while statistical
practice continues to involve phase II data sampled without replacement, most available
theory in this case (other than [4, 5]) has developed on a model-by-model basis. As has
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become clear from [4, 5], sampling without replacement results in smaller asymptotic
variances, and hence inference based on asymptotic variances derived from Bernoulli
sampling will often be conservative. Our treatment here provides theory and tools for
dealing directly with the sampling without replacement design. We do this by providing the
relevant theory both for semiparametric models in which the infinite-dimensional nuisance
parameters can be estimated at a regular rate ( ) with complete data, and semiparametric
models in which the infinite-dimensional nuisance parameters can only be estimated at
slower (nonregular) rates.

The main contributions of our paper are three-fold: First, we establish two Z-theorems
giving weak sufficient conditions for asymptotic distributions of the WLEs in general
semiparametric models. The first theorem covers the case where the nuisance parameter is
estimable at a regular rate; this yields rigorous justification of [2, 3] under weaker
conditions. The second theorem covers the case of general semiparametric models with
nonregular rates for estimators of the nuisance parameters. The conditions of our theorems,
formulated in terms of complete data, are almost identical to those for the MLE with
complete data. This formulation allows us to use tools from empirical process theory
together with the new tools developed here in a straightforward way. Second, we propose
centered calibration, a new calibration method. This new calibration method is the only one
guaranteed to yield improved efficiency over the plain WLE under both Bernoulli sampling
and sampling without replacement, while other methods are warranted only for Bernoulli
sampling. Third, we establish general results for the inverse probability weighted (IPW)
empirical process. Some results such as a Glivenko–Cantelli theorem (Theorem 5.1) and a
Donsker theorem (Theorem 5.3) are of interest in their own right. These results accounting
for dependence due to the sampling design are useful in verifying the conditions of Z-
theorems in applications. For instance, Theorems 5.1 and 5.2 easily establish consistency
and rates of convergence under our “without replacement” sampling scheme. We illustrate
application of the general results with examples in Section 4.

The rest of the paper is organized as follows. In Section 2, we introduce our estimation
procedures in the context of a general semiparametric model. The WLE and methods
involving adjusted weights are discussed. Two Z-theorems are presented in Section 3; these
yield asymptotic distributions of the WLEs of finite-dimensional parameters of the model.
All estimators are compared under Bernoulli sampling and sampling without replacement
with different methods of adjusting weights. In Section 4 we apply our Z-theorems to the
Cox model with both right censoring and interval censoring. Section 5 consists of general
results for IPW empirical processes. Several open problems are briefly discussed in Section
6. All proofs, except those in Section 4 and auxiliary results, are collected in [25].

2. Sampling, models and estimators
We use the basic notation introduced in the previous section. After stratified sampling, X is
fully observed for nj subjects in the jth stratum at phase II. The observed data is (V, Xξ, ξ)
where ξ is the indicator of being sampled at phase II. We use a doubly subscripted notation:
for example, Vj,i denotes V for the ith subject in stratum j. We denote the stratum probability
for the jth stratum by νj ≡ P̃0(V ∈ j), and the conditional expectation given membership in
the jth stratum by P0|j (·) ≡ P̃0(·|V ∈ j).

The sampling probability is P(ξ = 1|Vi) = π0 (Vi) = nj/Nj for Vi ∈ j. These sampling
probabilities are assumed to be strictly positive; that is, there is a constant σ > 0 such that 0
< σ ≤ π0(υ) ≤ 1 for υ ∈  We assume that nj/Nj → pj > 0 for j = 1, …, J as N → ∞.
Although dependence is induced among the observations (Vi, ξi Xi, ξi) by the sampling
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indicators, the vector of sampling indicators (ξj1, …, ξjNj) within strata, are exchangeable for
each j = 1, …, J, and the J random vectors (ξj1, …, ξjNj) are independent.

The empirical measure is one of the most useful tools in empirical process theory. Because
the Xi’s are observed only for a sub-sample at phase II, we define, instead, the IPW

empirical measure  by

where δXi denotes a Dirac measure placing unit mass on Xi. The identity in the last display is
justified by the arguments in Appendix A of [4]. We also define the IPW empirical process

by  and the phase II empirical process for the jth stratum by

, j = 1, …, J,  is the phase II

empirical measure for the jth stratum, and  is the empirical measure
for all the data in the jth stratum; note that the latter empirical measure is not observed.

Then, following [4], we decompose  as follows:

(2.1)

where . Notice that  correspond to
“exchangeably weighted bootstrap” versions of the stratum-wise complete data empirical

processes . This observation allows application of the
“exchangeably weighted bootstrap” theory of [21] and [32], Section 3.6.

2.1. Improving efficiency by adjusting weights
Efficiency of estimators based on IPW empirical processes can be improved by adjusting
weights, either by estimated weights [23] or by calibration [8] via use of the phase I data;
see also [14]. Besides these, we discuss two variants of calibration, modified calibration [6],
and our proposed new method, centered calibration.

Let Zi ≡ g(Vi) be the auxiliary variables for the ith subject for a known transformation g. For
estimated weights with binary regression, Zi contains the membership indicators for the
strata I j (Vi), j = 1, …, J. Observations with π0(V) = 1 are dropped from binary regression,
and the original weight 1 is used. For notational simplicity, we write Zi for either method,
and assume that sampling probabilities are strictly less than 1 for all strata.

2.1.1. Estimated weights—The method of estimated weights adjusts weights through
binary regression on the phase I variables. The sampling probability for the ith subject is

modeled by , where
α ∈ e ⊂ ℝJ+k is a regression parameter and Ge : ℝ ↦ [0, 1] is a known function. If Ge(x)
= ex/(1+ex), for instance, then the adjustment simply involves logistic regression. Let α̂N be
the estimator of α that maximizes the pseudo- (or composite) likelihood
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(2.2)

We define the IPW empirical measure with estimated weights by

and the IPW empirical process with estimated weights by .

2.1.2. Calibration—Calibration adjusts weights so that the inverse probability weighted
average from the phase II sample is equated to the phase I average, whereby the phase I
information is taken into account for estimation. Specifically, we find an estimator α̂N that is
the solution for α ∈ c ⊂ ℝk of the following calibration equation:

(2.3)

where Gc(V ; α) ≡ G(g(V)T α) = G(ZT α) for known G with G(0) = 1 and Ġ(0) > 0. We call
πα(V) ≡ π0(V)/Gc(V ; α) the calibrated sampling probability. We define the calibrated IPW
empirical measure by

and the calibrated IPW empirical process by .

Examples for G in the definition of Gc are listed in [8] (F in their notation). For

 is a well-known regression estimator of the mean of X. Since we assume
boundedness of G later, we may want to consider truncated versions of these examples
instead. Note that choice of G in (variants of) calibration does not affect asymptotic results
on WLEs.

As noted in [13], there are several different approaches to calibration. Here, and in
introducing variants of calibration below, we adopt the view that calibration proceeds by
making the smallest possible change in weights in order to match an estimated phase II
average with the corresponding phase I average. Another approach proceeds via regression
modeling of the variable X of interest and the auxiliary variables V, leading to a robustness
discussion on effects of the validity of the model on estimation for X. We prefer the former
view because we do not assume a model for X and V throughout this paper. In fact, our
results are independent of such a modeling assumption.

2.1.3. Modified calibration—Modifying the function Gc in calibration so that individuals
with higher sampling probabilities π(Vi) receive less weight was proposed by [6] in a
missing response problem where observations are i.i.d. (see, e.g., [28] for recent
developments in this area and [14] for their connections with calibration methods). An
interpretation of this method within the framework of [8] is discussed in [26]. In modified
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calibration, we find the estimator α̂N that is the solution for α ∈ mc ⊂ ℝk of the following
calibration equation:

(2.4)

where Gmc(V ; α) ≡ G((π0(V)−1 − 1) ZT α) for known G with G(0) = 1 and Ġ(0) > 0. We
call πα(V) ≡ π0(V)/Gmc(V ; α) the calibrated sampling probability with modified
calibration. We define the IPW empirical measure with modified calibration by

and the corresponding IPW empirical process by .

2.1.4. Centered calibration—We propose a new method, centered calibration, that
calibrates on centered auxiliary variables with modified calibration. This method improves
the plain WLE under our sampling scheme, while retaining the good properties of modified
calibration. See Section 3.4 for a discussion of its advantage and connections to other
methods.

In centered calibration, we find the estimator α̂N that is the solution for α ∈ cc ⊂ ℝk of the
following calibration equation:

(2.5)

where Gcc(V ; α) ≡ G((π0 (V)−1 − 1)(Z − Z̅N)T α) for known G with G(0) = 1 and Ġ(0) > 0

and . We call πα(V) ≡ π0(V)/Gcc(V ; α) the calibrated sampling
probability with centered calibration. We define the IPW empirical measure with centered
calibration by

and the corresponding IPW empirical process by .

2.2. Estimators for a semiparametric model 
We study the asymptotic distribution of the weighted likelihood estimator of a finite-
dimensional parameter θ in a general semiparametric model = {Pθ,η : θ ∈ Θ, η ∈ H} where
Θ ⊂ ℝp and the nuisance parameter space H is a subset of some Banach space ℬ. Let P0 =
Pθ0,η0 denote the true distribution.

The MLE for complete data is often obtained as a solution to the infinite-dimensional
likelihood equations. In such models, the WLE under two-phase sampling is obtained by
solving the corresponding infinite-dimensional inverse probability weighted likelihood
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equations. Specifically, the WLE (θ̂N, η̂N) is a solution to the following weighted likelihood
equations:

(2.6)

where  is the score function for θ, and the score operator

 is the bounded linear operator mapping a direction h in some Hilbert
space ℋ of one-dimensional submodels for η along which η → η0. The WLE with estimated
weights (θ̂N,e, η̂N,e), the calibrated WLE (θ̂N,c, η̂N,c), the WLE with modified calibration
(θ̂N,mc, η̂N,mc) and the WLE with centered calibration (θ̂N,cc, η̂N,cc) are obtained by replacing

 with # ∈ {e, c, mc, cc} in (2.6), respectively. Let ℓ̇0 = ℓ̇θ0, η0, and B0 = Bθ0, η0.

3. Asymptotics for the WLE in general semiparametric models
We consider two cases: in the first case the nuisance parameter η is estimable at a regular
(i.e., ) rate, and for ease of exposition, η is assumed to be a measure. In the second case η
is only estimable at a nonregular (slower than ) rate. Our theorem (Theorem 3.2)
concerning the second case nearly covers the former case, but requires slightly more
smoothness and a separate proof of the rate of convergence for an estimator of η. On the
other hand, our theorem (Theorem 3.1) concerning the former case includes a proof of the
(regular) ( ) rate of convergence, and hence is of interest by itself.

3.1. Conditions for adjusting weights
We assume the following conditions for estimators of α for adjusted weights. Throughout
this paper, we may assume both Conditions 3.1 and 3.2 at the same time, but it should be
understood that the former condition is used exclusively for the estimators regarding
estimated weights and the latter condition is imposed only for estimators regarding (variants
of) calibration. Also, it should be understood that Conditions 3.2(a)(i) and (d)(i), Conditions
3.2(a)(ii) and (d)(ii) and Conditions 3.2(a)(iii) and (d)(iii) are assumed for estimators defined
via calibration, modified calibration and centered calibration, respectively.

Condition 3.1 (Estimated weights). (a) The estimator α̂N is a maximizer of the pseudo-
likelihood (2.2).

(b) Z ∈ ℝJ+k is not concentrated on a (J + k)-dimensional affine space of ℝJ+k and
has bounded support.

(c) Ge : ℝ ↦ [0, 1] is a twice continuously differentiable, monotone function.

(d) S0 ≡ P0[{Ġe(ZT α0)}2{π0(V)(1−π0(V))}−1 Z⊗2] is finite and nonsingular, where
Ġe is a derivative of Ge.

(e) The “true” parameter α0 = (α0, 1, …, α0, J+k) is given by  for j = 1,
…, J and α0, j = 0, for j = J + 1, …, J + k. The parameter α is identifiable, that
is, pα = pα0 almost surely implies α = α0.

(f) For a fixed pj ∈ (0, 1), nj satisfies nj = [Njpj] for j = 1, …, J.

Condition 3.2 (Calibrations). (a) (i) The estimator  is a solution of calibration

equation (2.3). (ii) The estimator  is a solution of calibration equation (2.4). (iii)

The estimator  is a solution of calibration equation (2.5).

(b) Z ∈ ℝk is not concentrated at 0 and has bounded support.
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(c) G is a strictly increasing continuously differentiable function on ℝ such that
G(0) = 1 and for all x, −∞ < m1 ≤ G(x) ≤ M1 < ∞ and 0 < Ġ(x) ≤ M2 < ∞,
where Ġ is the derivative of G.

(d) (i) P0Z⊗2 is finite and positive definite. (ii) P0[π0(V)−1(1 − π0(V))Z⊗2] is finite
and positive definite. (iii) P0[π0(V)−1 (1 − π0(V)) (Z − μZ)⊗2] is finite and
positive definite where μZ = PZ.

(e) (e) The “true” parameter α0 = 0.

Condition 3.1(f) may seem unnatural at first, but in practice the phase II sample size nj can
be chosen by the investigator so that the sampling probability pj can be understood to be
automatically chosen to satisfy nj = [Njpj]. The other parts of Condition 3.1 are standard in
binary regression, and Condition 3.2 is similar to Condition 3.1.

Asymptotic properties of α̂N for all methods are proved in [25].

3.2. Regular rate for a nuisance parameter
We assume the following conditions.

Condition 3.3 (Consistency). The estimator (θ̂N, η̂N) is consistent for (θ0, η0) and solves the

weighted likelihood equations (2.6), where  may be replaced by  with # ∈ {e, c, mc,
cc} for the estimators with adjusted weights.

Condition 3.4 (Asymptotic equicontinuity). Let ℱ1(δ) = {ℓ̇θ,η : |θ − θ0| + ∥η − η0∥ < δ} and
ℱ2(δ) = {Bθ,ηh − Pθ,ηBθ,ηh : h ∈ ℋ, |θ − θ0| + ∥η − η0∥ < δ}. There exists a δ0 > 0 such that
(1) ℱk(δ0), k = 1, 2, are P0-Donsker and suph∈ℋ P0|fj − f0, j|2 → 0, as |θ − θ0| + ∥η − η0∥ →
0, for every fj ∈ ℱj(δ0), j = 1, 2, where f0,1 = ℓ̇θ0,η0 and f0,2 = B0h − P0B0h, (2) ℱk(δ0), k = 1,
2, have integrable envelopes.

Condition 3.5. The map Ψ = (Ψ1, Ψ2) : Θ × H ↦ ℝp × ℓ∞ (ℋ) with components

has a continuously invertible Fréchet derivative map Ψ̇0 = (Ψ̇11, Ψ̇12, Ψ̇21, Ψ̇22) at (θ0, η0)
given by Ψ̇ij (θ0, η0)h = P0(ψ̇i,j, θ0, η0,h), i, j ∈ {1, 2} in terms of L2(P0) derivatives of ψ1,θ,η,h
= ℓ̇θ,η and ψ2,θ,η,h = Bθ,ηh − Pθ,ηBθ,ηh; that is,

Furthermore, Ψ̇0 admits a partition

where
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and  is continuously invertible.

Let  be the efficient information for θ and

 be the efficient influence function for θ for the
semiparametric model with complete data.

Theorem 3.1. Under Conditions 3.1–3.5,

where # ∈ {e, c, mc, cc},

(3.1)

(3.2)

and (recall Conditions 3.1 and 3.2)

Remark 3.1. Our conditions in Theorem 3.1 are the same as those in [5] except the
integrability condition. Our Condition 3.4(2) requires existence of integrable envelopes for
class of scores while the condition (A1*) in [5] requires square integrable envelopes. Note
that this integrability condition is required only for the WLE with adjusted weights, as in [4].

Remark 3.2. As can be seen from the definition of Q#, the choice of G in calibration does not
affect the asymptotic variances while Ge in the method of estimated weights does affect the
asymptotic variance.

3.3. Nonregular rate for a nuisance parameter
For h = (h1, …, hp)T with hk ∈ H, k = 1, …, p, let Bθ,η[h] = (Bθ,ηh1, …, Bθ,ηhp)T. We assume
the following conditions.
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Condition 3.6 (Consistency and rate of convergence). An estimator (θ̂N,η̂N) of (θ0,η0)
satisfies |θ̂N − θ0| = oP (1), and ∥η̂N − η0∥ = OP (N−β) for some β > 0.

Condition 3.7 (Positive information). There is an , where  for k = 1,
…, p, such that

The efficient information I0 ≡ P0(ℓ̇0 − B0[h*])⊗2 for θ for the semiparametric model with
complete data is finite and nonsingular. Denote the efficient influence function for the

semiparametric model with complete data by .

Condition 3.8 (Asymptotic equicontinuity). (1) For any δN ↓ 0 and C > 0,

(2) There exists a δ > 0 such that the classes {ℓ̇θ,η : |θ − θ0| + ∥η − η0∥ ≤ δ} and {Bθ,η[h*] : |θ
− θ0| + ∥η − η0∥ ≤ δ} are P0-Glivenko–Cantelli and have integrable envelopes. Moreover,
ℓ̇θ,η and Bθ,η[h*] are continuous with respect to (θ, η) either pointwise or in L1(P0).

Condition 3.9 (Smoothness of the model). For some α > 1 satisfying αβ > 1/2 and for (θ, η)
in the neighborhood {(θ, η) : |θ − θ0| ≤ δN, ∥η − η0∥ ≤ CN−β},

In the previous section, we required that the WLE solves the weighted likelihood equations
(2.6) for all h ∈ ℋ. Here, we only assume that the WLE (θ̂N, η̂N) satisfies the weighted
likelihood equations

(3.3)

The corresponding WLEs with adjusted weights, (θ̂N,#, η̂N,#) with # ∈ {e, c, mc, cc} satisfy

(3.3) with  replaced by .

Theorem 3.2. Suppose that the WLE is a solution of (3.3) where  may be replaced by 
with # ∈ {e, c, mc, cc} for the estimators with adjusted weights. Under Conditions 3.1, 3.2
and 3.6–3.9,

where Σ and Σ# are as defined in (3.1) and (3.2) of Theorem 3.1, but now I0 and ℓ̃0 are
defined in Condition 3.7, and Q# are defined in Theorem 3.1.

Remark 3.3. Our conditions are identical to those of the Z-theorem of [10] except Condition
3.8(2). This additional condition is not stringent for the following reasons. First, the
Glivenko–Cantelli condition is usually assumed to prove consistency of estimators before
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deriving asymptotic distributions. Second, a stronger L2(P0)-continuity condition is standard
as is seen in Condition 3.4 (see also Section 25.8 of [31]). Note that the L1(P0)-continuity
condition is only required for the WLEs with adjusted weights.

3.4. Comparisons of methods
We compare asymptotic variances of five WLEs in view of improvement by adjusting
weights and change of designs. We also include in comparison special cases of adjusting
weights involving stratum-wise adjustment.

3.4.1. Stratified Bernoulli sampling—We first give a statement of the result
corresponding to Theorem 3.1 for stratified Bernoulli sampling where all subjects are

independent with the sampling probability pj if V ∈ j and  with # ∈ {e, c,
mc, cc} are the corresponding WLE and WLEs with adjusted weights.

Theorem 3.3. Suppose Conditions 3.1 [except Condition 3.1(f)] and 3.2 hold. Let ξi ∈ {0, 1}

and ξ be i.i.d. with .

1. Suppose that the WLE is a solution of (3.3) where  may be replaced by  with
# ∈ {e, c, mc, cc} for the estimators with adjusted weights. Under the same
conditions as in Theorem 3.1,

where

(3.4)

(3.5)

where Q# with # ∈ {e, c, mc, cc} are defined in Theorem 3.1.

2. Under the same conditions as in Theorem 3.2, the same conclusions in (1) hold
with I0 and ℓ̃0 replaced by those defined in Condition 3.7.

Comparing the variance–covariance matrices in Theorem 3.3 to those in Theorems 3.1 and
3.2, we obtain the following corollary comparing designs. All estimators have smaller
variances under sampling without replacement.

Corollary 3.1. Under the same conditions as in Theorem 3.3,
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Variance formulas (3.5) with # ∈ {e, mc, cc} except for the ordinary calibration have the
following alternative representations which show the efficiency gains over the plain WLE
under Bernoulli sampling.

Corollary 3.2. Under the same conditions as in Theorem 3.3,

3.4.2. Within-stratum adjustment of weights—Adjusting weights can be carried out
in every stratum. This is proposed by Breslow et al. [2, 3] for ordinary calibration. Consider
calibration on Z̃ where Z̃ ≡ (Z(1), …, Z(J))T with Z(j) ≡ I (V ∈ j)ZT . The calibration
equation (2.3) becomes

where α ∈ ℝJk. We call this special case within-stratum calibration. We define within-
stratum modified and centered calibration analogously.

We also call estimated weights carried out within stratum within-stratum estimated weights.
Recall that Z in estimated weights contains the membership indicators for the strata and the
rest are other auxiliary variables, say Z[2]. Within-stratum estimated weights uses Z̃ ≡ (Z(1),
…, Z(J))T where Z(j) ≡ I (V ∈ j)(Z[2])T with 1 included in Z[2]. The “true” parameter α̃0 has

zero for all elements except having  for the element corresponding to I (V ∈ j), j =
1, …, J.

The following corollary summarizes within-stratum adjustment of weights under stratified
Bernoulli sampling and sampling without replacement. All methods achieve improved
efficiency over the plain WLE under Bernoulli sampling while centered calibration is the
only method to yield a guaranteed improvement under sampling without replacement. This

is because centering yields the -projection suitable for the conditional variances in
(3.2) while noncentering results in the L2(P0|j)-projection for the conditional expectations in
(3.5).

Corollary 3.3. (1) (Bernoulli) Under the same conditions as in Theorem 3.3 with Z replaced
by Z̃ and α0 replaced by α̃0 for within-stratum estimated weights,

(3.6)

where # ∈ {e, c, mc, cc} and
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with μZ,j ≡ E[I (V ∈ j)Z] for j = 1, …, J.

(2) (without replacement) Under the same conditions as in Theorems 3.1 or 3.2 with Z is
replaced by Z̃

(3.7)

.

3.4.3. Comparisons—We summarize Corollaries 3.1–3.3. Every method of adjusting
weights improves efficiency over the plain WLE in a certain design and with a certain range
of adjustment of weights (within-stratum or “across-strata” adjustment). However,
particularly notable among all methods is centered calibration. While other methods gain
efficiency only under Bernoulli sampling, centered calibration improves efficiency over the
plain WLE under both sampling schemes. There is no known method of “across-strata”
adjustment that is guaranteed to gain efficiency over the plain WLE under stratified
sampling without replacement.

There are close connections among all methods. When the auxiliary variables have mean
zero, centered and modified calibrations are essentially the same. The ordinary and modified
calibrations give the same asymptotic variance when carried out stratum-wise. For Z and α0
defined for estimated weights, estimated weights and modified calibration based on (1 −
π0(V))−1 Ġe(ZT α0)Z performs the same way. Similarly within-stratum estimated weights
with Z̃ and α̃0 is as good as within-stratum calibration based on Ġe(Z̃T α̃0)Z̃.

As seen in the relationship among methods, there is no single method superior to others in
each situation. In fact, performance depends on choice and transformation of auxiliary
variables, the true distribution P0 and the design. For our “without replacement” sampling
scheme, within-stratum centered calibration is the only method guaranteed to gain efficiency
while other methods may perform even worse than the plain WLE.

4. Examples
For asymptotic normality of WLEs, consistency and rate of convergence need to be
established first to apply our Z-theorems in Section 3. To this end, general results on IPW
empirical processes discussed in the next section will be useful. We illustrate this in the Cox
models with right censoring and interval censoring under two-phase sampling.

Let T ~ F be a failure time, and X be a vector of covariates with bounded supports in the
regression model. The Cox proportional hazards model [7] specifies the relationship

where θ ∈ Θ ⊂ ℝp is the regression parameter, Λ ∈ H is the (baseline) cumulative hazard
function. Here the space H for the nuisance parameter Λ is the set of nonnegative,
nondecreasing cadlag functions defined on the positive line. The true parameters are θ0 and
Λ0.

In addition to X, let U be a vector of auxiliary variables collected at phase I which are
correlated with the covariate X. For simplicity of notation, we assume that the covariates X
are only observed for the subject sampled at phase II. Thus, if some of the coordinates of X
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are available at phase I, then we include an identical copy of those coordinates of X in the
vector of U.

4.1. Cox model with right censored data
Under right censoring, we only observe the minimum of the failure time T and the censoring
time C ~ G. Define the observed time Y = T ∧ C and the censoring indicator Δ = I (T ≤ C).
The phase I data is V = (Y, Δ, U), and the observed data is (Y, Δ, ξX, U, ξ) where ξ is the
sampling indicator. With right censored data and complete data, the theory for maximum
likelihood estimators in the Cox model has received several treatments; the one we follow
most closely here is that of [31]. For the Cox model with case-cohort data, see [27] and for
treatments with even more general designs [1] and [12]. Here, for both sampling without
replacement and Bernoulli sampling, we continue the developments of [4, 5]. We assume
the following conditions:

Condition 4.1. The finite-dimensional parameter space Θ is compact and contains the true
parameter θ0 as an interior point.

Condition 4.2. The failure time T and the censoring time C are conditionally independent
given X, and that there is τ > 0 such that P(T > τ) > 0 and P(C ≥ τ) = P(C = τ) > 0. Both T
and C have continuous conditional densities given the covariates X = x.

Condition 4.3. The covariate X has bounded support. For any measurable function h, P(X ≠
h(Y)) > 0.

Let λ(t) = (d/dt)Λ(t) be the baseline hazard function. With complete data, the density of (Y,
Δ, X) is

where pX is the marginal density of X and g(·|x) is the conditional density of C given X = x.
The score for θ is given by ℓ̇θ,Λ (y, δ, x) = x{δ − eθ

T x Λ (y)}, and the score operator Bθ,Λ : ℋ
↦ L2(Pθ,Λ) is defined on the unit ball ℋ in the space BV[0, τ] such that Bθ,Λ h(y, δ, x) =
δh(y) − eθ

T x ∫[0,y] h d Λ. Because the likelihood based on the density above does not yield
the MLE for complete data, we define the log likelihood for one observation for complete
data by ℓθ,Λ (y, δ, x) = log{(eθ

T x Λ {y})δ e−Λ(y)eθ
T x

} where Λ{t} is the (point) mass of Λ at

t. Then maximizing the weighted log likelihood  reduces to solving the system of

equations  for every h ∈ ℋ. The efficient score for θ for complete
data is given by

, and the efficient information for θ for complete data is

where .
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Theorem 4.1 (Consistency). Under Conditions 3.1, 3.2, 4.1–4.3, the WLEs are consistent for
(θ0, Λ0).

Proof. This proof follows along the lines of the proof given by [29], but with the usual
empirical measure replaced by the IPW empirical measure (with adjusted weights), and by
use of Theorem 5.1. For details see [25].

Our Z-theorem (Theorem 3.1) yields asymptotic normality of the WLEs.

Theorem 4.2 (Asymptotic normality). Under Conditions 3.1, 3.2, 4.1–4.3,

where # ∈ {e, c, mc, cc},  is the efficient influence function for θ for
complete data, and Σ and Σ# are given in Theorem 3.1.

Proof. We verify the conditions of Theorem 3.1. Condition 3.3 holds by Theorem 4.1.
Conditions 3.4 and 3.5 hold under the present hypotheses as was shown in [31], Section
25.12.

For variance estimation regarding  can be used to estimate I0.

Letting , we can estimate  by  where

 and . The other four cases are similar.

4.2. Cox model with interval censored data
Let Y be a censoring time that is assumed to be conditionally independent of a failure time T
given a covariate vector X. Under the case 1 interval censoring, we do not observe T but (Y,
Δ) where Δ ≡ I (T ≤ Y). The phase I data is V = (Y, Δ, U) and the observed data is (Y, Δ, ξ X,
U, ξ) where ξ is the sampling indicator. In the case of complete data, maximum likelihood
estimates for this model were studied by Huang [10]. For a generalized version of this model
and two-phase data with Bernoulli sampling, weighted likelihood estimates with and without
estimated weights have recently been studied by Li and Nan [11]. Here we treat two-phase
data under sampling without replacement at phase II and with both estimated weights and
calibration.

With complete data, the log likelihood for one observation is given by

where F̅ ≡ 1 − F = e−Λ. The score for θ and the score operator Bθ,Λ for Λ for complete data
are ℓ̇θ,Λ = x exp(θT x)Λ(y)(δr(y, x; θ, Λ) − (1 − δ)) and Bθ,Λ[h] = exp(θT x)h(y){δr(y, x; θ, Λ)
− (1 − δ)} where r(y, x; θ, Λ) = exp(−eθ

T x Λ (y))/{1 − exp(−eθ
T x Λ (y))}. The efficient score

for θ for complete data is given by
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where Q(y, δ, x; θ, Λ) = δr(y, x; θ, Λ) − (1 − δ) and O(y|x) = r(y, x; θ0, Λ0). The efficient

information for θ for complete data  is given by Ĩθ0, Λ0 = E[R(Y, X){X −

E[X R(Y, X)|Y]/E[R(Y, X)|Y]}] where . See [10] for further
details.

We impose the same assumptions made for complete data in [10].

Condition 4.4. The finite-dimensional parameter space Θ is compact and contains the true
parameter θ0 as its interior point.

Condition 4.5. (a) The covariate X has bounded support; that is, there exists x0 such that |X| ≤

x0 with probability 1. (b) For any θ ≠ θ0, the probability .

Condition 4.6. F0(0) = 0. Let τF0 = inf{t : F0(t) = 1}. The support of Y is an interval S[Y] =
[lY, uY] and 0 < lY ≤ uY < τF0.

Condition 4.7. The cumulative hazard function Λ0 has strictly positive derivative on S[Y],
and the joint function G(y, x) of (Y, X) has bounded second order (partial) derivative with
respect to y.

4.2.1. Consistency—The characterization of WLEs (θ̂N, Λ̂N) and (θ̂N, #, Λ̂N, #) with # ∈

{e, c, mc, cc} maximizing  is given in [25], Lemma A.5. We prove
consistency of the WLEs in the metric given by d((θ1, Λ1), (θ2, Λ2)) ≡ ∥θ1 − θ2∥ + ∥Λ1 −

Λ2∥PY, where ∥ · ∥ is the Euclidean metric and , and
PY is the marginal probability measure of the censoring variable Y.

Theorem 4.3 (Consistency). Under Conditions 3.1, 3.2, 4.4–4.7, the WLEs are consistent in
the metric d.

Proof. We only prove consistency for the WLE. Proofs for the other four estimators are
similar.

Let H̃ be the set of all subdistribution functions defined on [0, ∞]. We denote the WLE of F
as F̂N = 1 − e−Λ̂N. Define the set ℱ of functions by

Boundedness of X and compactness of Θ ⊂ ℝp imply that the set {eθ
T x : θ ∈ Θ} is

Glivenko–Cantelli. The set H̃ is also Glivenko–Cantelli since it is a subset of the set of
bounded monotone functions. Thus, it follows from boundedness of functions in ℱ and the
Glivenko–Cantelli preservation theorem [30] that ℱ is Glivenko–Cantelli.

Let 0 < α < 1 be a fixed constant. It follows by concavity of the function u ↦ log u and
Jensen’s inequality that

where the first equality holds if and only if 1 + α(f (θ, F)/f (θ0, F0) − 1) is constant on S[Y],
in other words, (θ, F) = (θ0, F0) on S[Y] by the identifiability Condition 4.5. Note also that
by monotonicity of the logarithm
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Thus, the set = {log{1 + α(f (θ, F)/f (θ0, F0) − 1)} : f (θ, F) ∈ ℱ} has an integrable
envelope. To see this, form a sequence (θn, Fn) such that

Then {gn − log(1 − α)}n∈ℕ is a monotone increasing sequence of nonnegative functions. By
the monotone convergence theorem, P0gn − log(1 − α) → P0G − log(1 − α) ≤ −log(1 − α).
Thus we choose G ∨ − log(1 − α) as an integrable envelope. Also, the set is Glivenko–
Cantelli by a Glivenko–Cantelli preservation theorem [30].

Now, by the concavity of the map u ↦ log u, and the definition of the WLE, we have

Since Θ and H̃ are compact, there is a subsequence of (θ̂N, F ̂N) converging to (θ∞, F∞) ∈ Θ
× H̃. Along this subsequence, Theorem 5.1 implies that

so that Pθ0, F0 log{1 + α(f (θ∞, F∞)/f (θ0, F0) − 1)} = 0. This is possible when (θ∞, F∞) =
(θ0, F0) because (θ, F) ↦ P[log{1 + α(f (θ, F)/f (θ0, F0) − 1)}] attains its maximum only at
(θ0, F0). Hence we conclude that (θ̂N, F̂N) converges to (θ0, F0) in the sense of Kullback–
Leibler divergence. Since the Kullback–Leibler divergence bounds the Hellinger distance, it
follows by Lemma A5 of [17] that d((θ̂N, Λ̂N), (θ0, Λ0)) = oP* (1).

4.2.2. Rate of convergence—We prove the rate of convergence of the WLE is N1/3 by
applying the rate theorem (Theorem 5.2) in Section 5. Since we proved the consistency of
(θ̂N, Λ̂N) to (θ0, Λ0) on S[Y], under Condition 4.6 we can restrict a parameter space of Λ to
HM ≡ {Λ ∈ H : M−1 ≤ Λ ≤ M, on S[Y]}, where M is a positive constant such that M−1 ≤ Λ0
≤ M on S[Y]. Define ℳ ≡ {ℓ(θ, Λ): θ ∈ Θ, Λ ∈ HM}.

Theorem 4.4 (Rate of convergence). Under Conditions 4.4–4.7,

This holds if we replace the WLE by the WLEs with adjusted weights assuming Conditions
3.1 and 3.2.
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Proof. Since the rate of convergence for the WLE is easier to verify than the other four
estimators, we only prove the theorem for the WLE with modified calibration. The cases for
the WLEs with adjusted weights.

We proceed by verifying the conditions in Theorem 5.2. Bound (5.4) follows by Lemma 5.2
in Section 5 and Lemma A5 of [17]. For bound (5.5), we follow the proof of (5.3) in [10].
Since α̂N is consistent, we can specify the small neighborhood mc, 0 of a zero vector such
that Gmc(z; α) is contained in a small interval that contains 1 and consists of strictly positive
numbers. Thus, multiplying the log likelihood by a uniformly bounded quantity Gmc(z; α)
only requires a slight modification of Huang’s proof of his Lemma 3.1 to obtain supQ log
N[·] (ε, Gℳ, L2(Q)) ≲ ε−1 for ε small enough where the supremum is taken over the all
discrete probability measures and Gℳ = {Gmc(·; α)ℓ(θ, Λ) : α ∈ mc, 0, ℓ(θ, Λ) ∈ ℳ}. Let
Gℳδ = {m(θ, Λ, α) − m(θ0, Λ0, α) : m(θ, Λ, α) ∈ Gℳ, d((θ, Λ), (θ0, Λ0)) ≤ δ}. It follows by

Lemma 3.2.2 of [32] that . Apply
Theorem 5.2 to conclude rN = N1/3.

4.2.3. Asymptotic normality of the estimators—We apply Theorem 3.2 to derive the
asymptotic distributions of the WLEs.

Theorem 4.5 (Asymptotic normality). Under Conditions 3.1, 3.2, 4.4–4.7,

where # ∈ {e, c, mc, cc},  is the efficient influence function for complete
data and Σ and Σ# are given in Theorem 3.2.

Proof. We proceed by verifying the conditions of Theorem 3.2 for the WLE with modified
calibration. The other four cases are similar.

Condition 3.6 is satisfied with β = 1/3 by Theorems 4.3 and 4.4. Conditions 3.7–3.9 are
verified by [10] with

Since  by Lemma A.5, it remains to show that

Let  be the composition of h* and the inverse of Λ0. Note that Λ0 is a strictly
increasing continuous function by our assumption. Since g0(Λ̂N, mc(y)) is a right continuous
function and has exactly the same jump points as Λ̂N, mc(y), by Lemma A.5,

. By Conditions 4.5–4.7, h* has
bounded derivative. This and the assumption that Λ0 has strictly positive derivative by
Condition 4.7 imply that g0 has bounded derivative, too. So, noting that h* = g0 ◦ Λ0, we
have
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Huang [10] showed that the second term in the display is oP*(N−1/2). We show that the first
term in the display is also oP*(N−1/2). Let C > 0 be an arbitrary constant. Define for a fixed
constant η > 0, η) ≡ {ψ(y, x; θ, Λ) : d((θ, Λ), (θ0, Λ0)) ≤ η, Λ ∈ HM}, where ψ(y, δ, x; θ, Λ)
≡ {g0 ◦ Λ0(y) − g0(Λ(y))} × eθ

T x Q(y, δ, x; θ, Λ). Because Huang [10] showed that η) is
Donsker for every η > 0 and that ∥ N∥ (CN−1/3) = oP*(1), it follows by Lemma 5.4 with ℱN

replaced by CN−1/3) that . This completes the proof.

Unlike the previous example,  depends on additional unknown functions, and the method
of variance estimation used in the previous example does not apply to the present case. See
the discussion in Section 6.

5. General results for IPW empirical processes
The IPW empirical measure and IPW empirical process inherit important properties from
the empirical measure and empirical process, respectively. We emphasize the similarity
between empirical processes and IPW empirical processes.

5.1. Glivenko–Cantelli theorem
The next theorem states that the Glivenko–Cantelli property for complete data is preserved
under two-phase sampling.

Theorem 5.1. Suppose that ℱ is P0-Glivenko–Cantelli. Then

(5.1)

where ∥·∥ℱ is the supremum norm. This also holds if we replace  with # ∈ {e, c,
mc, cc} assuming Conditions 3.1 and 3.2.

5.2. Rate of convergence
The rate of convergence of an M-estimator for complete data is often established via
maximal inequalities for the empirical processes. If we follow the same line of reasoning, it
is natural to derive maximal inequalities for IPW empirical processes, though this may
require some efforts. Fortunately, these maximal inequalities for empirical processes (or
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slight modifications of them) suffice to establish the same rate of convergence under two-
phase sampling.

Theorem 5.2. Let ℳ = {mθ : θ ∈ Θ} be the set of criterion functions and define ℳδ = {mθ −
mθ0 : d(θ, θ0) < δ} for some fixed δ > 0 where d is a semimetric on the parameter space Θ.

(1) Suppose that for every θ in a neighborhood of θ0,

(5.2)

here a ≲ b means a ≤ K b for some constant K ∈ (0, ∞). Assume that there exists a function
ϕN such that δ ↦ ϕN(δ)/δα is decreasing for some α < 2 (not depending on N), and for every
N,

(5.3)

where N is the empirical process. If an estimator θ̂N satisfying

 converges in outer probability to θ0, then rNd(θ̂N, θ0) =

OP*(1) for every sequence rN such that  for every N.

(2) Let # ∈ {e, c, mc, cc} be fixed. Suppose Condition 3.2 holds. Suppose also that for every
θ ∈ Θ in a neighborhood of θ0,

(5.4)

where G̃e = π0(V)/Ge or G̃# = G# with # ∈ {c, mc, cc}. Assume that

(5.5)

where G̃#ℳδ ≡ {G̃#(·; α)f : |α| ≤ δ, α ∈ N, f ∈ ℳδ} for some N ⊂ #. Then an

estimator θ̂N,# satisfying  has the same rate of
convergence as θ̂N in part (1) if it is consistent.

Remark 5.1. The key to establishing a general theorem for the rate of convergence is to
make use of the boundedness of the weights in the IPW empirical process and also deal with
the dependence of the weights. In treating independent bootstrap weights in the weighted
bootstrap ([15], Lemmas 1–3), require the boundedness of bootstrap weights because the
product of an unbounded weight and a bounded function is no longer bounded. Our theorem
exploits the boundedness of sampling indicators in the IPW empirical processes by applying
a multiplier inequality for the case of bounded weights (Lemma 5.1) to cover more general
cases.

The following is a multiplier inequality for bounded exchangeable weights. Note that the
sum of stochastic processes in the second term is divided by n1/2 rather than k1/2.

Lemma 5.1. For i.i.d. stochastic processes Z1, …, Zn, every bounded, exchangeable random
vector (ξ1, …, ξn) with each ξi ∈ [l, u] that is independent of Z1, …, Zn, and any 1 ≤ n0 ≤ n,
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Bound (5.5) is not difficult to verify in the presence of bound (5.3) since G#(· ; α) is a
bounded monotone function indexed by a finite-dimensional parameter. Bound (5.4) may be
verified through the lemma below for some applications including the Cox model with
interval censoring.

Lemma 5.2. Suppose Conditions 3.1 and 3.2 hold. Let mθ be the log likelihood log pθ where
pθ is the density with dominating measure μ, and d is the Hellinger distance. Then the bound
(5.4) holds.

5.3. Donsker theorem
The next theorem yields weak convergence of the IPW empirical processes under sampling
without replacement.

Theorem 5.3. Suppose that ℱ with ∥P0∥ℱ < ∞ is P0-Donsker and Conditions 3.1 and 3.2
hold. Then

(5.6)

(5.7)

in ℓ∞(ℱ) where # ∈ {e, c, mc, cc}, the P0-Brownian bridge process,  indexed by ℱ and the
P0|j-Brownian bridge processes, j, indexed by ℱ are all independent.

Remark 5.2. The integrability hypothesis ∥P0∥ℱ < ∞ is only required for the IPW empirical
processes with adjusted weights.

For a Donsker set ℱ, it follows by Theorem 5.3 and Lemma 2.3.11 of [32] that asymptotic
equicontinuity in probability and in mean follows for the metric that depends on the limit
process. In applications, it is of interest to have these results for the original metric ρP0(f, g)
= σP0(f − g).

Theorem 5.4. Let ℱ be Donsker and define ℱδ = {f − g : f, g ∈ ℱ, ρP0(f, g) < δ} for some
fixed δ > 0. Then, for every sequence δN ↓ 0,

and consequently, . Moreover,  for # ∈ {e, c, mc,
cc} assuming Conditions 3.1 and 3.2.

We end this section with two important lemmas. The first lemma is an extension of Lemma
3.3.5 of [32] and will be used in our proof of Theorem 3.1 to verify asymptotic
equicontinuity.

Lemma 5.3. Suppose ℱ = {ψθ,h − ψθ0,h : ∥θ − θ0∥ < δ, h ∈ ℋ} is P0-Donsker for some δ > 0
and that suph∈ℋ P0(ψθ,h − ψθ0,h)2 → 0, as θ →θ0. If θ̂N converges in outer probability to θ0,
then
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This also holds if we replace  with # ∈ {e, c, mc, cc} assuming Conditions 3.1
and 3.2 hold and ∥P0∥ℱ < ∞.

The second lemma is used to verify asymptotic equicontinuity in the proof of Theorem 3.2,
the first part for the IPW empirical process and the second part for the other four IPW
empirical processes with adjusted weights.

Lemma 5.4. Let ℱN be a sequence of decreasing classes of functions such that ∥ N∥ℱN =
oP*(1). Assume that there exists an integrable envelope for ℱN0 for some N0. Then E∥ N∥ℱN

→ 0 as N → ∞. As a consequence, .

Suppose, moreover, that ℱN is P0-Glivenko–Cantelli with ∥P0∥ℱN1
 < ∞ for some N1, and

that every f = fN ∈ ℱN converges to zero either point-wise or in L1(P0) as N → ∞. Then

,
assuming Conditions 3.1 and 3.2.

6. Discussion
We developed asymptotic theory for weighted likelihood estimation under two-phase
sampling, introduced and studied a new calibration method, centered calibration, and
compared several WLE estimation methods involving adjusted weights. The methods of
proof and general results for the IPW empirical process are applicable to other estimation
procedures. For example, the weighted Kaplan–Meier estimator can be shown to be
asymptotically Gaussian via our Donsker theorem (Theorem 5.3) together with the
functional delta method. A particularly interesting application is to study asymptotic
properties of estimators that are known to be efficient under Bernoulli sampling (e.g.,
estimator of [19]). Whether or not these estimators are “efficient” under our sampling
scheme is an open problem; see [16] for a definition of efficiency with non-i.i.d. data.

There are several other open problems. Variance estimation under two-phase sampling has
been restricted to the case where the asymptotic variance is a known function up to
parameters as discussed in Section 4, while there are several methods available for complete
data in a general case (e.g., [18]). In [24] the first author has proposed and studied
nonparametric bootstrap variance estimation methods which remain valid even under model
misspecification; these results will appear elsewhere. Another direction of research is to
study (local and global) model misspecification under two-phase sampling where
missingness is by design. An interesting open problem beyond our sampling scheme is to
study other complex survey designs. Stratified sampling without replacement is sufficiently
simple for the existing bootstrap empirical process theory to apply. Other complex designs
may provide interesting theoretical challenges, perhaps in connection with extensions of
bootstrap empirical process theory.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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